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Abstract

We consider the problem of unsupervised domain adap-

tation in semantic segmentation. A key in this campaign

consists in reducing the domain shift, i.e., enforcing the

data distributions of the two domains to be similar. One of

the common strategies is to align the marginal distribution

in the feature space through adversarial learning. How-

ever, this global alignment strategy does not consider the

category-level joint distribution. A possible consequence

of such global movement is that some categories which are

originally well aligned between the source and target may be

incorrectly mapped, thus leading to worse segmentation re-

sults in target domain. To address this problem, we introduce

a category-level adversarial network, aiming to enforce local

semantic consistency during the trend of global alignment.

Our idea is to take a close look at the category-level joint

distribution and align each class with an adaptive adversar-

ial loss. Specifically, we reduce the weight of the adversarial

loss for category-level aligned features while increasing the

adversarial force for those poorly aligned. In this process,

we decide how well a feature is category-level aligned be-

tween source and target by a co-training approach. In two

domain adaptation tasks, i.e., GTA5 → Cityscapes and SYN-

THIA → Cityscapes, we validate that the proposed method

matches the state of the art in segmentation accuracy.

1. Introduction

Semantic segmentation aims to assign each pixel of a

photograph to a semantic class label. Currently, the achieve-

ment is at the price of large amount of dense pixel-level
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Figure 1. (Best viewed in color.) Illustration of traditional and the

proposed adversarial learning. The size of the solid gray arrow

represents the weight of the adversarial loss. (a) Traditional adver-

sarial learning ignores the semantic consistency when pursuing the

marginal distribution alignment. As a result, the global movement

might cause the well-aligned features (class A) to be mapped onto

different joint distributions (negative transfer). (b) The proposed

self-adaptive adversarial learning reweights the adversarial loss for

each feature by a local alignment score. Our method reduces the

influence of the adversaries when discovers a high semantic align-

ment score on a feature, and vice versa. As is shown, the proposed

strategy encourages a category-level joint distribution alignment

for both class A and class B.

annotations obtained by expensive human labor [4, 23, 27].

An alternative would be resorting to simulated data, such

as computer generated scenes [31, 32], so that unlimited

amount of labels are made available. However, models

trained with the simulated images do not generalize well

to realistic domains. The reason lies in the different data

distributions of the two domains, typically known as do-
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main shift [37]. To address this issue, domain adaptation

approaches [35, 41, 14, 46, 17, 16, 13, 48] are proposed to

bridge the gap between the source and target domains. A

majority of recent methods [26, 24, 40, 43, 42] aim to align

the feature distributions of different domains. Works along

this line are based on the theoretical insights in [1] that min-

imizing the divergence between domains lowers the upper

bound of error on the target domain. Among this cohort of

domain adaptation methods, a common and pivotal step is

minimizing some distance metric between the source and

target feature distributions [24, 40]. Another popular choice,

which borrows the idea from adversarial learning [10], is to

minimize the accuracy of domain prediction. Through a min-

imax game between two adversarial networks, the generator

is trained to produce features that confuse the discriminator

while the latter is required to correctly classify which domain

the features are generated from.

Although the works along the path of adversarial learn-

ing have led to impressive results [39, 15, 22, 19, 43, 36],

they suffer from a major limitation: when the generator net-

work can perfectly fool the discriminator, it merely aligns

the global marginal distribution of the features in the two

domains ( i.e., P (Fs) ≈ P (Ft), where Fs and Ft denote the

features of source and target domain in latent space) while

ignores the local joint distribution shift, which is closely

related to the semantic consistency of each category (i.e.,

P (Fs, Ys) 6= P (Ft, Yt), where Ys and Yt denote the cat-

egories of the features). As a result, the de facto use of

the adversarial loss may cause those target domain features,

which are already well aligned to their semantic counterpart

in source domain, to be mapped to an incorrect semantic

category (negative transfer). This side effect becomes more

severe when utilize a larger weight on the adversarial loss.

To address the limitation of the global adversarial

learning, we propose a category-level adversarial network

(CLAN), prioritizing category-level alignment which will

naturally lead to global distribution alignment. The cartoon

comparison of traditional adversarial learning and the pro-

posed one is shown in Fig. 1. The key idea of CLAN is

two-fold. First, we identify those classes whose features

are already well aligned between the source and target do-

mains, and protect this category-level alignment from the

side effect of adversarial learning. Second, we identify the

classes whose features are distributed differently between

the two domains and increase the weight of the adversarial

loss during training. In this process, we utilize co-training

[47], which enables high-confidence predictions with two

diverse classifiers, to predict how well each feature is se-

mantically aligned between the source and target domains.

Specifically, if the two classifiers give consistent predictions,

it indicates that the feature is predictive and achieves good

semantic alignment. In such case, we reduce the influence of

the adversarial loss in order to encourage the network to gen-

erate invariant features that can keep semantic consistency

between domains. On the contrary, if the predictions dis-

agree with each other, which indicates that the target feature

is far from being correctly mapped, we increase the weight

of the adversarial loss on that feature so as to accelerate the

alignment. Note that 1) Our adversarial learning scheme acts

directly on the output space. By regarding the output predic-

tions as features, the proposed method jointly promotes the

optimization for both classifier and extractor; 2) Our method

does not guarantee rigorous joint distribution alignment be-

tween domains. Yet, compared with marginal distribution

alignment, our method can map the target features closer

(or no negative transfer at worst) to the source features of

the same categories. The main contributions are summarized

below.

• By proposing to adaptively weight the adversarial loss

for different features, we emphasize the importance of

category-level feature alignment in reducing domain

shift.

• Our results are on par with the state-of-the-art UDA

methods on two transfer learning tasks, i.e., GTA5 [31]

→ Cityscapes [8] and SYNTHIA [32] → Cityscapes.

2. Related Works

This section will focus on adversarial learning and co-

training techniques for unsupervised domain adaptation,

which form the two main motivations of our method.

Adversarial learning. Ben-David et al. [1] had proven

that the adaptation loss is bounded by three terms, e.g., the

expect loss on source domain, the domain divergence, and

the shared error of the ideal joint hypothesis on the source

and target domain. Because the first term corresponds to

the well-studied supervised learning problems and the third

term is considered sufficiently low to achieve an accurate

adaptation, the majority of recent works lay emphasis on

the second term. Adversarial adaptation methods are good

examples of this type of approaches and can be investigated

on different levels. Some methods focus on the distribution

shift in the latent feature space [26, 39, 15, 22, 19, 43, 36]. In

an example, Hoffman et al. [15] appended category statistic

constraints to the adversarial model, aiming to improve se-

mantic consistency in target domain. Other methods address

the adaption problem on the pixel level [21, 3], which relate

to the style transfer approaches [49, 7] to make images indis-

tinguishable across domains. A joint consideration of pixel

and feature level domain adaptation is studied in [14]. Be-

sides alignment in the bottom feature layers, Tsai et al. [41]

found that aligning directly the output space is more effective

in semantic segmentation. Domain adaptation in the output

space enables the joint optimization for both prediction and

representation, so our method utilizes this advantage.
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Co-training. Co-training [47] belongs to multi-view

learning in which learners are trained alternately on two

distinct views with confident labels from the unlabeled data.

In UDA, this line of methods [44, 5, 33, 25] are able to as-

sign pseudo labels to unlabeled samples in the target domain,

which enables direct measurement and minimization the

classification loss on target domain. In general, co-training

enforces the two classifiers to be diverse in the learned pa-

rameters, which can be achieved via dropout [34], consensus

regularization [35] or parameter diverse [44], etc. Similar to

co-training, tri-training keeps the two classifiers producing

pseudo labels and uses these pseudo labels to train an extra

classifier [33, 44]. Apart from assigning pseudo labels to un-

labeled data, Saiko et al. [34, 35] maximized the consensus

of two classifiers for domain adaptation.

Our work does not follow the strategy of global feature

alignment [41, 15, 39] or classifiers consensus maximiza-

tion [34, 35]. Instead, category-level feature alignment is

enforced through co-training. To our knowledge, we are

making an early attempt to adaptively weight the adversarial

loss for features in segmentation task according to the local

alignment situation.

3. Method

3.1. Problem Settings

We focus on the problem of unsupervised domain adapta-

tion (UDA) in semantic segmentation, where we have access

to the source data XS with pixel-level labels YS , and the

target data XT without labels. The goal is to learn a model

G that can correctly predict the pixel-level labels for the tar-

get data XT . Traditional adversaries-based networks (TAN)

consider two aspects for domain adaptation. First, these

methods train a model G that distills knowledge from la-

beled data in order to minimize the segmentation loss in the

source domain, formalized as a fully supervised problem:

Lseg(G) = E[ℓ(G(XS), YS)] , (1)

where E[·] denotes statistical expectation and ℓ(·, ·) is an

appropriate loss function, such as multi-class cross entropy.

Second, adversaries-based UDA methods also train G to

learn domain-invariant features by confusing a domain dis-

criminator D which is able to distinguish between samples

of the source and target domains. This property is achieved

by minimaxing an adversarial loss:

Ladv(G,D) =− E[log(D(G(XS)))]

− E[log(1−D(G(XT )))] .
(2)

However, as mentioned above, there is a major limita-

tion for traditional adversarial learning methods: even under

perfect alignment in marginal distribution, there might be

the negative transfer that causes the samples from different

domains but of the same class label to be mapped farther

away in the feature space. In some cases, some classes are

already aligned between domains, but the adversarial loss

might deconstruct the existing local alignment when pursu-

ing the global marginal distribution alignment. In this paper,

we call this phenomenon “lack of semantic consistency”,

which is a critical cause of performance degradation.

3.2. Network Architecture

Our network architecture is illustrated in Fig. 2. It is

composed of a generator G and a discriminator D. G can

be any FCN-based segmentation network [38, 23, 4] and D
is a CNN-based binary classifier with a fully-convolutional

output [10]. As suggested in the standard co-training algo-

rithm [47], generator G is divided into feature extractor E
and two classifiers C1 and C2. E extracts features from

input images; C1 and C2 classify features generated from

E into one of the pre-defined semantic classes, such as car,

tree and road. Following the co-training practice, we enforce

the weights of C1 and C2 to be diverse through a cosine

distance loss. This will provide us with the distinct views

/ classifiers to make semantic predictions for each feature.

The final prediction map p is obtained by summing up the

two diverse prediction tensors p(1) and p(2) and we call p an

ensemble prediction.

Given a source domain image xs ∈ XS , feature extractor

E outputs a feature map, which is input to classifiers C1 and

C2 to yield the pixel-level ensemble prediction p. On the

one hand, p is used to calculate a segmentation loss under

the supervision of the ground-truth label ys ∈ YS . On the

other hand, p is input to D to generate an adversarial loss.

Given a target domain image xt ∈ XT , we also forward

it to G and obtain an ensemble prediction p. Different from

the source data flow, we additionally generate a discrepancy

map out of p(1) and p(2), denoted as M(p(1), p(2)), where

M(·, ·) denotes some proper distance metric to measure the

element-wise discrepancy between p(1) and p(2). When us-

ing the cosine distance as an example, M(p(1), p(2)) forms

a 1 ×H ×W shaped tensor with the (ith ∈ H, jth ∈ W )

element equaling to (1− cos(p
(1)
i,j , p

(2)
i,j )). Once D produces

an adversarial loss map Ladv, an element-wise multiplica-

tion is performed between Ladv and M(p(1), p(2)). As a

result, the final adaptive adversarial loss on a target sample

takes the form as
∑H

i=1

∑W

j=1(1−cos(p
(1)
i,j , p

(2)
i,j ))×Ladvi,j ,

where {i, j} traverses over all the pixels on the map. In this

manner, each pixel on the segmentation map is differently

weighted w.r.t the adversarial loss.

3.3. Training Objective

The proposed network is featured by three loss functions,

i.e., the segmentation loss, the weight discrepancy loss and

the self-adaptive adversarial loss. Given an image x ∈ XS
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Figure 2. Overview of the proposed category-level adversarial network. It consists of a feature extractor E, two classifiers C1 and C2, and a

discriminator D. C1 and C2 are fed with the deep feature map extracted from E and predict semantic labels for each pixel from diverse

views. In source flow, the sum of the two prediction maps is used to calculate a segmentation loss as well as an adversarial loss from D.

In target flow, the sum of the two prediction maps is forwarded to D to produce a raw adversarial loss map. Additionally, we adopt the

discrepancy of the two prediction maps to produce a local alignment score map. This map evaluates the category-level alignment degree of

each feature and is used to adaptively weight the raw adversarial loss map.

of shape 3 × H × W and a label map y ∈ YS of shape

C × H × W where C is the number of semantic classes,

the segmentation loss (multi-class cross-entropy loss) can be

concretized from Eq. 1 as

Lseg(G) =
H×W∑

i=1

C∑

c=1

−yic log pic , (3)

where pic denotes the predicted probability of class c on

pixel i. yic denotes the ground truth probability of class c on

the pixel i. If pixel i belongs to class c, yic = 1, otherwise

yic = 0.

For the second loss, as suggested in the standard co-

training algorithm [47], the two classifiers C1 and C2 should

have possibly diverse parameters in order to provide two

different views on a feature. Otherwise, the training degener-

ates to self-training. Specifically, we enforce divergence of

the weights of the convolutional layers of the two classifiers

by minimizing their cosine similarity. Therefore, we have

the following weight discrepancy loss:

Lweight(G) =
~w1 · ~w2

‖ ~w1‖ ‖ ~w2‖
, (4)

where ~w1 and ~w2 are obtained by flattening and concatenat-

ing the weights of the convolution filters of C1 and C2.

Third, we adopt the discrepancy between the two predic-

tions p(1) and p(2) as an indicator to weight the adversarial

loss. The self-adaptive adversarial loss can be extended from

the traditional adversarial loss (Eq. 2) as

Ladv(G,D) = −E[log(D(G(XS)))] −

E[(λlocalM(p(1), p(2)) + ǫ) log(1−D(G(XT )))] ,
(5)

where p(1) and p(2) are predictions made by C1 and C2,

respectively, M(·, ·) denotes the cosine distance, and λlocal

controls the adaptive weight for adversarial loss. Note that

in Eq. 5, to stabilize the training process, we add a small

number ǫ to the self-adaptive weight.

With the above loss terms, the overall loss function of our

approach can be written as

LCLAN (G,D) =Lseg(G) + λweightLweight(G) +

λadvLadv(G,D) ,
(6)

where λweight and λadv denote the hyper parameters that

control the relative importance of the three losses. The

training objective of CLAN is

G∗, D∗ =argmin
G

max
D

LCLAN (G,D). (7)

We solve Eq. 7 by alternating between optimizing G and

D until LCLAN (G,D) converges.

3.4. Analysis

The major difference between the proposed framework

and traditional adversarial learning consists in two aspects:

the discrepancy loss and the category-level adversarial loss.

Accordingly, analysis will focus on the two differences.
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(a) Target image (b) Non-adapted (c) Adapted (TAN) (d) Adapted (CLAN)

(e) Non-adapted features (f) Adapted features (TAN) (g) Adapted features (CLAN) 

Figure 3. A contrastive analysis of CLAN and traditional adversarial network (TAN). (a): A target image, and we focus on the poles and

traffic signs in orange boxes. (b): A non-adapted segmentation result. Although the global segmentation result is poor, the poles and traffic

signs can be correctly segmented. It indicates that some classes are originally aligned between domains, even without any domain adaptation.

(c): Adapted result of TAN, in which a decent segmentation map is produced but poles and traffic signs are poorly segmented. The reason is

that the global alignment strategy tends to assign a conservative prediction to a feature and would lead some features to be predicted to other

prevalent classes [11, 18], thus causing those infrequent features being negatively transferred. (d): Adapted result from CLAN. CLAN

reduces the weight of adversarial loss for those aligned features. As a result, the original well-segmented class are well preserved. We then

map the high-dimensional features of (b), (c) and (d) to a 2-D space with t-SNE [29] shown in (e), (f) and (g). The comparison of feature

distributions further proves that CLAN can enforce category-level alignment during the trend of global alignment. (For a clear illustration,

we only show 4 related classes, i.e., building in blue, traffic sign in orange, pole in red and vegetation in green.)

First, the discrepancy (co-training) loss encourages E
to learn domain-invariant semantics instead of the domain

specific elements such as illumination. In our network, clas-

sifiers C1 and C2 1) are encouraged to capture possibly

different characteristics of a feature, which is ensured by

the discrepancy loss, and 2) are enforced to make the same

prediction of any E output (no matter the source or target),

which is required by the segmentation loss and the adver-

sarial loss. The two forces actually require that E should

capture the essential aspect of a pixel across the source and

target domains, which, as we are aware of, is the pure se-

mantics of a pixel, i.e., the domain-invariant aspect of a

pixel. Without the discrepancy loss (co-training), force 1)

is missing, and there is a weaker requirement for E to learn

domain-invariant information. On the other side, in our sim-

ulated → real task, the two domains vary a lot at visual level,

but overlap at semantic level. If C1 and C2 are input with

visual-level features from E, their predictions should be in-

accurate in target domain and tend to be different, which will

be punished by large adversarial losses. As a result, once our

algorithm converges, C1 and C2 will be input with semantic-

level features instead of visual-level features. That is, E is

encouraged to learn domain-invariant semantics. Therefore,

the discrepancy loss serves as an implicit contributing factor

for the improved adaptation ability.

Second, in our major contribution, we extend the

traditional adversarial loss with an adaptive weight

[λlocalM(p(1), p(2)) + ǫ]. On the one hand, when

M(p(1), p(2)) is large, feature maps of the same class do

not have similar joint distributions between two domains:

they suffer from the semantic inconsistency. Therefore, the

weights are such assigned as to encourage G to fool D
mainly on features that suffer from domain shift. On the

other hand, when M(p(1), p(2)) is small, the joint distribu-

tion would have a large overlap across domains, indicating

that the semantic inconsistency problem is not severe. Under

this circumstance, G tends to ignore the adversarial punish-

ment from D. From the view of D, the introduction of the

adaptive weight encourages D to distill more knowledge

from examples suffering from semantic inconsistency rather

than those well-aligned classes. As a result, CLAN is able to

improve category-level alignment degree in adversarial train-

ing. This could be regarded as an explicit contributing factor

for the adaptation ability. We additionally give a contrastive

analysis between traditional adversarial network (TAN) and

CLAN on their adaptation result in Fig. 3.

4. Experiment

4.1. Datasets

We evaluate CLAN together with several state-of-the-art

algorithms on two adaptation tasks, e.g., SYNTHIA [32] →
Cityscapes [8] and GTA5 [31] → Cityscapes. Cityscapes

is a real-world dataset with 5,000 street scenes. We use

Cityscapes as the target domain. GTA5 contains 24,966 high-

resolution images compatible with the Cityscapes annotated

classes. SYNTHIA contains 9400 synthetic images. We use

SYNTHIA or GTA5 as the source domain.
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Table 1. Adaptation from GTA5 [31] to Cityscapes [8]. We present per-class IoU and mean IoU. “V” and “R” represent the VGG16-FCN8s

and ResNet101 backbones, respectively. “ST” and “AT” represent two lines of method, i.e., self training- and adversarial learning-based

DA. We highlight the best result in each column in bold. To clearly showcase the effect of CLAN on infrequent classes, we highlight these

classes in blue. Gain indicates the mIoU improvement over using the source only.
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Source only V - 64.0 22.1 68.6 13.3 8.7 19.9 15.5 5.9 74.9 13.4 37.0 37.7 10.3 48.2 6.1 1.2 1.8 10.8 2.9 24.3 —

CBST [50] V ST 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1 11.8

Source only V - 25.9 10.9 50.5 3.3 12.2 25.4 28.6 13.0 78.3 7.3 63.9 52.1 7.9 66.3 5.2 7.8 0.9 13.7 0.7 24.9 —

MCD [35] V AT 86.4 8.5 76.1 18.6 9.7 14.9 7.8 0.6 82.8 32.7 71.4 25.2 1.1 76.3 16.1 17.1 1.4 0.2 0.0 28.8 3.9

Source only V - 18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3 —

CDA [45] V AT 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9 6.6

Source only V - 26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9 —

FCNs in the wild [15] V AT 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1 9.2

CyCADA (feature) [14] V AT 85.6 30.7 74.7 14.4 13.0 17.6 13.7 5.8 74.6 15.8 69.9 38.2 3.5 72.3 16.0 5.0 0.1 3.6 0.0 29.2 11.3

Baseline (TAN) [41] V AT 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0 17.1

CLAN V AT 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6 18.7

Source only R - 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6 —

Baseline (TAN) [41] R AT 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4 4.8

CLAN R AT 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2 6.6

Table 2. Adaptation from SYNTHIA [32] to Cityscapes [8]. We present per-class IoU and mean IoU for evaluation. CLAN and state-of-the-

art domain adaptation methods are compared. For each backbone, the best accuracy is highlighted in bold. To clearly showcase the effect of

CLAN on infrequent classes, we highlight these classes in blue. Gain indicates the mIoU improvement over using the source only.
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Source only V - 17.2 19.7 47.3 3.0 9.1 71.8 78.3 37.6 4.7 42.2 9.0 0.1 0.9 26.2 —

CBST [50] V ST 69.6 28.7 69.5 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 36.1 9.9

Source only V - 6.4 17.7 29.7 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 20.2 —

FCNs in the wild [15] V AT 11.5 19.6 30.8 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 22.9 2.7

Cross-city [6] V AT 62.7 25.6 78.3 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 35.7 15.2

Baseline (TAN) [41] V AT 78.9 29.2 75.5 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 37.6 17.4

CLAN V AT 80.4 30.7 74.7 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 39.3 19.1

Source only R - 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6 —

Baseline (TAN) [41] R AT 79.2 37.2 78.8 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 45.9 7.3

CLAN R AT 81.3 37.0 80.1 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 9.2

4.2. Implementation Details

We use PyTorch for implementation. We utilize the

DeepLab-v2 [4] framework with ResNet-101 [12] pre-

trained on ImageNet [9] as our source-only backbone for

network G. We use the single layer adversarial DA method

proposed in [41] as the TAN baseline. For co-training, we

duplicate two copies of the last classification module and

arrange them in parallel after the feature extractor, as illus-

trated in Fig. 2. For a fair comparison to those methods

with the VGG backbone, we also apply CLAN on VGG-16

based FCN8s [23]. For network D, we adopt a similar struc-

ture with [30], which consists of 5 convolution layers with

kernel 4 × 4 with channel numbers {64, 128, 256, 512, 1}
and stride of 2. Each convolution layer is followed by a

Leaky-ReLU [28] parameterized by 0.2 except the last layer.

Finally, we add an up-sampling layer to the last layer to

rescale the output to the size of the input map, in order

to match the size of local alignment score map. During

training, we use SGD [2] as the optimizer for G with a mo-

mentum of 0.9, while using Adam [20] to optimize D with

β1 = 0.9, β2 = 0.99. We set both optimizers a weight

decay of 5e− 4. For SGD, the initial learning rate is set to

2.5e− 4 and decayed by a poly learning rate policy, where

the initial learning rate is multiplied by (1− iter
max iter

)power

with power = 0.9. For Adam, we initialize the learning rate

to 5e− 5 and fix it during the training. We train the network

for a total of 100k iterations. We use a crop of 512× 1024
during training, and for evaluation we up-sample the predic-

tion map by a factor of 2 and then evaluate mIoU. In our best
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model, the hyper-parameters λweight, λadv , λlocal and ǫ are

set to 0.01, 0.001, 40 and 0.4 respectively.

4.3. Comparative Studies

We present the adaptation results on task GTA5 →
Cityscapes in Table 1 with comparisons to the state-of-the-art

domain adaptation methods [35, 45, 15, 14, 41, 50]. We ob-

serve that CLAN significantly outperforms the source-only

segmentation method by +18.7% on VGG-16 and +6.6%
on ResNet-101. Besides, CLAN also outperforms the state-

of-the-art methods, which improves the mIOU by over +7%
compared with MCD [35], CDA [45] and CyCADA [14].

Compared to traditional adversarial network (TAN) in the

output space [41], CLAN brings over +1.6% improvement

in mIOU in both architectures of VGG-16 and ResNet-101.

In some infrequent classes which are prone to suffer from the

side effect of global alignment, e.g., fence, traffic light and

pole, CLAN can significantly outperform TAN. Besides, we

also compare CLAN with the self training-based methods,

among which CBST [50] is the current state-of-the-art one.

This series of explicit methods usually achieve higher mIoU

then the implicit feature alignment. While in our experiment,

we find that CLAN is on par with CBST. Some qualitative

segmentation examples can be viewed in Fig. 5.

Table 2 provides the comparative results on the task SYN-

THIA → Cityscapes. On VGG-16, our final model yields

39.3% in terms of mIOU, which significantly improves the

non-adaptive segmentation result by 19.1%. Besides, CLAN

outperforms the current state-of-art method [15] by 16.4%
and [6] by 3.6%. On ResNet-101, CLAN brings 9.2% im-

provement to source only segmentation model. Compare to

TAN [41], the use of adaptive adversarial loss also brings

1.9% gain in terms of mIOU. Likewise, CLAN is more ef-

fective on those infrequent classes which are prone to be

negatively transferred, such as traffic light and sign, bring-

ing over 3.2% improvement respectively. While on some

prevalent classes, CLAN can also be par on with the baseline

method. Note that on the “train” class, the improvement

is not stable. This is due to the training samples that con-

tain the “train” are very few. Finally, comparing with the

self training-based method, CLAN outperforms CBST by

3.2% in terms of mIOU. These observations are in consistent

with our t-SNE analysis in Fig. 3, which further verifies that

CLAN can actually boost the category-level alignment in

segmentation-based DA task.

4.4. Feature Distribution

To further verify that CLAN is able to decrease the neg-

ative transfer effect for those well-aligned features, we de-

signed an experiment to take a closer look at the category-

level alignment degree of each class. Specifically, we ran-

domly select 1K source and 1K target images and calculate

the cluster center distance (CCD) {de1...d
e
n} of features of
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Figure 4. Left: Cluster center distance variation as training goes

on. Right: Mean IoU (see bars & left y axis) and convergence

performance (see lines & right y axis) variation when training with

different λlocal and ǫ.

the same class between two domains, where n = #class
and e is training epoch. dei is normalized by dei/d

0
i (In this

way, the CCD from the pre-trained model without any fine-

tuning would be always normalized to 1). We report dei in

Fig. 4 (left subfigure, taking the class “wall” as an example).

First, we observe as training goes on, dei is monotonically

decreasing in CLAN while not being monotone in TAN,

suggesting CLAN prevents the well-aligned features from

being incorrectly mapped. Second, dei converges to a smaller

value in CLAN than TAN, suggesting CLAN achieves better

feature alignment at semantic level.

We further report the final CCD of each class in Fig. 6.

We can observe that CLAN can achieve a smaller CCD in

most cases, especially in those infrequent classes which are

prone to be negatively transferred. These quantitative results,

together with the qualitative t-SNE [29] analysis in Fig. 3,

indicate that CLAN can preferably align the two domains in

semantic level. Such category-aligned feature distribution

usually makes the subsequent classification easier.

4.5. Parameter Studies

In this experiment, we aim to study two problems: 1)

whether the adaptive adversarial loss would cause instabil-

ity (vanishing gradient) during adversarial training and 2)

how much the adaptive adversarial loss would effect the per-

formance. For the problem 1), we utilize the loss of D to

indicate the convergence performance and a stable adversar-

ial training is achieved if D loss converges around 0.5. First,

we test our model using λlocal = 40, with varying ǫ over a

range {0.1, 0.2, 0.4, 0.8}. We do not use any ǫ larger than

0.8 since CLAN would degrade into TAN in that case. In

the experiment, our model suffers from poor convergence

when utilize a very small ǫ, e.g., 0.1 or 0.2. It indicates that

a proper choice of ǫ is between 0.2 and 0.8. Motivated by

this observation, we then test our model using ǫ = 0.4 with

varying λlocal over a range {10, 20, 40, 80}. We observe that

the convergence performance is not very sensitive to λlocal

since the loss of D converges to proper values in all the cases.

The best performance is achieved when using λlocal = 40
and ǫ = 0.4. Besides, we observe that the adaptation perfor-

mance of CLAN can steadily outperform TAN when using
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Target Image Ground TruthNon-adapted Adapted (CLAN)

Figure 5. Qualitative results of UDA segmentation for GTA5 → Cityscapes. For each target image, we show the non-adapted (source only)

result, adapted result with CLAN and the ground truth label map, respectively.
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Figure 6. Quantitative analysis of the feature joint distributions. For each class, we show the distance of the feature cluster centers between

source domain and target domain. These results are from 1) the model pre-trained on ImageNet [9] without any fine-tuning, 2) the model

fine-tuned with source images only, 3) the adapted model using TAN and 4) the adapted model using CLAN, respectively.

parameters near the best value. We present the detailed per-

formance variation in Fig. 4 (right subfigure). By comparing

both the convergence and segmentation results under these

different parameter settings, we can conclude that our pro-

posed adaptive adversarial weight can significantly effect

and improve the adaptation performance.

5. Conclusion

In this paper, we introduce the category-level adversar-

ial network (CLAN), aiming to address the problem of se-

mantic inconsistency incurred by global feature alignment

during unsupervised domain adaptation (UDA). By taking

a close look at the category-level data distribution, CLAN

adaptively weight the adversarial loss for each feature ac-

cording to how well their category-level alignment is. In this

spirit, each class is aligned with an adaptive adversarial loss.

Our method effectively prevents the well-aligned features

from being incorrectly mapped by the side effect of pure

global distribution alignment. Experimental results validate

the effectiveness of CLAN, which yields very competitive

segmentation accuracy compared with state-of-the-art UDA

approaches.
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