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Abstract

Based on a sample of size n, we consider estimating the number of symbols that
appear at least µ times in an independent sample of size a · n, where a is a given
parameter. This formulation includes, as a special case, the well-known problem of
inferring the number of unseen species introduced by [Fisher et al.] in 1943 and
considered by many others. Of considerable interest in this line of works is the
largest a for which the quantity can be accurately predicted. We completely resolve
this problem by determining the limit of estimation to be a ≈ (log n)/µ, with both
lower and upper bounds matching up to constant factors. For the particular case
of µ = 1, this implies the recent result by [Orlitsky et al.] on the unseen species
problem. Experimental evaluations show that the proposed estimator performs
exceptionally well in practice. Furthermore, the estimator is a linear combination
of symbols’ empirical counts, and hence linear-time computable.

1 Introduction

Let ∆ denote the collection of all discrete distributions. Given an independent sample Xn from an
unknown distribution p ∈ ∆, we are interested in estimating the number of unseen symbols that
appear at least µ times in an independent sample Y m from the same distribution p, where m is a
given sampling parameter. To be more specific, we study the estimation of

Uµ , Uµ(Xn, Y m) ,
∑
x

1Nx=0 · 1Mx≥µ,

where the summation is over all symbols x in the potentially unknown alphabet, and Nx and Mx

represent the number of times symbol x appearing in Xn and Y m, respectively. In addition, let

Φi , Φi(X
n) ,

∑
x

1Nx=i

denote the number of symbols appearing i times in the sample Xn. Due to symmetry, the collection
of Φi’s is a sufficient statistic for learning Uµ.

For the special case of µ = 1, the quantity U1 becomes the number of newly observed symbols, and
the task reduces to the well-known unseen species problem, whose study dates back to more than
half a century ago [12]. In the early 1940s, the British chemist and naturalist Corbet had spent two
years in Malaya to trap butterflies (Xn). Every time he saw a new species, he recorded how many
individuals of that species he had trapped (Nx).
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After returning to England, Corbet was curious how many new species he would discover if he went
back to Malaya for another 2 years. He constructed a table to show the number of species appearing
certain number of times (Φi), and then presented the problem to Fisher, Father of modern statistics,
who provided a remarkable estimator [12] that was later improved on by Good and Toulmin [14],

ÛGT , −
n∑
i=1

(−1)iΦi.

Before continuing the discussion, we introduce a convenient notation, a , m
n , and refer to it as the

amplification ratio (or extrapolation ratio), a quantity that describes the limit of our estimation power
and frequently appears in our subsequent derivations. Henceforth we often write m as na to reflect
our intention of inferring future statistics from past observations.

The Good-Toulmin estimator ÛGT applies to the special case of a = µ = 1 and generalizes to

ÛGT , −
n∑
i=1

(−a)iΦi

for general a values, where we kept the same notation. The paper [14] that originally introduced ÛGT

showed that as long as a ≤ 1, the estimator produces a nearly unbiased estimate with an expected
(absolute) deviation of O(a

√
n), which is negligible as U1 can potentially be an.

However, the success of this estimator does not extend to the regime where a > 1, both in theory
and in practice. For example, an experiment in a recent work [29] addressing U1 estimation shows
that even for a simple (shifted) Zipf-law with pi ∝ 1/(i+ 10) for 1 ≤ i ≤ 104, and a ∈ [1.3, 1.5],
estimate ÛGT can significantly deviate from the actual value and sometimes even becomes negative.

To address this issue, Good and Toulmin applied a smoothing technique to the alternating coefficient
sequence (−a)i, i = 1, . . . n, and replaced it by (−a)i ·Pr(bin(k, 1/(a+ 1)) ≥ i) for some properly
chosen parameter k. The resulting estimator, which [29] terms as the smoothed Good-Toulmin (SGT),
has found numerous applications over the past half-century. However, the statistical properties and
optimality of this estimator were not well-understood until the recent work of Orlitsky et al. [29, 31].

Noting that the heuristic multiplies the coefficients by the binomial tail probabilities, Orlitsky et al.
first proposed the following general smoothing regime. Let L be an independent nonnegative random
variable, and denote ÛL , −

∑n
i=1(−a)i Pr(L ≥ i)Φi. Subsequently, they showed that for L being

either a (proper) binomial or Poisson random variable, the induced estimator performs optimally.

Formally and more generally, Uµ varies from 0 to mµ , m/µ = na/µ, hence we measure the
performance of any n-sample estimator Û by the worst-case normalized mean-square error (NMSE),

Eµn,a(Û) , max
p∈∆

Ep

(
Û − Uµ
mµ

)2

.

The main result of [29] states that for some Poisson or binomially distributed L, the estimator satisfies
E1
n,a(ÛL) . 1/n1/a, where α . β abbreviates α = O(β). On the other hand, for some absolute

constants c, c′ > 0, and any a ≥ c and estimator Û , one has E1
n,a(ÛL) & 1/nc

′/a, where α & β
abbreviates α = Ω(β). Combined, the results established the optimality of the smoothing scheme.

1.1 New results

As described previously, the problem that we study here is natural generalization of the unseen
species problem, and calls for estimating Uµ, the number of symbols that appear at least µ times in
the future sample. One motivation for considering this problem is reproducibility. For example, in
the aforementioned butterfly trapping story, a basic task one often wants to perform is checking the
existence of sexual dimorphism in a newly observed butterfly species, meaning that the two sexes
look completely different. This clearly requires inferring Uµ for µ ≥ 2.

Replacing butterflies by words, vocabulary size estimation [9, 11, 19, 35] aims to determine how
many words a writer, say William Shakespeare, knew based on his written works. An intuitive and
widely used approach is to simply add up the number of observed (distinct) words and some estimate
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of U1. With the same motivation, we may also want to know how many words fall into a writer’s
common vocabulary (excluding those that appear only once or twice), which calls for estimating Uµ.

For another example, app developers are often interested in knowing how many new users their apps
will have in a future time period. In addition, they usually care more about active users who will use
the apps for at least a certain number of times. Under appropriate assumptions, this again translates
to a Uµ estimation problem. The same rationale applies to many other types of businesses such as
advertising, catering, and entertainment, since Uµ is a natural business growth indicator.

There has been a long line of research works on estimating U1, in which of considerable interest is
the largest a for which the quantity can be accurately predicted. The generalization of this “unseen
species” problem, on the other hand, is a new problem that we propose and rigorously study. As
the subsequent discussion shows, we completely resolved this problem by determining the limit of
estimation to be a ≈ (log n)/µ, with both lower and upper bounds matching up to constant factors.

Our estimator is linear-time computable given Φi’s, and has the form

Ûµ , Ûµ(Xn, a) ,
n∑
i=1

si · Φi,

where for r , logn
5a , the smoothing rate, we denote the i-th smoothed coefficient by

si , −
(µ−1)∧i∑
j=0

(−a)i(−1)j
(
i

j

)
Pr(Poi(r) ≥ i+ j),

where the notation α ∧ β abbreviates min{α, β}. In particular, if we set µ = 1, the estimator reduces
to ÛL in [29] with L ∼ Poi(r), and if we further remove the smoothing probability, the estimator
becomes the vanilla Good-Toulmin estimator ÛGT. In other words, like the problem formulation, the
proposed estimator is also a generalization of the prior ones.

The following two results essentially establish the optimality of Ûµ and determine the min-max
learning risk of approximating Uµ. In particular, these theorems imply the main result of [29] as a
special case. The first theorem bounds the worst-case NMSE of our estimator.

Theorem 1. There exist absolute constants c and c0 such that for any parameter a ∈ [1, (c log n)/µ],
the estimator Ûµ described above satisfies

Eµn,a(Ûµ) .
1

nc0/a
.

The second theorem lowerly bounds the worst-case NMSE of the best estimator.
Theorem 2. There exist absolute constants c′ and c′0 such that for any a ≥ max{1, (c′ log n)/µ},
and any n-sample estimator Û ,

Eµn,a(Û) &
1

nc
′
0/a

.

As a remark, the best constants we obtained are c0 = 0.4 and c′0 = 3.0.

1.2 Related Work

Unseen species problem Initiated by the seminal work of [12, 14], species estimation is an
important problem in a variety of scientific disciplines. Over the past few decades, the problem
has found numerous applications to the estimation of ecological or bacterial diversity [4, 5, 7, 10],
bacterial and microbial diversity [13, 28, 30], and writers’ vocabulary sizes [11, 35, 9], and the study
of database attribute variations [15], immune receptors [32], and genetic variations [24].

A number of estimators were proposed, notable ones include the Good-Toulmin (GT) estimator [14,
29, 31], jackknife estimator [33], abundance coverage estimator (ACE) [6], Chao-Lee estimator [5, 7],
and a linear-programming based (LP) estimator [36]. Even just for this U1 estimation task, the GT
estimator and their variants are the only ones known [29, 31] to achieve the optimal worst-case
NMSE. The ACE and Chao-Lee estimators are designed for uniform distributions, and LP estimator
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has exponentially worse NMSE guaranty and runs in polynomial time, inefficient compared with GT
or others in [29]. Another way of generalizing this unseen species problem is to consider the setting
involving multiple species groups (hence multiple distributions). Paper [17] recently studied this
problem as an application of its proposed multi-distribution functional estimation methodology.

Functional estimation In recent years, a related area that has seen significant advances is distribu-
tion functional estimation. For example, one may want to infer the entropy of an unknown distribution
from its i.i.d. sample. Other important functionals include support size, L1 distance to a fixed distri-
bution, general Lipschtiz functionals, and support coverage, the expected number of distinct symbols
in a new sample. Two types of methods have been proposed: one first finds an approximation of the
targeted functional, then find a near-unbiased estimator for the proxy [20, 21, 23, 26, 29, 39, 40]; the
other focuses on symmetric functionals, and tackles the problem by computing an estimate of the
distribution probability multiset and plugging it into the functional [2, 8, 16, 18, 22, 27, 36, 37].

Our approach essentially falls into the first category, and is closer to [17, 23, 29] utilizing smoothing
methods based on Bessel functions, with which we compare carefully in Section 3. Other methods
either require assumptions not satisfied in our setting, such as Lipschitzness [21, 18] or the existence
of highly concentrated estimators [2, 18]; or not known to work (well) even for U1 estimation, such as
those based on minimax polynomials [26, 27, 39, 40] or linear programming [16, 36, 37] (see above).

Outline For the rest of the paper, we mainly focus on constructing the estimator and deriving the
upper bound. The proofs of the lower bound and technical lemmas are postponed to the supplementary.
In Section 2, we present a roadmap for our construction and analysis, and show that Poissonization
works well in simplifying the problem. In Section 3, we utilize connections between Bessel functions
and Poisson probabilities to approximate the expectation of Uµ, and introduce r as a tunable hyper-
parameter controlling the variance-bias tradeoff. Section 4 then finds the explicit form of the estimator
and outlines the tools and key lemmas for the bias analysis. Finally, we numerically evaluate the
performance of the estimator in Section 5, demonstrating the excellent practicality of our approach.

2 MSE Decomposition and Poisson Sampling

First we address the upper bound in Theorem 1, decompose the problem into several parts, and
simplify our reasoning with Poisson sampling, a technique to remove symbol-count dependence.
Given n, a, and µ, the normalizing factor Mµ = na/µ is simply a constant. Hence, it suffices to
bound the mean squared error (MSE) of the estimator. On a high level, our analysis follows by

MSE , E
(
Ûµ − Uµ

)2

≤ 2Var(Ûµ) + 2Var (Uµ) +
(
E[Ûµ]− E [Uµ]

)2

,

based on which we construct Ûµ and bound each term in the last line separately.

Variances As one might expect, a difficulty in analyzing the variance is caused by dependence.
Given a sample Xn from some unknown distribution p, our estimator takes the form of

∑
i siΦi

where Φi denotes the number of symbols appearing i times in the sample. WhileXi’s are independent
by our assumption, Φi’s are dependent random variables, and putting involved coefficients in front of
them certainly makes the analysis even harder. A similar difficulty appears when we consider the
target random variable Uµ. To get around these obstacles, we apply Steele’s inequality [34].

Lemma 1 (Steele’s inequality). If S(xn) is any real function of n variables and if Xi, X
′
i, 1 ≤ i ≤ n

are 2n i.i.d. random variables then Var (S) ≤ 1
2 E
[∑n

i=1(S − Si)2
]
, where S , S(Xn) and Si is

given by replacing the i-th observation with X ′i .

The inequality basically states that as long as we have i.i.d. input Xn and care only a functional
S(Xn) that is not too sensitive to input changes, the variance of S(Xn) will be reasonably bounded.
For example, Uµ is a functional of the length-(n+m) i.i.d. sample (Xn, Y m), where modifying a
single symbol changes Uµ by at most 1. Hence, Lemma 1 bounds its variance as

Var(Uµ) ≤ 1

2
(n+m).

In the supplementary material, we derive a similar bound of Var(Ûµ) ≤ 2nmaxi s
2
i together with

|si| ≤ e(2a−1)r under appropriate assumptions, which requires significantly more work.
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Absolute bias Analyzing the bias term E[Ûµ − Uµ] directly relates to the estimator construction.
Intuitively, we first find the exact form of E[Uµ], which induces to an unbiased n-sample estimator.
Then, we gradually increase the absolute bias, with an intention to reduce the variance (or the
coefficient differences by the previous reasoning). The smoothing rate r appearing in the coefficient
expressions is a tunable hyper-parameter for this variance-bias tradeoff. In fact, this is the only
hyper-parameter for our algorithm, which implies an implementation advantage. See Section 3 for
details on how we approximate the target quantity and how r comes into the picture, and Section 4
for how our approximation induces estimator Ûµ and how we bound its bias.

To simplify our bias analysis, we also consider a closely related statistical model where the corre-
sponding sample sizes are respectively N ∼ Poi(n) and N ′ ∼ Poi(m), independent of the samples.
This leads to a technique in statistical learning, commonly known as Poisson sampling. The reason
for employing this Poissonization procedure is that it eliminates the dependence between sample
counts and turns a binomial probability

(
b
a

)
qa(1− q)b−a to the simpler Poisson version e−bq(bq)a/a!.

Henceforth, we indicate Poissonization by attaching a letter P to an expression, for example, UP
µ for

Uµ, and ÛP
µ for Ûµ, under the Poisson model. The following lemma partially justifies our reasoning.

Lemma 2. For any n, a and p, we have
∣∣E[Uµ − UP

µ ]
∣∣ ≤ 4.

A similar result holds for the estimator part.

Lemma 3. Under the conditions in Theorem 1, we have |E[Ûµ − ÛP
µ ]| ≤ 2e(2a−1)r.

As we show latter in the paper, this bound is also tiny compared with the normalizing factor mµ.

3 Bessel Functions and Approximation of Unseen

Following the reasoning in the last section, Poissonizing the samples facilitates our derivation without
affecting our results. In this section, we will assume that the sample sizes are Poi(n) and Poi(m)
for the past and future samples. To not further complicate the notation, we still use Nx’s and Mx’s
to denote the counts of symbols in the samples. An important point to note is that now they are all
mutually independent Poisson random variables.

We introduce a new notation λx , npx for every symbol x. Now, we can write Nx ∼ Poi(λx) and
Mx ∼ Poi(aλx). For the target quantity UP

µ , taking expectation yields

E
[
UP
µ

]
=
∑
x

E [1Mx≥µ] · E [1Nx=0]

=
∑
x

1− e−aλx

∑
j≤µ−1

(aλx)j

j!

 · e−λx

,
∑
x

Fµ(aλx) · e−λx ,

where the definition of function Fµ is clear from the context. Leveraging Lemma 1 and the standard
exponential tail bounds on Poisson variables, we can show that UP

µ has small variance. In other words,
it suffices to approximate the above expectation. Next, express function Fµ(y) into the summation of
µ terms, with each being a polynomial of e−y and y that vanishes at y = 0,

Fµ(y) = (1− e−y) +
∑

1≤j≤µ−1

(
−e
−yyj

j!

)
.

Bessel functions We approximate terms in the parentheses by polynomial series induced by the
Bessel functions. For completeness, we briefly introduce this function class. The Bessel functions of
the first kind Js(y) are defined as the solutions to the Bessel differential equation

y2 d
2z

dy2
+ y

dz

dy
+ (y2 − s2)z = 0,
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for s ∈ Z+, which is referred to as the order of the function.

For every s, function Js(y) admits a series expansion [25] at y = 0,

Js(y) =

∞∑
t=0

(−1)t

t!(t+ s)!

(y
2

)2t+s

.

For our purpose, it is sufficient to use only the even order Bessel functions. For j ≥ 0, denote

gj(y) , J2j(2
√
y) =

∞∑
t=0

(−1)tyt+j

t!(t+ 2j)!
.

As we mentioned in Section 1, the problem reduces to the unseen species problem for µ = 1. Hence,
we follow the smoothing technique in [29] and approximate the first term (1− e−y) by

f0(y) , (1− e−y)− e−y
[
e−r

∫ y

0

g0(sr)esds

]
= −

∞∑
j=1

(−y)j

j!
Pr(Poi(r) ≥ j),

where r is the aforementioned tunable hyper-parameter to balance the variance and bias. For the j-th
term in the expression of Fµ, we follow the technique in [23] and approximate every −e−yyj by

fj(y) , −e−yyj +

∫ ∞
r

e−ααjgj(αy)dα = −
∫ r

0

e−ααjgj(αy)dα,

where the second equality follows by the lemma below.

Lemma 4. [23] For any j ∈ Z+ and y ≥ 0,

e−yyj =

∫ ∞
0

e−ααjgj(αy)dα.

In other words, function fi(y) corresponds to the truncated integral form of e−yyj at level r, where
the integral is expressed in terms of the Bessel functions.

It is worth mentioning that the result in [23] (induced by the use of Bessel functions) and that in our
paper are orthogonal to a certain extend. The result in [23] addresses the problem of estimating a
distribution functional that is roughly Lipschitz, and designs an n-sample estimator that performs as
well as the n

√
log n-sample MLE estimator. The problem we consider here is estimating a random

distribution functional that depends on the current sample. Even if we consider the functional’s
expectation and divide it by our normalization factor mµ, the transformed functional is not Lipschitz.
In addition, our extrapolation factor a can be as large as (log n)/µ, which, for constant µ values, is of
order log n. Paper [17] generalizes the results of [23] to functionals involving multiple distributions,
such as the total variation distance, but does not strengthen those results for the one-distribution case.

Another paper that studies the same problem as [23] is [21]. In terms of techniques, [21] leverages
integral forms of the best approximation polynomials, and does not rely on smoothing techniques
involving Bessel functions. In addition, [21] applies its smoothing technique to only probabilities
smaller than (log n)/n, while we apply the aforementioned technique to the entire range [0, 1]. In
terms of results, [21] requires the functional to be Lipschitz, which is not the case for our problem,
and improves the

√
n factor in [23] to log n, which is not the right factor for our problem. The paper

also addresses the problem of estimating E[U1], while the estimator is essentially the same as [29].
As the above derivation shows, the corresponding technique only approximates (1− e−y), and by the
reasoning in [23], does not address other e−yyj terms.

Approximation function Consequently, we will approximate Fµ(y) by

F̃µ(y) ,
∑

j≤µ−1

fj(y)

j!
,

which implicitly depends on r and approaches Fµ(y) as r →∞. Our estimator simply estimates a
variant of this function nearly unbiasedly. Intuitively, if r is large, the bias is small, e.g., for r =∞,
the bias is zero, but the variance, as shown by the example in Section 1, can be fairly large. On the
other hand, if r is small, e.g., for r = 0, the variance is brought down to zero but the bias is large.
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4 Estimator Construction and Bias Analysis

Approximation and estimator Following the previous section, we approximate the value of UP
µ

by a near-unbiased estimator of

ŨP
µ ,

∑
x

F̃µ(aλx) · e−λx .

The statistics available to us are essentially indicator functions 1Nx=t, or λ
t
x

t! · e
−λx in expectation.

This suggests we expand each term in the summation as the product of e−λx and a polynomial series.
Equivalently, we find the series expansion of F̃µ(y).

Lemma 5. For any non-negative number y,

F̃µ(y) = −
∑
i=1

ci ·
yi

i!
,

where the coefficients are defined as

ci , (−1)i Pr(Poi(r) ≥ i) +

(µ−1)∧i∑
j=1

(−1)i−j
(
i

j

)
Pr(Poi(r) ≥ i+ j + 1).

We postpone the proof of Lemma 5 to the supplementary material, which relies on Fubini’s theorem
and the series expansions of the incomplete Gamma functions centered at the origin. Next, for the
target quantity Ũµ, substituting each F̃µ in the expression in Lemma 5 yields

ŨP
µ =

∑
x

F̃µ(aλx) · e−λx = −
∑
x

∞∑
i=1

(cia
i) · e−λx

λix
i!

= −
∞∑
i=1

(cia
i) · E[Φi].

It should be clear that si ≈ ciai for every i as they are equal if we replace each smoothing probability
Pr(Poi(r)≥ i+j+1) by Pr(Poi(r)≥ i+j) in the expression of ci. Hence, given sample statistics Φi
for i ≥ 1, a near-unbiased estimator of ŨP

µ is

ÛP
µ = −

∞∑
i=1

si · Φi.

More concretely, the absolute bias satisfies |E[ÛP
µ ]− ŨP

µ | ≤ na·Pr(Poi(r) ≤ µ), which is proved in
the supplementary material leveraging point-wise bounds on Bessel functions.

Bias analysis Unifying the previous bounds by the triangle inequality, the absolute bias of the final
estimator Ûµ admits the decomposition

Bias ,
∣∣∣E[Ûµ]− E[Uµ]

∣∣∣ ≤ ∣∣∣E[Ûµ]− E[ÛP
µ ]
∣∣∣+∣∣∣E[ÛP

µ ]− ŨP
µ

∣∣∣+∣∣∣ŨP
µ − E[UP

µ ]
∣∣∣+∣∣E[UP

µ ]− E[Uµ]
∣∣ .

Then, the first term on the right-hand side is at most 2e(2a−1)r by Lemma 3, the second is at most
na·Pr(Poi(r) ≤ µ) as stated in the last subsection, and the last is at most 4 by Lemma 2. As for the
third term, our construction of function F̃µ and fj yields

Bias3 ,
∣∣∣ŨP
µ − E[UP

µ ]
∣∣∣

≤
∑
x

|F̃µ(aλx)− Fµ(aλx)|

≤
∑
x

e−r∫ aλx

0

|g0(sr)| es−aλxds+
∑

j≤µ−1

1

j!

∫ ∞
r

|gj(αaλx)| e−ααjdα

 .

Analyzing the last summation calls for point-wise and uniform bounds on |gj(y)|, which further
requires bounds on the Bessel functions by gj(y) = J2j(2

√
y). It turns out that Bessel functions,

while being transcendental, behave nicely for nonnegative reals.
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Lemma 6. [1, 38] For any s, y ≥ 0, we have |Js(y)| ≤ 1 and |Js(y)| ≤ (y/2)s

s! .

Building on this lemma and under appropriate conditions, the supplementary material shows that

Bias3 ≤ an(µ+ 1) · Pr(Poi(r) ≤ µ).

The proof of Theorem 1 follows from consolidating these bias bounds and the previous variance
bounds by the MSE decomposition at the beginning of Section 2.

5 Experiments

Given relevant parameters and sample Xn ∼ p, our estimator computes a linear combination of Φi’s,
the number of symbols appearing exactly i times in Xn. The estimator is both easy to implement
and near-linear-time computable. To demonstrate the effectiveness of our approach, we present
in this section experimental results on synthetic data (see the plots on the next page), and in the
supplementary material ones on real data.

Hyper-Parameters Our algorithm has a single hyper-parameter r. In the experiments, we choose

r =
log(n(a+ 1)2/(a− 1))

2a
.

This equals the r value in Theorem 1, up to absolute constant factors, and is consistent with [29]. In
fact, our theorem holds for both choices of r and the value in Theorem 1 is for proof simplification.

Distributions We consider a support size of S , 10,000 and six distributions: a uniform distri-
bution; a two-step distribution with half the symbols having probability 1/(2S), and the other half
having probability 3/(2S); two Zipf distributions with parameter α , 0.5 and 2, satisfying pi ∝ iα,
truncated at i = S and renormalized; a distribution generated by the uniform prior over ∆S , the
S- dimensional simplex; a distribution generated by a Dirichlet-1/2 prior.

Experimental settings We fix the sample size to be n = S/2, vary a from 1 to 10, and test three
different µ values, µ = 1, 2, and 3. The (expected) true value E[Uµ] is shown in the black dashed
line, and our estimator is shown in red and blue, with the solid red line representing its mean estimate,
and the shaded blue area corresponding to one standard deviation, both based on 100 independent
simulations. As these plots demonstrate, our simple estimator performs well in numerous settings. In
addition, for µ = 1, our estimator reduces to that in [29]. In the work of [29], this estimator has been
compared with several state-of-the-art estimators and outperformed them in nearly every experiment.

In the supplementary, we conduct experiments on larger µ values. We observe that our estimator can
provide meaningful results for µ = 5 on the tested distributions. However, as µ further increases to
8 ≈ log n, the estimator does not produce useful estimates. Both of these are consistent with our
theoretical justifications, as the optimal threshold for a is Θ((log n)/µ).

Broader Impact

In this paper, we propose and completely resolve a natural generalization of the well-known unseen
species problem. The algorithm we construct is simple in its form and linear-time computable,
and performs fairly well on different synthetic and real datasets. We fully generalize the notable
work of [29] in terms of the formulation, algorithm, and main results (MSE bounds). As illustrated
in Section 1.1 and 1.2, our algorithm has numerous potential applications, such as active app
user estimation, vocabulary size estimation, business growth analysis, species diversity estimation,
database attribute study, and genetic variation study. A possible downside is that the formulation
ignores any prior information, and only assumes that the distribution is discrete. A promising strategy
is to incorporate the Bayesian inference framework, which will be our future research direction.
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Figure 1: We present three plot sets, for µ = 1, 2, and 3, each containing 6 plots, for 6 different
distributions. The dashed (black) curves represent the truth while the solid (red) curves represent our
estimate (the mean). The shaded areas illustrate the standard deviation from the mean.
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A Lemma 1 and Variance Bound

Lemma 1 (Steele’s inequality). If S(xn) is any real function of n variables and if Xi, X
′
i, 1 ≤ i ≤ n

are 2n i.i.d. random variables then Var (S) ≤ 1
2 E
[∑n

i=1(S − Si)2
]
, where S , S(Xn) and Si is

given by replacing the i-th observation with X ′i .

The inequality basically states that as long as we have i.i.d. input Xn and care only a functional
S(Xn) that is not too sensitive to input changes, the variance of S(Xn) will be reasonably bounded.

As we showed in Section 2, Uµ is a functional of the length-(n+m) i.i.d. sample (Xn, Y m), and
modifying a single symbol changes Uµ by at most 1. Hence, Lemma 1 bounds its variance as

Var(Uµ) ≤ 1

2
(n+m).

As for estimator Ûµ =
∑
i≥1 siΦi =

∑
i≥1 si(

∑
x 1Nx=i), where Nx denotes the number of times

symbol x appearing in the sample, changing a single symbol changes its value by at most 2 maxi |si|.

As we will see in Appendix C, the maximum magnitude of the coefficients is bound by 2e(2a−1)r

from above, implying an upper bound of 8ne2(2a−1)r on the variance of our estimator.
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B Proof of Lemma 2

Recall that Uµ is the quantity of interest, and UP
µ is its alternative under Poisson sampling.

Lemma 2. For any n, a and p, we have
∣∣E[Uµ − UP

µ ]
∣∣ ≤ 4.

Proof. The original symbols counts are defined as Nx and Mx in the main paper. For simplicity, we
will use N ′x and M ′x to denote their Poissonized versions. Then the absolute difference becomes∣∣E[Uµ − UP

µ ]
∣∣ =

∣∣∣∣∣∑
x

E[1Nx=0 · 1Mx≥µ − 1N ′
x=0 · 1M ′

x≥µ]

∣∣∣∣∣ .
By symmetry, it suffices to bound a single term in the summation.

D(px)
(a)
:=
∣∣E [1Nx=0 · 1Mx≥µ − 1N ′

x=0 · 1M ′
x≥µ

]∣∣
(b)
=
∣∣E [1Mx≥µ ·

(
1Nx=0 − 1N ′

x=0

)]
+ E

[(
1Mx≥µ − 1M ′

x≥µ
)
· 1N ′

x=0

]∣∣
(c)
=
∣∣E [1Mx≥µ] · E

[(
1Nx=0 − 1N ′

x=0

)]
+ E

[(
1Mx≥µ − 1M ′

x≥µ
)]
· E
[
1N ′

x=0

]∣∣
(d)

≤
∣∣E [1Nx=0 − 1N ′

x=0

]∣∣+
∣∣E [1Mx≥µ − 1M ′

x≥µ
]∣∣

(e)

≤ 4px,

where (a) defines D(px); (b) follows by subtracting and adding the term 1N ′
x=0 ·1Mx≥µ; (c) follows

by independence between the empirical counts; (d) follows by the fact that the expectation of an
indicator function is at most 1; (e) follows by the following inequality:

Lemma 7. [3] For any q ∈ [0, 1], Y ∼ Poi(mq), Z ∼ bin(m, q), and real function f ,
|E [f(Y )]− E [f(Z)]| ≤ 2q supj |f(j)| .

Therefore, the difference we want to bound is at most∣∣E[Uµ − UP
µ ]
∣∣ ≤∑

x

D(px) ≤
∑
x

4px = 4.

C Proof of Lemma 3 and Coefficient Bound

Recall that our estimator takes the form of

Ûµ , Ûµ(Xn, a) ,
n∑
i=1

si · Φi.

where Φi =
∑
x 1Nx=i denotes the number of symbols appearing exactly i times. Similar to the last

section, we will use N ′x and Φ′i to denote the Poissonized versions of these quantities.

Lemma 3. Under the conditions in Theorem 1, we have |E[Ûµ − ÛP
µ ]| ≤ 2e(2a−1)r.

Proof. Adopting the Poisson sampling model changes the expectation of the estimator by

|E[Ûµ − ÛP
µ ]| =

∣∣∣∣∣∑
i

(si · Φi − si · Φ′i)

∣∣∣∣∣
(a)

≤
∑
x

∣∣∣∣∣∑
i

si ·
(
1Nx=i − 1N ′

x=i

)∣∣∣∣∣
(b)

≤
∑
x

2px max
i
|si|

(c)
= 2 max

i
|si|,

where (a) follows by the triangle inequality; (b) follows by Lemma 7; (c) follows by
∑
x px = 1.
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To complete our proof of Lemma 3, we establish the following bounds on the estimator’s coefficients.
Intuitively, this captures how sensitive the estimator is to changes in the input sample.

Lemma 8. For any positive index i ∈ N,

|si| ≤ e(2a−1)r.

Proof of Lemma 8. For any positive index i ∈ N,

|si|
(a)

≤ ai
(µ−1)∧i∑
j=0

i!

j!(i− j)!
Pr(Poi(r) ≥ i+ j)

(b)

≤ ai Pr(Poi(r) ≥ i)

(µ−1)∧i∑
j=0

i!

j!(i− j)!


(c)

≤ (2a)i Pr(Poi(r) ≥ i)

(d)
= (2a)ie−r

∞∑
j=i

rj

j!

(e)

≤ e−r
∞∑
j=i

(2ar)j

j!

(f)

≤ e(2a−1)r.

where (a) follows by the definition of si and the triangle inequality; (b) follows by the monotonicity
of Poisson tail probabilities; (c) follows by the binomial expansion of (1 + 1)i; (d) follows by the
expressions of Poisson probabilities; (e) follows by the monotonicity of Power functions; and (f)
follows by the series expansion of the function exp(x).

Applying this lemma to the right-hand side of our bound on |E[Ûµ− ÛP
µ ]| completes the proof. �

D Proof of Lemma 4

Recall that Jj denotes the j-th order Bessel function of the first kind. For j ≥ 0, we have

gj(y) , J2j(2
√
y) =

∞∑
t=0

(−1)tyt+j

t!(t+ 2j)!
.

Lemma 4 presents the integral form of e−yyj expressed in terms of the Bessel functions. We present
its proof in [23], which shines light on latter derivations.

Lemma 4. [23] For any j ∈ Z+ and y ≥ 0,

e−yyj =

∫ ∞
0

e−ααjgj(αy)dα.

Proof. By Fubini’s theorem and the series expansion of gj ,∫ ∞
0

e−ααjgj(αy)dα =

∫ ∞
0

e−ααj
∞∑
i=0

(−1)i(αy)i+j

i!(i+ 2j)!
dα

=

∞∑
i=0

(−1)iyi+j

i!(i+ 2j)!

∫ ∞
0

e−ααi+2jdα.
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Observe that the integral is actually Γ(i+ 2j + 1) and equals to (i+ 2j)!,
∞∑
i=0

(−1)iyi+j

i!(i+ 2j)!

∫ ∞
0

e−ααi+2jdα =

∞∑
i=0

(−1)iyi+j

i!(i+ 2j)!
(i+ 2j)!

=

∞∑
i=0

(−1)iyi+j

i!

= e−yyj .

E Proof of Lemma 5

By the argument in Section 4, instead of estimating Uµ, we will consider its Poissonized version UP
µ

and approximate the value of UP
µ by a near-unbiased estimator of

ŨP
µ ,

∑
x

F̃µ(aλx) · e−λx ,

where λx , npx and F̃µ(y) is defined as
∑
j≤µ−1

1
j!fj(y) for the sequence of real functions

f0(y) = −
∞∑
j=1

(−y)j

j!
Pr(Poi(r) ≥ j) and fj(y) = −

∫ r

0

e−ααjgj(αy)dα, ∀j ≥ 1.

The following lemma finds the series expansion of F̃µ(y).

Lemma 5. For any non-negative number y,

F̃µ(y) = −
∑
i=1

ci ·
yi

i!
,

where the coefficients are

ci , (−1)i Pr(Poi(r) ≥ i) +

(µ−1)∧i∑
j=1

(−1)i−j
(
i

j

)
Pr(Poi(r) ≥ i+ j + 1).

Proof. For any j ≥ 1, the following equations hold.

fj(y)
(a)
= −

∫ r

0

e−ααjgj(αy)dα

(b)
= −

∫ r

0

e−ααj
∞∑
t=0

(−1)j(αy)t+j

t!(t+ 2j)!
dα

(c)
= −

∞∑
t=0

(−1)jyt+j

t!(t+ 2j)!

∫ r

0

e−ααt+2jdα

(d)
= −

∞∑
t=0

(−1)tyt+j

t!
Pr(Poi(r) ≥ t+ 2j + 1),

where (a) follows by the definition of fj ; (b) follows by the series expansions of the Bessel functions;
(c) follows by Fubini’s theorem; (d) follows by the series expansions the incomplete Gamma functions.
Therefore, we can write F̃µ(y) as∑
j≤µ−1

fj(y)

j!
= −

∞∑
t=1

(−y)t

t!
Pr(Poi(r) ≥ t)−

µ−1∑
j=1

1

j!

∞∑
t′=0

(−1)t
′
yt

′+j

t′!
Pr(Poi(r) ≥ t′ + 2j + 1)

= −
∞∑
i=1

(−1)i Pr(Poi(r) ≥ i) +

(µ−1)∧i∑
j=1

(−1)i−j i!

j!(i− j)!
Pr(Poi(r) ≥ i+ j + 1)

 yi

i!
,

which completes the proof of the lemma.
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F Lemma 6 and Bias Bound

Our construction closely relates to Bessel functions of the first kind. The following lemma provides
useful bounds on their magnitude.

Lemma 6. [1, 38] For any s, y ≥ 0, we have |Js(y)| ≤ 1 and |Js(y)| ≤ (y/2)s

s! .

As a corollary, we have the following bounds for gj(y) = J2j(2
√
y), where j ≥ 0.

Corollary 1 (Extension of a result in [23]). For j ≥ 0 and y ≥ 0, we have |gj(y)| ≤ 1, and if in
addition, j ≥ 1, then |gj(y)| ≤ y

j+1 .

Proof. The first inequality follows directly from Lemma 6. For the second inequality, by definition
of gj , we can therefore write

|gj(y)| = |J2j(2
√
y)| ≤ yj

(2j)!
≤ yj

j + 1
,

where the last step follows from (j + 1) ≤ (2j)! for any j ≥ 0.

Now, we are ready to establish the last bias bound in Section 4, which states that

Bias3 ,
∣∣∣ŨP
µ − E[UP

µ ]
∣∣∣ ≤∑

x

|F̃µ(aλx)− Fµ(aλx)| ≤ an(µ+ 1) · Pr(Poi(r) ≤ µ).

Proof. Recall that λx abbreviates npx. Consolidating the above bounds yields

Bias3

(a)

≤
∑
x

e−r

[
e−aλx

∫ aλx

0

|g0(sr)|esds

]
+
∑
x

∑
1≤j≤µ−1

1

j!

∫ ∞
r

e−ααj |gj(αaλx)|dα

(b)

≤
∑
x

e−r

[
e−aλx

∫ aλx

0

esds

]
+
∑
x

∑
1≤j≤µ−1

1

j!

∫ ∞
r

e−ααj
αaλx
j + 1

dα

(c)
= e−r

∑
x

(1− e−aλx) +
∑
x

aλx
∑

1≤j≤µ−1

1

(j + 1)!

∫ ∞
r

e−ααj+1dα

(d)

≤ e−r
∑
x

aλx + e−r

µ−1∑
j=1

j+1∑
t=0

rt

t!

∑
x

aλx

(e)

≤ e−ran

1 +

µ−1∑
j=1

j+1∑
t=0

rt

t!


(f)

≤ an(µ+ 1) · Pr(Poi(r) ≤ µ),

where (a) follows by the triangle inequality; (b) follows by Corollary 1; (c) follows by simple algebra;
(d) follows by 1− e−x ≤ x, ∀x ≥ 0 and the series expansion of the incomplete gamma function; (e)
follows by

∑
x λx = n; (f) follows by adding non-negative terms and by Poisson probabilities.
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G Estimator Modification

In Section 4, we introduced a quantity ŨP
µ as our new approximation target, which takes the form of

ŨP
µ =

∑
x

F̃µ(aλx) · e−λx = −
∑
x

∞∑
i=1

(cia
i) · e−λx

λix
i!

= −
∞∑
i=1

(cia
i) · E[Φ′i],

where Φ′i denotes the number of symbols appearing exactly i times in the Poissonized sample, and
the coefficients ci’s are defined as

ci , (−1)i Pr(Poi(r) ≥ i) +

(µ−1)∧i∑
j=1

(−1)i−j
(
i

j

)
Pr(Poi(r) ≥ i+ j + 1), ∀i.

Under Poisson sampling, a simple unbiased estimator is−
∑∞
i=1(cia

i)·Φ′i. It should also be clear that
si ≈ ciai for every i as they are equal if we replace each smoothing probability Pr(Poi(r)≥ i+j+1)
by Pr(Poi(r)≥ i+j) in the expression of ci. Hence, given sample statistics Φ′i for i ≥ 1, we claimed
that a near-unbiased estimator of ŨP

µ is

ÛP
µ = −

∞∑
i=1

si · Φ′i.

Below, we show that the absolute bias satisfies |E[ÛP
µ ]− ŨP

µ | ≤ na·Pr(Poi(r) ≤ µ) by leveraging
the point-wise bounds on Bessel functions in the last section.

Proof. The difference between the two estimators is

|E[ÛP
µ ]− ŨP

µ | =
∑
x

d(aλx),

where λx = npx and

d(y) , −
∑

j≤µ−1

1

j!

∞∑
t=0

(−1)tyt+j

t!
Pr(Poi(r) ≥ t+ 2j).

First we show that d(y) has a small magnitude. Specifically,

|d(y)| =

∣∣∣∣∣∣
∑

j≤µ−1

1

j!

∞∑
t=0

(−1)tyt+j

t!
Pr(Poi(r) = t+ 2j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j≤µ−1

1

j!

∞∑
t=0

(−1)tyt+j

t!

(
e−r

rt+2j

(t+ 2j)!

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j≤µ−1

e−r
rj

j!

∞∑
t=0

(−1)t(yr)t+j

t!(t+ 2j)!

∣∣∣∣∣∣
(a)
=

∣∣∣∣∣∣
∑

j≤µ−1

e−r
rj

j!
· gj(yr)

∣∣∣∣∣∣
(b)

≤
∑

j≤µ−1

e−r
rj

j!
· yr

j + 1

= y · Pr(1 ≤ Poi(r) ≤ µ),

where the first three steps follow by algebraic manipulations; (a) follows by the series expansion
of gj (or equivalently the 2j-th order Bessel function); (b) follows by Corollary 1. Consequently, the
absolute bias of our estimate satisfies

|E[ÛP
µ ]− ŨP

µ | ≤

∣∣∣∣∣∑
x

d(aλx)

∣∣∣∣∣ ≤ (
∑
x

aλx) · Pr(1 ≤ Poi(r) ≤ µ) ≤ na · Pr(Poi(r) ≤ µ).
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H Lower Bounds

We establish a lower bound on the worst-case MSE of any estimator by connecting the task to the
closely related task of support size estimation, which is ill-defined if we simply consider the collection
of discrete distributions with bounded support size. Specifically, for an unknown distribution and any
finite sample size n, there can be many symbols with tiny probabilities so that it is unlikely to observe
any of them in a size-n sample, yet they can have a huge impact on the distribution’s support size.

Motivated by applications to database studies, the paper of [40] considered support size estimation for
distributions whose positive probabilities are at least 1/k, where k is the known size of the alphabet
(hence also serves as an upper bound on distributions’ support sizes).

For any distribution p ∈ ∆, denote by S(p) =
∑
x 1px>0 its support size, and by p+

min its minimum
nonzero probability. Paper [40] showed the following lower bound on the minimax MSE (together
with a nearly matching upper bound).

Lemma 9. Assume that k log k � n� k
log k and k � 1,

min
Ŝ

max
p: p+min≥1/k

E
Xn∼p

(
Ŝ(Xn)− S(p)

)2

≥ exp

(
−4

√
n log k

k

)
k2.

In the next two subsections, we will connect this estimation problem to ours, and establish Theorem 2.

H.1 Connection between Two Problems

Recall that the quantity of interest is

Uµ =
∑
x

1Mx≥µ · 1Nx=0.

For some integer k to be determined later, assume that p is a distribution satisfying p+
min ≥ 1/k. For

the ease of exposition, define

Upµ ,
∑
x

E [1Mx≥µ] · 1Nx=0 =
∑
x

Pr (bin(na, px) ≥ µ) · 1Nx=0,

Adding the number of observed symbols in Xn, we obtain

Ũpµ , Uµ(Xn, p) +
∑
x

1Nx>0 =
∑
x

(Pr (bin(na, px) ≥ µ) · 1Nx=0 + 1Nx>0) .

Below, we show that for any β ≥ 3 and k ≤ na/(βµ), and distribution p satisfying p+
min ≥ 1/k,∣∣∣Ũpµ − S(p)

∣∣∣ ≤ S(p) exp
(
−0.3

na

k

)
≤ k exp

(
−0.3

na

k

)
.

Proof. The absolute difference between Ũpµ and S(p) satisfies

S(p)− Ũpµ
(a)
=
∑
x

(1px>0 · 1Nx=0 + 1Nx>0)−
∑
x

(Pr (bin(na, px) ≥ µ) · 1Nx=0 + 1Nx>0)

(b)
=
∑
x

1Nx=0 · 1px>0 −
∑
x

Pr (bin(na, px) ≥ µ) · 1Nx=0 · 1px>0

(c)
=
∑
x

(1− Pr (bin(na, px) ≥ µ)) · 1Nx=0 · 1px>0

(d)

≥ 0,

where (a) holds as 1Nx>0 = 0 surely if px = 0; (b) follows by term cancelation and the equivalence
of Pr (bin(na, px) ≥ µ) = 0 and px = 0, for any 1 ≤ µ ≤ na; (c) follows by simply algebra; (d)
follows by Pr (bin(na, px) ≥ µ) ≤ 1.
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On the other hand, for k ≤ na/(βµ) and β ≥ 3,

Ũpµ
(a)
=
∑
x

(Pr (bin(na, px) ≥ µ) · 1Nx=0 + 1Nx>0)

(b)
=

∑
x:px≥1/k

((1− Pr (bin(na, px) < µ)) · 1Nx=0 + 1Nx>0)

(c)

≥
∑

x:px≥1/k

(1− Pr (bin(na, 1/k) < µ) · 1Nx=0)

(d)

≥
∑

x:px≥1/k

(
1− Pr

(
bin(na, 1/k) <

na

3k

)
· 1Nx=0

)
(e)

≥
∑

x:px≥1/k

(
1− exp

(
−0.3

na

k

)
· 1Nx=0

)
(f)

≥ S(p)
(

1− exp
(
−0.3

na

k

))
,

where (a) follows by the definition of Ũpµ ; (b) follows by the equivalence of px = 0, 1Nx>0 = 0 and
Pr (bin(na, px) ≥ µ) = 0; (c) follows by 1Nx=0 + 1Nx>0 = 1; (d) follows by the two conditions
k ≤ na/(βµ) and β ≥ 3; (e) follows by standard Chernoff bound for binomial random variables;
(f) holds as the summation is over x satisfying px ≥ 1/k.

Consequently, we have shown that∣∣∣Ũpµ − S(p)
∣∣∣ ≤ S(p) exp

(
−0.3

na

k

)
≤ k exp

(
−0.3

na

k

)
.

H.2 Proof of Theorem 2

Theorem 2. There exist absolute constants c′ and c′0 such that for any a ≥ (c′ log n)/µ, and any
n-sample estimator Û ,

Eµn,a(Û) &
1

nc
′
0/a

.

The theorem lowerly bounds the worst-case normalized MSE of the best estimator.

Proof. For any estimator Û and distribution p, the MSE of estimating Uµ admits

MSE
(a)
= E (Û − Uµ)2

(b)

≥ E
Xn∼p

(Û − Upµ)2

(c)

≥ 1

2
E

Xn∼p
(Û − Upµ + Ũpµ − S(p))2 − E

Xn∼p
(Ũpµ − S(p))2

(d)

≥ 1

2
E

Xn∼p

(
Û +

∑
x

1Nx>0 − S(p)

)2

− E
Xn∼p

(
Ũpµ − S(p)

)2

(e)

≥ 1

2
E

Xn∼p

(
Û +

∑
x

1Nx>0 − S(p)

)2

− exp
(
−0.6

na

k

)
k2,

where (a) follows by definition; (b) follows by the Jensen’s inequality; (c) follows by the linearity of
expectation and inequality a2 ≥ 1

2 (b+ a)2 − b2; (d) follows by Ũpµ −Upµ =
∑
x 1Nx>0; (e) follows

by the main result of Appendix H.1 and our choice of parameters.
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Consider aµ = c′ log n for some c′ � 1. For a, µ� log n, if we choose k = na
βµ , then k

log k � n�
k log k. Therefore, by Lemma 9 on support size estimation, the minimax MSE of learning Uµ, which
we refer to as the MMSE, satisfies

MMSE
(a)
= min

Û
max
p∈∆

E (Û − Uµ)2

(b)

≥ min
Û

max
p: p+min≥1/k

E (Û − Uµ)2

(c)

≥ 1

2
min
Û

max
p: p+min≥1/k

E
Xn∼p

(
Û +

∑
x

1Nx>0 − S(p)

)2

− exp
(
−0.6

na

k

)
k2

(d)

≥ 1

2
exp

(
−4

√
n log k

k

)
k2 − exp

(
−0.6

na

k

)
k2,

where (a) follows by the definition; (b) follows by maximizing over a subset set of the original; (c)
follows by the inequality that we established above; and (d) follows by the lower bound in Lemma 9
and viewing Û+

∑
x 1Nx>0 as an n-sample support size estimator.

Choose β = (10 log 4)/µ+ 3 so that we have both β ≥ 3 for any µ ≥ 1 and 0.1 ≥ (log 4)/(βµ). To
ensure non-triviality, we require

exp

(
−4

√
n log k

k

)
k2 ≥ 4 exp

(
−0.6

na

k

)
k2 ⇐= −4

√
n log k

k
≥ log 4− 0.6

na

k

⇐⇒ 4
√
nk log k ≤ 0.6na− na log 4

βµ

⇐= 4
√
nk log k ≤ 0.5na

⇐= log n� aµ,

where the last step follows by 1 ≤ a, µ� n. By definition, we have k = Mµ/β. Therefore,

min
Û

max
p∈∆

E (Û − Uµ)2 ≥ exp (−0.6µ) k2 =

(
1

β
Mµe

−0.3µ

)2

.

Dividing both sides by M2
µ yields

min
Û

max
p∈∆

E
Xn∼p

(
Û − Uµ
Mµ

)2

≥
(

1

β
e−0.3µ

)2

=

(
1

β
exp

(
−0.3

c′ log n

a

))2

&
1

nc
′
0/a

,

where c′0 , 0.6c′ is a positive absolute constant. This completes the proof of Theorem 2.
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I Additional Experiments

The following figures present four real-data experiments. The task being consider here is vocabulary
size estimation, one that we mentioned at the beginning of Section 1.1.

Replacing butterflies by words, vocabulary size estimation [9, 11, 19, 35] aims to determine how
many words a writer, say William Shakespeare, knew based on his written works. An intuitive and
widely used approach is to simply add up the number of observed (distinct) words and some estimate
of U1. With the same motivation, we may also want to know how many words fall into a writer’s
common vocabulary (excluding those that appear only once or twice), which calls for estimating Uµ.

Specifically, the book we used in the experiments is Lord of the Rings, written by J. R. R. Tolkien.
We found a specific version of this book consisting of 575,230 words, of which 16,336 are distinct.
To split the data into two parts, we randomly selected 1/(a+ 1) fraction of the words, and applied
our estimator to estimate the number of new words that appear at least µ times in the remaining text.
Since n is relatively small, we considered µ ≤ 4. As the result shows, for µ = 1, 2, 3, and 4, our
estimator was able to accurately infer the underlying truth with less than 20%, 25%, 55%, and 65%
of the data. The performance of our estimator is also relatively stable with respect to the random
selection. Additional information about the plots can be found in Section 5.

Figure 2: We present six plots, with threshold µ = 1, 2, 3, and 4. The first four plots have amplification
ratio a ranging from 0.1 to 1.0, and compare the performance of the estimator for different µ values.
The last two plots have the same µ values as the first two, but with extended horizontal axis, ranging
from 0.1 to 4.0. The dashed (black) curves represent the truth while the solid (red) curves represent
our estimate (the mean). The shaded areas illustrate the standard deviation from the mean.
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Next, we present additional experimental results on synthetic data with larger µ values. The ex-
perimental settings are the same as those in Section 5. We observe that our estimator can provide
meaningful results for µ = 5 on the tested distributions. However, as µ further increases to 8 ≈ log n,
the estimator does not produce useful estimates. Both of these are consistent with our theoretical
justifications, as the optimal threshold for a is Θ((log n)/µ).

Figure 3: We present two plot sets, for µ = 5, and 8, each containing 6 plots, for 6 different
distributions. The dashed (black) curves represent the truth while the solid (red) curves represent our
estimate (the mean). The shaded areas illustrate the standard deviation from the mean.
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