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Abstract

We reformulate the Wasserstein Discriminant Analysis (WDA) as a ratio trace
problem and present an eigensolver-based algorithm to compute the discrimina-
tive subspace of WDA. This new formulation, along with the proposed algorithm,
can be served as an efficient and more stable alternative to the original trace ratio
formulation and its gradient-based algorithm. We provide a rigorous convergence
analysis for the proposed algorithm under the self-consistent field framework,
which is crucial but missing in the literature. As an application, we combine WDA
with low-dimensional clustering techniques, such as K-means, to perform sub-
space clustering. Numerical experiments on real datasets show promising results
of the ratio trace formulation of WDA in both classification and clustering tasks.

1 Introduction

Wasserstein Discriminant Analysis (WDA) [13] is a supervised linear dimensionality reduction tech-
nique that generalizes the classical Fisher Discriminant Analysis (FDA) [16] using the optimal trans-
port distances [41]. Many existing works [44, 29, 11, 4] have addressed the issue that FDA only
considers global information. In particular, [49] proposed a new formula relaying on worst-case
distance; [37] developed a localized version of FDA; [22] provided an adaptive method for learning
local structure from data. The recently proposed WDA [13] has the advantage of adaptively cap-
turing both local and global information, and shows competitive performance in classification tasks
compared to other supervised dimensionality reduction techniques.

WDA as developed in [13] used the trace ratio formulation to maximize the ratio of the inter-class’s
regularized Wasserstein distances to the intra-class’s regularized Wasserstein distances. Formally,
they aimed to solve maxP Trace(PTCb(T)P)/Trace(PTCw(T)P) where Cb and Cw are the inter-
class and intra-class covariance matrices, respectively, and are functions of the optimal transport
matrix T. The optimal transport matrix T quantifies how important the distance between two sam-
ples should be in order to obtain a good projection matrix P. The authors in [13] derived the gradient
of the objective function with respect to P and also utilized automatic differentiation to compute the
gradients. The difficulties of their approach are 1) the optimization objective is non-convex and
non-smooth; and 2) Cb and Cw are functions of T and T is an implicit function on P. Thus WDA is
a bi-level optimization problem [8] and requires solving an optimal transport problem in every step
of gradient descent. Due to these complications, theoretical guarantees on the convergence are lack-
ing. Vanilla gradient descent gets stuck easily in the non-smooth region, especially for real datasets,
due to the natural structure of the data such as low rank or sparsity. In practice, the approach in-
troduced in [13] can be sensitive to initialization and may take many iterations or even fail to reach
convergence. All these issues raise concerns when WDA is applied to real data.
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In this paper, we circumvent the aforementioned challenges by reformulating WDA as a ratio trace
problem, which has a closed-form solution and can be solved by the generalized eigenvalue decom-
position if T is given. For algorithms of dimensionality reduction, it is common to use ratio trace
formulation to approximate trace ratio problems [46]. For example, in Fisher Discriminant Anal-
ysis (FDA), these two formulations are both defined and are both served as criterion to maximize
inter-class distance while minimizing intra-class distance [15]. Although there are many compar-
isons between these two formulations when the inter-class and intra-class covariance matrices are
fixed [43, 28, 17, 27], they do not concern with the case of the covariance matrices being functions of
the discriminative subspace as in WDA. We give numerical comparisons between these two formu-
lations in terms of classification accuracy on simulated as well as real data, on which the proposed
formulation either is comparable or outperforms the original formulation.

Specifically, we solve the ratio trace problem: argmaxP Trace(PTCb(T)P(PTCw(T)P)−1) instead
of the original WDA formulation: argmaxP Trace(PTCb(T)P)/Trace(PTCw(T)P). We propose an
algorithm: WDA-eig, to solve the ratio trace problem using the self-consistent field iteration (SCF),
and establish a convergence analysis for the general SCF framework with specific application to the
WDA context. The SCF iteration was originally used for solving Kohn-Sham equation arising in
electronic structure calculations [7]. Most works on SCF concern with the standard eigenvalue prob-
lem [47, 24, 6], while convergence analysis for the generalized eigenvalue problem has not appeared
in current literature. Our numerical examples demonstrate that the algorithm based on SCF iteration
usually converges within a few iterations in practice and is less sensitive to initialization compared
to the original approach. We also give a convergent analysis under the SCF framework, which not
only provides convergence guarantee to the ratio trace WDA problem but is also applicable to other
eigenvector-dependent generalized eigenvalue problem.

As an application, we extend WDA-eig to unsupervised clustering. Since WDA requires class labels
to calculate the inter- and intra-class Wasserstein distances, a natural solution is to combine WDA
with low-dimensional clustering techniques, which requires iteratively applying WDA given updated
label information. The new algorithm has a fast convergence compared to the original approach and
aid in iteratively applying WDA to find the most discriminative subspace. Several methods [10, 48,
42] that are closely related to our work leverage label information by combining FDA with Kmeans.
Our numerical experiments show that the WDA-Kmeans has promising performance compared to
existing subspace clustering techniques on real-world datasets.

Our contribution in this paper is three-fold. First, we present a ratio trace formulation of the WDA
problem. Second, we propose to solve the problem using the SCF iteration, and provide a convergent
analysis for the SCF framework as well as specific application to the WDA context. Last but not
least, we iteratively apply WDA and low-dimensional clustering technique to perform clustering.
We emphasize that we do not attempt solving the original trace ratio formulation of WDA with the
proposed algorithm. A better solution to the original formulation is not the focus of this paper.

Notations. We use ‖ · ‖ to denote the 2-norm of a matrix or vector. In is used to denote the identity
matrix of order n. For any matrix X, let xi denote its ith column vector and xi,j denote the (i, j)th
entry. For any A, B ∈ Rm×n, 〈A,B〉 is the inner product of A and B, i.e., 〈A,B〉 = trace(ATB).
Let Sn = {A ∈ Rn×n|A = AT } be the set of symmetric matrices. For a symmetric matrix pair
(A,B), A,B ∈ Sn with B being positive definite, we denote the generalized eigenvalues of (A,B) by
λmin(A,B) = λn(A,B) ≤ · · · ≤ λ1(A,B) = λmax(A,B). Let Od×p represent the set of orthogonal
d× p matrices, i.e., Od×p = {A ∈ Rd×p | ATA = Id}.

2 Methodology

In this section, we first review the existing supervised WDA problem and its gradient-based solver,
and reformulate the problem as a nonlinear generalized eigenvalue problem. We then present an
algorithm that solves the problem using the self-consistent field iteration.

2.1 Background

Wasserstein distance (also known as the optimal transport distance, earth mover distance) is a dis-
tance between probability measures that preserves the underlying geometry of the space based on
principles from the optimal transport theory [41]. The regularized Wasserstein distance is the solu-
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tion of the following entropy-smoothed optimal transport problem:

Tλ , argmin
T∈Unm

λ〈T,MX,Z〉 − Ω(T), (1)

where λ ≥ 0 is the Wasserstein regularization parameter, MX,Z denotes the pairwise squared Eu-
clidean distance matrix between samples in X ∈ Rn×d and Z ∈ Rn×d: MX,Z , [‖xi − zj‖22],
and Ω(T) is the entropy of T: Ω(T) , −

∑
ij tij log(tij). Umn is the polytope of m × n

nonnegative matrices with row and column sums being equal to 1m/m and 1n/n respectively:
Umn , {T ∈ Rm×n+ | T1n = 1m/m,TT 1m = 1n/n}.
As the entropy-smoothed optimal transport problem is strictly convex, the solution to (1) exists and
is unique. Numerically, Tλ can be obtained very efficiently using algorithms such as the Sinkhorn’s
fixed-point iterations [18, 9], the Greenkhorn algorithm [2, 1], or APDAMD [23]. The regularization
parameter λ can be used to balance the global (at the distribution scale) and the local (at the samples’
scale) interactions between different classes.

The original Wasserstein Discriminant Analysis solves the following bi-level optimization problem:

max
P∈Od×p

J(P, T(P)) =

∑
c,c′>c〈PPT ,Cc,c

′
〉∑

c〈PPT ,Cc,c〉
=
〈PPT ,Cb〉
〈PPT ,Cw〉

, (2)

where Cc,c
′

=
∑
i,j

tc,c
′

i,j (xci − xc
′

j )(xci − xc
′

j )T , ∀c, c′,

s.t. Tc,c
′

= arg min
T∈Uncnc′

λ〈T,MXcP,Xc′P〉 − Ω(T),

where Xc ∈ Rnc×d is the data matrix of the samples from class c, and XcP is the matrix of projected
samples from class c. Cb =

∑
c,c′>c Cc,c

′
and Cw =

∑
c Cc,c are the between and within cross-

covariance matrices, and they both depend on T(P).

In [13], the gradient Gk = ∇PJ(P, T(P)) at iteration k was computed using automatic differen-
tiation [25], and the optimization problem is solved using pymanopt solvers such as the projected
gradient descent and trust region methods on the Stiefel manifold [3, 39]. In practice, due to the
complication of the problem formulation and the structures of data, the gradient-based approach of-
ten has a slow convergence and is sensitive to parameters and initialization. We will illustrate these
difficulties in Section 4 with numerical experiments.

2.2 The Nonlinear Eigensolver-based Approach

For (2), once Tc,c
′

is computed, the problem becomes a trace ratio problem:

max
P∈Od×p

J(P) =
Trace(PTCbP)

Trace(PTCwP)
, (3)

where Cb and Cw depend on P. We approximate the problem by solving a ratio trace problem:

max
P∈Rd×p

Jrt(P) = Trace((PTCbP)(PTCwP)−1), (4)

Problem (4) can be efficiently solved by the generalized eigenvalue decomposition:

Cb(P)P = Cw(P)PΛ, (5)

where the optimal P is the matrix of eigenvectors corresponding to the p largest generalized eigen-
values. The generalized eigenvector-dependent nonlinear eigenvalue problem (which we refer to
as NLEP from now on) can be solved via the self-consistent field (SCF) iteration [26, 32]: given
Pt−1, we first construct Cb(Pt−1) and Cw(Pt−1), then solve the generalized eigenvalue problem
Cb(Pt−1)v = µCw(Pt−1)v. Let vj be the eigenvector corresponding to the jth largest generalized
eigenvalue, then Pt is updated as an orthonormal basis for [v1, . . . , vp]. Compared to the gradient-
based approach, the new formulation with SCF iteration could drastically reduce the number of
iterations. We therefore propose Algorithm 1 for solving supervised WDA.

3



Algorithm 1 WDA-eig algorithm
Input: De-meaned data X , class labels ŷ, initial subspace P0 ∈ Od×p, tolerance ε,

maximum number of iterations N
for k = 1 to N do

for each pair of classes c, c′ do
Compute Tc,c

′
(Pk−1) using the Sinkhorn iteration

end for
Construct Cb(Pk−1) and Cw(Pk−1)

Compute the generalized eigenvalue problem: Cb(Pk−1)P = Cw(Pk−1)PΛ, and obtain
Pk ∈ Od×p as an orthonormal basis for the eigenvector matrix corresponding to the
p largest generalized eigenvalues

if the change in Pk is sufficiently small then
Break

end if
end for

From a computational complexity point of view, suppose that for each class there are n samples and
d features. For each SCF iteration, complexity is dominated by constructing Cb and Cw, which are
O(n2d2). Solving the generalized eigenvalue problem has complexity O(d3), but it is possible to
only run a few iteration to reach certain tolerance. Each Sinkhorn iteration is of O(n2) and we run
a fixed number of iterations. The memory complexity is O(d2) by storing the matrices Cb and Cw.

Note that it is also interesting to investigate if the Riemannian optimization can be applied to Prob-
lem (4), similarly to [45]. This is, however, nontrivial as the constraint manifold varies with itera-
tions in this case. We leave it to future work. Another line of interesting future work is to develop
kernelized version of WDA-eig and randomized algorithms to speed up the computations [20, 21].
Moreover, in the future one can also re-visit WDA-eig by considering sparsity constraints [5].

3 Analysis

In this section we first give a convergence analysis for the SCF framework for solving generalized
NLEP, followed by an analysis for the proposed WDA-eig in Algorithm 1.

3.1 Convergence of SCF

Consider the generalized NLEP A(P)V = B(P)VΛ, where V = [v1, . . . , vp] and P is an orthonor-
mal basis of V that spans the same subspace as V. A(P),B(P) are symmetric matrix-valued function
and B(P) is positive definite. Λ = diag(λ1, . . . , λp), where λ1 ≥ · · · ≥ λp are the p largest eigen-
values of (A(P), B(P)) corresponding to eigenvectors v1, . . . , vp. We emphasize that A(P), B(P)
are invariant to orthogonal transformation of P, i.e., A(P) ≡ A(PQ), B(P) ≡ B(PQ) for any
orthogonal matrix Q ∈ Rp×p.

Definitions. Let X and Y be two p-dimensional subspaces of Rn. Let the columns of X form
an orthonormal basis for X and the columns of Y form an orthonormal basis for Y . We use
‖ sin Θ(X ,Y)‖ as in [35] to measure the distance between X and Y , where

Θ(X ,Y) = diag(θ1(X ,Y), . . . , θp(X ,Y)). (6)

Here, θj(X ,Y)’s denote the canonical angles between X and Y [p. 43][35], which is defined as

0 ≤ θj(X ,Y) , arccosσj ≤
π

2
for 1 ≤ j ≤ k, (7)

where σj’s are the singular values of XTY . Similar to the Crawford number for symmetric definite
matrix pair (A,B) [Chapter 8.7] [40], we define the Crawford number for the generalized NLEP as

c , min
P∈Od×p

min
x∈Cd,‖x‖=1

(xT (A(P) + iB(P))x),
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where i is the imaginary unit. Define C , maxP∈Od×p

√
‖A(P)2 +B(P)2‖. At the kth SCF

iteration, one computes an approximation to the eigenvector matrix Vk associated with the p
largest eigenvalues of (A(Pk−1), B(Pk−1)), where Pk−1 is an orthonormal basis for Vk−1, and
then Vk is used as the next approximation to the solution. Let Ak = A(Pk), Bk = B(Pk),
µi,k = arctanλi(A(Pk), B(Pk)). We also define sk , ‖ sin Θ(Pk,Pk−1)‖ as the distance between
subspaces Pk and Pk−1.

We study the convergence of SCF iteration under the following assumptions:

A1: For any P1,P2 ∈ Od×p, assume that there exist positive constants ξa, ξb such that

‖A(P1)−A(P2)‖ ≤ ξa‖ sin Θ(P1,P2)‖, ‖B(P1)−B(P2)‖ ≤ ξb‖ sin Θ(P1,P2)‖;

A2: For k = 1, 2, · · · , there exists an η > 0 such that

µp,k − µp+1,k ≥ η.

We state the convergence theorems below and give proofs in the supplementary material. By global
convergence we mean that the algorithm converges to some stationary points [34] and does not
guarantee convergence to a global optimum for all initial points. The algorithm converges when the
change in subspace is sufficiently small, i.e., sk is within some user-specified tolerance.

Theorem 1. (Global Convergence) Let s1 = ‖ sin Θ(P0,P1)‖. Assume A1 and A2, and
s1
√
ξ2a + ξ2b < c. If

η > arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(s1

√
ξ2a + ξ2b/c)

for some constant ρ > 1, then SCF converges linearly at the rate of 1
ρ .

With relaxed assumption on the arctangent gap, we can show local convergence if the initial subspace
is close enough to the true subspace P∗:

A3: Let µ∗i denote arctanλi(A(P∗), B(P∗)). There exists an η > 0 such that

µ∗p − µ∗p+1 ≥ η.

Theorem 2. (Local Convergence) Let ŝ0 = ‖ sin Θ(P0,P∗)‖. Assume A1 and A3, and
ŝ0
√
ξ2a + ξ2b < c. If

η > arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(ŝ0

√
ξ2a + ξ2b/c)

for some constant ρ > 1, then SCF is locally convergent at P∗ at the rate of 1
ρ .

Theorems 1 and 2 characterize how the eigenspace varies when the matrix pair undergoes a small
perturbation. The sensitivity of the matrix pair as functions of P is quantified by the Lipschitz
constants in A1. A2 and A3 are assumptions to guarantee that a discriminative subspace exists. In
the following section we give more concrete examples in the WDA context for these assumptions.

3.2 Analysis for Supervised WDA

In the context of WDA, A(P) is the inter-class covariance matrix Cb(P) and B(P) is the intra-class
covariance matrix Cw(P). For each iteration in WDA-eig, a fixed number of Sinkhorn iterations is
computed to obtain an approximation to the optimal transport distance T. T(P) can be expressed as
an implicit function using the optimality conditions of the equation defining the optimal T, and ∂T

∂P
exists and is bounded. Therefore it is safe to assume that T is Lipschitz continuous in P.

Corollary 1. Suppose that the optimal transport matrix Tc,c
′

satisfies a Lipschitz-like condition:

‖Tc,c
′
(P1)− Tc,c

′
(P2)‖ ≤ ξc,c

′
‖ sin Θ(P1,P2)‖,

For a given p, let
η = min

k
{ηk|ηk = µp,k − µp+1,k}.
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Denote ξa =
∑
c,c′>c ξ

c,c′‖
∑
i,j(x

c
i −xc

′

j )(xci −xc
′

j )T ‖, ξb =
∑
c ξ
c,c‖

∑
i,j(x

c
i −xcj)(xci −xcj)T ‖.

If

η > arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(s1

√
ξ2a + ξ2b/c)

for some constant ρ > 1, then wda-eig converges linearly at the rate 1
ρ .

Corollary 1 implies that given a data matrix, the convergence rate of WDA-eig depends on the
initialization, the subspace dimension p and ξa, ξb. ξa and ξb are functions of ξc,c

′
and depends on

the Wasserstein regularization parameter λ. When λ = 0, tc,c
′

is a constant matrix and ξc,c
′

= 0.
For a fixed λ, the arctangent gap η depends on the inherent structure of the data matrix and whether
a discriminative subspace exists. For example, given two clusters of data generated from 2D normal
distributions as shown in Figure 1, η depends on the separation of these two clusters. We can
calculate η∗ , µ∗p − µ∗p+1 since we know the true subspace P∗, and we also run WDA-eig on a
random initialization to get η. We observe that η is close to 0 when the clusters overlap and is a
monotonically increasing function of the Euclidean distance between the mean of the two clusters.
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Figure 1: Left and middle: two classes of data generated from two random normal distributions:
Xi N ∈ (µi,Σ), µ = (±x, 0) where x ∈ [0, 5]. x = 1 in the Left and x = 5 in the Middle. Right:
Arctangent gap η as a function of the distance between the means d , ‖µ1 − µ2‖.

By applying the algorithm to a simulated dataset with 3 classes and 2 discriminative dimensions,
we draw log plots of the distances between the subspaces subject to these components in Figure 2
to illustrate linear convergence rates. On the left we show sk with different values of the subspace
dimension p and with λ = 0.1 fixed. With p = 2 the algorithm achieves the fastest rate because the
dimension of the true discriminative subspace is 2. In FDA, since Cb has rank Nc− 1 (where Nc is
the number of classes), p has to be≤ Nc−1. In WDA-eig, p is less restrictive, but choosing p ≥ Nc
may still slow down or prevent convergence if λ is small. In the middle we show sk with different
values of the Wasserstein regularizer λ and with p = 2 fixed. When λ is small, the matrices Cw and
Cb in WDA can be viewed as the matrices in FDA with a small perturbation, and in such cases the
Lipschitz constants ξa and ξb are close to zero so the algorithm is guaranteed to converge. We also
observe that a larger λ corresponds to a slower convergence rate. On the right we illustrate the effect
of initialization for local convergence. We use the converged solution as an approximation to the
true discriminative subspace P∗ and plot the distance ‖ sin Θ(P∗,Pk−1)‖ for each iteration k, with
varying ŝ0 = ‖ sin Θ(P∗,P0)‖. We observe that initialization has little effect on the convergence
rate and that the algorithm converges in most cases except for the case where ŝ0 ≈ 1.

4 Numerical Experiments

In this section we evaluate the performance of the proposed Algorithm 1 on classification tasks by
applying it to a simulated dataset and the MNIST dataset. We refer to our proposed algorithm as
WDA-eig and refer to the original implementation in [12] with projected gradient descent as WDA.
WDA converges when the norm of the gradient is below 10−6, and WDA-eig converges when the
distance between two consecutive subspaces is less than 10−6.

4.1 Simulated dataset

We first compare WDA-eig with WDA on a simulated dataset. We use the same setup as given
in [13], where the data belongs to 3 non-linearly separable classes and is generated using 2 discrim-
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Figure 2: Left and Middle: Distances between subspaces ‖ sin Θ(Pk,Pk−1)‖ as a function of it-
eration number k, with varying λ and p, respectively. Right: ‖ sin Θ(P∗,Pk−1)‖ as a function of
iteration number k, with varying initialization P0.

Table 1: Comparison between WDA and WDA-eig

Param λ Algo Prob. of Convergence Avg. Acc.(std.) Converged Acc.(std.) CPU time

λ = 0.1 wda 25% 0.712(0.152) 0.977(0) 72
wda-eig 100% 0.968(0) 0.968(0) 0.677

λ = 1.0 wda 78% 0.908(0.149) 0.987(0) 6.37
wda-eig 100% 0.986(0) 0.986(0) 1.17

λ = 5.0 wda 73% 0.885(0.164) 0.985(0) 7.04
wda-eig 100% 0.985(0) 0.985(0) 1.61

inant features and 8 dimensions of Gaussian noise. We apply these two algorithms with varying
regularization parameter λ, and compare their computational efficiency and classification accuracy
with a K-Nearest-Neighbors classifier (KNN) on the projected data (k = 10). For each λ, we run
each algorithms for 100 randomly-initialized trials, and the results are shown in Table 1. The third
column of the table shows the probability of convergence over 100 trials, and the fourth column
shows the accuracy averaged over trials. For λ = 0.1, 1, 5, WDA-eig converges in all the trials
with zero standard deviations and achieves higher accuracy scores on average, while WDA has high
standard deviation due to the low probability of convergence. The fifth column shows the accuracy
averaged only for the converged trials, and WDA-eig and WDA have comparable performances
in accuracy, which indicates that the ratio trace formulation can serve as a good approximation to
the trace ratio formulation. The last column shows the efficiency measured by averaged CPU time
in seconds over 100 trials. WDA-eig takes shorter running time than WDA since the former only
requires a few iterations to converge and the running time per SCF iteration is comparable to the run-
ning time per gradient descent iteration. Even in cases where most trials converge for both solvers
(e.g., when λ = 1), WDA takes more iterations to converge on average.

4.2 MNIST dataset

Next, we test the classification performance on a real dataset and also evaluate the generalization
ability of the proposed approach. We extract 1000 samples in the MNIST dataset as the training
set and use 10000 samples in the test set. We measure the KNN prediction error on the projected
data as a function of the subspace dimension p, the number of nearest neighbors K, and the Wasser-
stein regularization parameter λ respectively in Figure 3. On the left we show the prediction error
of full data/PCA/FDA/WDA/WDA-eig+KNN applied to the original data as a function of p, with
λ = 0.01 and K = 10 fixed. In implementation of FDA/WDA-eig we add a small perturbation
term εIp on Cw to make the denominator positive definite, and we choose ε = 2 in this setting,
which removes the restriction of p ≤ 9 for FDA. In the middle we show the performance of these
methods as a function of K. Another approach to avoid Cw being semidefinite is to project away
the null space of the data matrix before applying discriminant analysis. To achieve this end, we first
apply PCA to the original data matrix and retain only the first 20 principal components. We then
apply PCA/FDA/LFDA [37]/WDA/WDA-eig on the dimension-reduced data to obtain a subspace
of dimension p = 9 without any regularization on Cw, and the results are shown on the right.
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Figure 3: Prediction error as a function of the subspace dimension p, the number of nearest neighbors
K, and the Wasserstein regularization parameter λ.

5 Unsupervised WDA

Since WDA is a dimensionality reduction technique, it could also be integrated with a low-
dimensional clustering technique to do high-dimensional clustering. Here we propose Algorithm 2
to extend WDA to the unsupervised setting.

5.1 Clustering Algorithm

Algorithm 2 Iterative WDA clustering
Input: De-meaned dataset X , P0 ∈ Od×p, tolerance ε, max number of iterations N
for k = 0, 1, · · · , N do

Compute y = XPk ∈ Rn×p
Cluster y into K classes and obtain the class labels ŷ
Call Algorithm 1 to update P : Pk+1 = WDA-eig(X, ŷ,Pk)
if the change in Pk is sufficiently small then

Break
end if

end for

We start with an initial guess and adaptively improve its labeling by performing clustering in the
projected space. The goal is to converge to a discriminative subspace that will render the most
accurate labels. Algorithm 2 solves the following optimization problem:

max
P

Ĵ(P,T, ŷ) s.t. Tc,c
′

= argmin
T∈Uncnc′

E1(T,P, ŷ), ŷ = argmin
ŷ

E2(P, ŷ), (8)

and E2 is the objective of any specific low-dimensional clustering technique. The algorithm uses an
alternating optimization scheme: for each iteration, given the class labels ŷ, P is chosen to maxi-
mize the ratio-trace problem Ĵ , and then given the subspace, it finds the optimal labeling according
to the clustering objective E2. The objectives E2 and Ĵ do not always align. A special case is FDA-
Kmeans (or LDA-Kmeans) [10], where minimizing E2 is equivalent to maximizing Ĵ . It is derived
that iteratively applying FDA and K-means is the same as alternating optimization in a unified ob-
jective [42], and that combining FDA and K-means is equivalent to kernel K-means in the original
space with a specific kernel Gram matrix [48].

However, there is no theoretical guarantee that a larger objective value corresponds to a better clus-
tering result in terms of external evaluation criteria. We observe that for FDA-Kmeans, the adjusted
random index (ARI) [30] does not increase monotonically with the iteration number and could even
converge to a worse result compared to the initial guess. For WDA, K-Means in the projected space
does not maximize Ĵ , but empirically we observe that several iterations with K-Means does im-
prove clustering result in terms of external evaluation criteria such as ARI. Since the performance of
FDA degrades when class distributions are multimodal, FDA could perform poorly given the wrong
labels even if the true underlying distribution is Gaussian. On the other hand, we numerically ob-
serve that WDA is more robust to noisy labels due to a balance of local and global information (see
supplementary material).
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Table 2: Clustering results.
Method Dataset ARI NMI Homogeneity Completeness FMI

Baseline MNIST 0.334± 0.007 0.475± 0.006 0.473± 0.006 0.477± 0.007 0.403± 0.007
PCAKm MNIST 0.334± 0.005 0.471± 0.005 0.469± 0.004 0.473± 0.007 0.402± 0.005
FDAKm MNIST 0.360± 0.006 0.500± 0.007 0.497± 0.006 0.503± 0.008 0.426± 0.005
WDAKm MNIST 0.398 ± 0.008 0.526 ± 0.006 0.524 ± 0.006 0.528 ± 0.006 0.459 ± 0.008

Baseline KTH 0.424± 0.035 0.576± 0.035 0.556± 0.035 0.598± 0.033 0.535± 0.028
PCAKm KTH 0.470± 0.017 0.616± 0.009 0.596± 0.011 0.637± 0.007 0.571± 0.011
FDAKm KTH 0.481± 0.022 0.635± 0.018 0.614± 0.019 0.657± 0.017 0.580± 0.016
WDAKm KTH 0.488 ± 0.020 0.643 ± 0.015 0.623 ± 0.016 0.663 ± 0.014 0.584 ± 0.014

Baseline 15scene 0.161± 0.009 0.352± 0.009 0.336± 0.009 0.369± 0.009 0.233± 0.008
PCAKm 15scene 0.160± 0.007 0.351± 0.006 0.334± 0.007 0.368± 0.006 0.232± 0.005
FDAKm 15scene 0.150± 0.009 0.350± 0.011 0.324± 0.010 0.376± 0.014 0.234± 0.010
WDAKm 15scene 0.170 ± 0.010 0.366 ± 0.012 0.350 ± 0.011 0.384 ± 0.012 0.243 ± 0.009

Baseline 20ng 0.081± 0.011 0.235± 0.021 0.217± 0.020 0.255± 0.023 0.151± 0.009
PCAKm 20ng 0.097± 0.003 0.247± 0.005 0.238± 0.005 0.255± 0.005 0.152± 0.003
FDAKm 20ng 0.113± 0.013 0.298± 0.019 0.275± 0.019 0.322± 0.020 0.185± 0.010
WDAKm 20ng 0.128 ± 0.011 0.302 ± 0.014 0.283 ± 0.013 0.322 ± 0.015 0.194 ± 0.010

5.2 Experiments on WDA Clustering

In this section we evaluate the proposed Algorithm 2 and compare with other subspace clustering
techniques. In what follows, let Nc denote the number of classes, n be the number of observations
and d be the number of features.

We use four real world datasets to evaluate the proposed method: the MNIST dataset for digits
recognition, the 15-scene dataset [19] for multi-class image recognition, the KTH action recognition
database [33] for multi-class video recognition, and the 20 newsgroup dataset for text classification.
To avoid the singularity of the Cw matrix in FDA and WDA, we first do a dimension reduction on the
original dataset using PCA and retain the first 2×Nc principal components. We refer to this data as
the dimension-reduced data. We apply four different clustering methods to the four dataset: (1) K-
means on the original data (Baseline); (2) K-means on dimension-reduced data (PCAKm); (3) FDA-
Kmeans (FDAKm) on the dimension-reduced data; (4) WDA-kmeans (Algorithm 2 combined with
K-means) (WDAKm) on the dimension-reduced data. For (3) and (4) we use the subspace obtained
by PCA as initialization and p = Nc−1 as the subspace dimensions. No regularization term is added
to Cw. The Wasserstein regularizer λ is coarsely tuned, where we choose λ = 0.01 for MNIST and
15-scene, λ = 10 for KTH, and λ = 5 for 20ng. The results are averaged over 20 trials. We use five
external evaluation criteria to evaluate the quality of the clustering solutions [30, 36, 31, 14]. The
results in Table 2 show that WDAKm achieves the best performance on all four datasets, in terms of
the 5 external metrics we use. We also notice that in 15-scene dataset the performance of FDAKm is
worse than the baseline method, which means with some wrong tags, FDA tends to overly separate
data and decrease the clustering quality. In contrast, WDA always improve the clustering even in
the difficult case such as the 15-scene dataset.

6 Conclusion

In this paper, we present a ratio trace formulation of the Wasserstein Discriminant Analysis and an
eigensolver-based algorithm: WDA-eig to solve the problem. Unlike the original trace ratio for-
mulation, the ratio trace formulation has a closed-form solution that is readily obtainable by the
generalized eigenvalue decomposition once the regularized optimal transport problem is solved. We
give a convergent analysis for WDA-eig under the SCF framework and numerically test the effi-
ciency and convergence properties of the proposed algorithm. Although WDA-eig solves a slightly
different problem, the ratio trace formulation can be served as an efficient alternative for the trace
ratio formulation of WDA. WDA-eig also takes less time to converge on average and is less sensi-
tive to initialization and parameters compared to WDA. As a supervised dimensionality reduction
technique, WDA can also be combined with clustering techniques and applied iteratively to perform
unsupervised learning. Numerical experiments show that the WDA clustering algorithm performs
well on a set of real-world problems.
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Broader Impact

In the era of big data, business providers, data scientists, and governments try to explore opportu-
nities in the large scale and high-dimensional datasets. Nevertheless, several major computational
challenges arise and prevent practitioners from constructing effective algorithms or tools to analyze
their datasets. Dimensionality reduction (DR) plays an essential role in supervised and unsupervised
learning tasks when the datasets are high dimensional. One benefit of reducing the data dimension
before classification or clustering is to save storage and reduce computational cost for the later steps,
however, the DR technique itself can be costly. We study a recently proposed and promising DR
technique, the Wasserstein discriminant analysis, and propose a different formulation that could
achieve comparable or better results with less computational cost. We also analyze the problem
from a different perspective that was originated from electronic structure calculations, which could
be of interest to a broader audience in the machine learning community.
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7 Proof of Theorem 1. (Global Convergence of SCF)

Consider the generalized NLEP A(P)V = B(P)VΛ, where V = [v1, . . . , vp] and P is an orthonor-
mal basis of V. A(P), B(P) are symmetric matrix-valued function and B(P) is positive definite.
Λ = diag(λ1, . . . , λp), where λ1 ≥ · · · ≥ λp are the p largest eigenvalues of (A(P), B(P)) cor-
responding to eigenvectors v1, . . . , vp. We emphasize that A(P), B(P) are invariant to orthogonal
transformation of P, i.e., A(P) ≡ A(PQ), B(P) ≡ B(PQ) for any orthogonal matrix Q ∈ Rp×p.

Definitions. Let X and Y be two p-dimensional subspaces of Rn. Let the columns of X form
an orthonormal basis for X and the columns of Y form an orthonormal basis for Y . We use
‖ sin Θ(X ,Y)‖ as in [35] to measure the distance between X and Y , where

Θ(X ,Y) = diag(θ1(X ,Y), . . . , θp(X ,Y)).

Here, θj(X ,Y)’s denote the canonical angles between X and Y [p. 43][35], which is defined as

0 ≤ θj(X ,Y) , arccosσj ≤
π

2
for 1 ≤ j ≤ k,

where σj’s are the singular values of XTY . Similar to the Crawford number for symmetric definite
matrix pair (A,B) [Chapter 8.7] [40], we define the Crawford number for the generalized NLEP as

c , min
P∈Od×p

min
x∈Cd,‖x‖=1

(xT (A(P) + iB(P))x).

Define C , maxP∈Od×p

√
‖A(P)2 +B(P)2‖. At the kth SCF iteration, one computes an

approximation to the eigenvector matrix Vk associated with the p largest eigenvalues of
(A(Pk−1), B(Pk−1)), where Pk−1 is an orthonormal basis for Vk−1, and then Vk is used as the next
approximation to the solution. Let Ak = A(Pk), Bk = B(Pk), µi,k = arctanλi(A(Pk), B(Pk)).

We study the convergence of SCF iteration under the following assumptions:

A1: For any P1,P2 ∈ Od×p, assume that there exist positive constants ξa, ξb such that

‖A(P1)−A(P2)‖ ≤ ξa‖ sin Θ(P1,P2)‖, ‖B(P1)−B(P2)‖ ≤ ξb‖ sin Θ(P1,P2)‖;

A2: For k = 1, 2, · · · , there exists an η > 0 such that

µp,k − µp+1,k ≥ η.

Theorem 1. (Global Convergence) Let s1 = ‖ sin Θ(P0,P1)‖. Assume A1 and A2, and
s1
√
ξ2a + ξ2b < c. If

η > arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(s1

√
ξ2a + ξ2b/c)

for some constant ρ > 1, then SCF converges linearly at the rate of 1
ρ .

In order to show Theorem 1, we need the following three lemmas. The first lemma gives some
fundamental results for ‖ sin Θ(X,Y )‖, which can be verified via definition.

Lemma 1. Let [X, Xc] and [Y, Yc] be two orthogonal matrices with X,Y ∈ Rn×k. Then

‖ sin Θ(X,Y )‖ = ‖XT
c Y ‖ = ‖XTYc‖ = ‖XXT − Y Y T ‖.

The next lemma gives perturbation bound for the eigenvalues of definite matrix pair.

Lemma 2. [Theorem 8.7.3][40] Let A, B be symmetric, B be positive definite. Let the eigenval-
ues of (A,B) be λ1 ≥ · · · ≥ λn. Let c(A,B) be the Crawford number of {A,B}:

c(A,B) ≡ min
x∈Cn,‖x‖=1

|xT (A+ iB)x|.
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Suppose E and F are symmetric matrices that satisfy

ε2 = ‖E‖2 + ‖F‖2 < c2(A,B).

Then B + F is positive definite, and the eigenvalues λ̃1 ≥ . . . λ̃n of (A+ E,B + F ) satisfy

| arctan λ̃i − arctanλi| ≤ arctan
ε

c(A,B)
, ∀1 ≤ i ≤ n.

The following lemma gives perturbation bound for the eigenspace of definite matrix pair, which is
rewritten from [Theorem 2.1] [38].

Lemma 3. Let A, B, Ã, B̃ be symmetric, B and B̃ be positive definite. Let the eigenvalues of
(A,B) and (Ã, B̃) be tanµ1 ≥ · · · ≥ tanµn, tan µ̃1 ≥ · · · ≥ tan µ̃n, respectively, the corre-
sponding eigenvectors be v1, . . . , vn, and ṽ1, . . . , ṽn, respectively. Assume that there are α ≥ 0 and
δ > 0 satisfying α+ δ ≤ 1, and a real number γ such that

| sin(γ − µi)| ≤ α, for i = 1, . . . , p,

| sin(γ − µ̃j)| ≥ α+ δ, for j = p+ 1, . . . , n

(or vice-versa). Let V1 = [v1, . . . , vp], Ṽ1 = [ṽ1, . . . , ṽp]. Then

‖ sin Θ(V1, Ṽ1)‖ ≤
p(α, δ; γ)

√
‖A2 +B2‖

c(A,B)c(Ã, B̃)
×

√
‖(Ã−A)2 + (B̃ −B)2‖

δ
,

where

p(α, δ; γ) ,
q(γ)(α+ δ)

√
1− α2 + α

√
1− (α+ δ)2

2α+ δ
,

with q(γ) =
√

2 for γ 6= 0 and q(0) = 1.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Denote Ak = A(Pk), Bk = B(Pk), Ek = Ak − Ak−1, Fk = Bk − Bk−1.
Without loss of generality, we assume that Ak is also positive definite. Otherwise, we let
Ak = Ak + tBk for sufficiently large t, then Ak is positive definite and the sequence {Vk} pro-
duced by SCF iteration remains unchanged. Let Λk = diag(λ1,k, . . . , λp,k), Vk = [v1,k, . . . , vp,k],
where λi,k is the ith largest eigenvalue of (Ak, Bk), vi,k is the corresponding eigenvector. Also
denote sk = ‖ sin Θ(Pk,Pk−1)‖ = ‖PkPTk − Pk−1PTk−1‖ as the distance between subspaces.

By assumption A1, we have√
‖Ak −Ak−1‖2 + ‖Bk −Bk−1‖2

≤
√
ξ2a + ξ2b‖ sin Θ(Pk,Pk−1)‖ = sk

√
ξ2a + ξ2b .

Now consider k = 1. By assumption, s1
√
ξ2a + ξ2b < c, then we may apply Lemma 2, which gives

|µi,1 − µi,0| ≤ arctan

√
‖A1 −A0‖2 + ‖B1 −B0‖2

c

≤ arctan(s1

√
ξ2a + ξ2b/c), ∀1 ≤ i ≤ n.

It follows that

µp,1 − µp+1,0 =µp,1 − µp+1,1 + µp+1,1 − µp+1,0

≥η − arctan(s1

√
ξ2a + ξ2b/c)

> arcsin(ρC
√
ξ2a + ξ2b/c

2) ≥ 0, (9)

14



where the last inequality uses the assumption

η > arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(s1

√
ξ2a + ξ2b/c).

Now let

γ =
µ1,1 + µp,1

2
, α = sin

µ1,1 − µp,1
2

, α+ δ = sin(
µ1,1 + µp,1

2
− µp+1,0),

then for all 1 ≤ i ≤ p and p+ 1 ≤ j ≤ n, we have

| sin(γ − µi,1)| ≤ | sin µ1,1 − µp,1
2

| = α, (10a)

| sin(γ − µj,0)| ≥ | sin(
µ1,1 + µp,1

2
− µp+1,0)| = α+ δ, (10b)

α+ δ ≤ 1, γ > 0, (10c)

δ = sin(
µ1,1 + µp,1

2
− µp+1,0)− sin

µ1,1 − µp,1
2

=2 cos
µ1,1 − µp+1,0

2
sin

µp,1 − µp+1,0

2
. (10d)

By calculations, we obtain

p(α, δ; γ) =
(α+ δ)

√
1− α2 + α

√
1− (α+ δ)2

2α+ δ

=
sin

µ1,1−µp,1

2 cos(
µ1,1+µp,1

2 − µp+1,0) + cos
µ1,1−µp,1

2 sin(
µ1,1+µp,1

2 − µp+1,0)

sin
µ1,1−µp,1

2 + sin(
µ1,1+µp,1

2 − µp+1,0)

=
sin(µ1,1 − µp+1,0)

sin
µ1,1−µp,1

2 + sin(
µ1,1+µp,1

2 − µp+1,0)

=
2 sin

µ1,1−µp+1,0

2 cos
µ1,1−µp+1,0

2

2 sin
µ1,1−µp+1,0

2 cos
µp,1−µp+1,0

2

=
cos

µ1,1−µp+1,0

2

cos
µp,1−µp+1,0

2

. (11)

Using Lemma 3, we have

s2 ≤
p(α, δ; γ)C

c2
·
√
‖(A1 −A0)2 + (B1 −B0)2‖

δ
≤ p(α, δ; γ)C

c2
·
√
ξ2a + ξ2b
δ

s1. (12)

Substituting (10d), (11) into (12), and using (9), we have

s2 ≤
1

ρ
s1. (13)

where

ρ =
c2 sin(µp,1 − µp+1,0)

C
√
ξ2a + ξ2b

> 1. (14)

For general k = 2, noticing the following holds

η > arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(s1

√
ξ2a + ξ2b/c)

> arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(s2

√
ξ2a + ξ2b/c).

Similar to the proof for k = 1, we can conclude s3 ≤ 1
ρs2. By induction, sk+1 ≤ 1

ρsk, thus
completing the proof.
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8 Proof of Theorem 2. (Local Convergence of SCF)

With relaxed assumptions, we can show local convergence if the initial subspace is close enough to
the true subspace P∗:

A3: Let µ∗i denote arctanλi(A(P∗), B(P∗)). There exists an η > 0 such that

µ∗p − µ∗p+1 ≥ η.

Theorem 2. (Local Convergence) Let ŝ0 = ‖ sin Θ(P0,P∗)‖. Assume A1 and A3, and
ŝ0
√
ξ2a + ξ2b < c. If

η > arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(ŝ0

√
ξ2a + ξ2b/c)

for some constant ρ > 1, then SCF is locally convergent at P∗ at the rate of 1
ρ .

Proof. By assumption A1, we have√
‖A0 −A∗‖2 + ‖B0 −B∗‖2 ≤

√
ξ2a + ξ2b‖ sin Θ(P0,P∗)‖ = ŝ0

√
ξ2a + ξ2b .

Applying Lemma 2, we have

|µp,0 − µ∗p| ≤ arctan

√
‖A0 −A∗‖2 + ‖B0 −B∗‖2

c

≤ arctan(ŝ0

√
ξ2a + ξ2b/c), ∀1 ≤ p ≤ n.

By assumption A3 it follows that

µp,0 − µ∗p+1 = µp,0 − µ∗p + µ∗p − µ∗p+1 ≥ η − arctan(ŝ0

√
ξ2a + ξ2b/c)

> arcsin(ρC
√
ξ2a + ξ2b/c

2) ≥ 0. (15)

Following the same procedures as in the proof for Theorem 1, we arrive that

‖ sin Θ(Pk−1,P∗)‖ ≤
1

ρ
‖ sin Θ(Pk,P∗)‖,

where ρ =
c2 sin(µp,0−µ∗p+1)

C
√
ξ2a+ξ

2
b

.
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9 Proof of Corollary 1. (Convergence of WDA-eig)

Corollary 1. Suppose that the optimal transport matrix Tc,c
′

satisfies a Lipschitz-like condition:

‖Tc,c
′
(P1)− Tc,c

′
(P2)‖ ≤ ξc,c

′
‖ sin Θ(P1,P2)‖,

For a given p, let
η = min

k
{µp,k − µp+1,k}.

Denote ξa =
∑
c,c′>c ξ

c,c′‖
∑
i,j(x

c
i −xc

′

j )(xci −xc
′

j )T ‖, ξb =
∑
c ξ
c,c‖

∑
i,j(x

c
i −xcj)(xci −xcj)T ‖.

If

η > arcsin(ρC
√
ξ2a + ξ2b/c

2) + arctan(s1

√
ξ2a + ξ2b/c)

for some constant ρ > 1, then wda-eig converges linearly at the rate 1
ρ .

Proof. We first note that in WDA-eig, Cb and Cw are invariant to orthogonal transformation of P,
i.e., Cb(P) ≡ Cb(PQ), Cw(P) ≡ Cw(PQ) for any orthogonal matrix Q ∈ Rp×p, since

Cb(P) =
∑
c,c′>c

∑
i,j

tc,c
′

ij (P)(xci − xc
′

j )(xci − xc
′

j )T ,

Cw(P) =
∑
c

∑
i,j

tc,cij (P)(xci − xcj)(xci − xcj)T ,

and Tc,c
′
(P) and Tc(P) are invariant to orthogonal transformation of P:

Tc,c
′
(PQ) , argmin

T∈Uncnc′

λ〈T,MXcPQ,Xc′PQ〉+
∑
i,j

tij log(tij)

= argmin
T∈Uncnc′

λ
∑
i,j

tij‖(xci − xc
′

j )TPQ‖+
∑
i,j

tij log(tij)

= argmin
T∈Uncnc′

λ
∑
i,j

tij‖(xci − xc
′

j )TP‖+
∑
i,j

tij log(tij) = Tc,c
′
(P).

By the assumption on Tc,c
′
, Cb satisfies

‖Cb(P1)− Cb(P2)‖ = ‖
∑
c,c′>c

∑
i,j

(tc,c
′

ij (P1)− tc,c
′

ij (P2))(xci − xc
′

j )(xci − xc
′

j )T )‖

≤
∑
c,c′>c

max
i,j
|tc,c

′

ij (P1)− tc,c
′

ij (P2)|‖
∑
i,j

(xci − xc
′

j )(xci − xc
′

j )T ‖

≤
∑
c,c′>c

ξc,c
′
‖ sin Θ(P1,P2)‖‖

∑
i,j

(xci − xc
′

j )(xci − xc
′

j )T ‖

, ξa‖ sin Θ(P1,P2)‖.

The last inequality holds since

max
i,j
|tc,c

′

ij (P1)− tc,c
′

ij (P2)| ≤ ‖Tc,c
′
(P1)− Tc,c

′
(P2)‖ ≤ ξc,c

′
‖ sin Θ(P1,P2)‖.

Similarly,

‖Cw(P1)−Cw(P2)‖ ≤
∑
c

ξc,c‖
∑
i,j

(xci −xcj)(xci −xcj)T ‖‖ sin Θ(P1,P2)‖ , ξb‖ sin Θ(P1,P2)‖.

For all iteration number k, µp,k − µp+1,k ≥ η. Since A1 and A2 are satisfied, the result follows
directly from Theorem 1.

17



10 Sensitivity to Noisy Labels

For iterative subspace clustering, performing K-Means on the projected data may not render accurate
labels in the first few iterations, especially if we initialize with random subspace. We therefore
investigate how the subspace changes when we perturb the labels. The results in Table 3 illustrate
the sensitivity to noisy labels of FDA (same as WDA-eig with λ = 0), WDA-eig (λ = 1.0) and
local FDA (LFDA) [37] with the number of neighbors= 1. We use the simulated dataset introduced
in the Main Paper, Section 4.1 and add noisy labels to the data. The first column of Table 3 shows
the percentage of wrong labels added. The rest of the columns show the distance of the subspace
P obtained by FDA/WDA-eig/LFDA under the noisy labels to the original subspaces P∗ measured
by ‖ sin Θ(P,P∗)‖, where the original subspaces are approximated by the converged solution of
FDA/WDA-eig/LFDA under true labels. The results are averaged over 20 trials. We observe that
WDA is more robust to noisy labels than both FDA and local FDA.

Table 3: Sensitivity to Noisy Labels.

% wrong labels FDA dist. to P∗ WDA dist. to P∗ LFDA dist. to P∗

1% 0.21 0.01 0.04
5% 0.32 0.02 0.08
10% 0.59 0.05 0.11
20% 0.84 0.07 0.15
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