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Abstract
`1 regularization has been broadly employed to pursue model sparsity. Despite the
non-smoothness, researchers have developed efficient algorithms by leveraging the
sparsity and convexity of the problem. In this paper, we propose a novel active
incremental approach to further improve the efficiency of the solvers. We show
that our method performs well even when the existing methods fail due to the low
sparseness or high solution accuracy request. Theoretical analysis and experimental
results on synthetic and real-world data sets validate the advantages of the method.

1 Introduction
`1 regularization has been used broadly in problems such as sparse learning, compressed sensing, and
so on [31, 5, 7, 6, 4, 37]. By leveraging the sparsity, people have developed many methods to scale
up the solutions of `1 regularized problems. Assume n data samples with p features form an n× p
design matrix X , with an n× 1 label vector, y. Let the general loss function f in (1) be a convex
function with L-Lipschitz gradient. The primal of `1 regularized problems is given as

P : min
β

n∑
j=1

f(xj•β, yj) + λ||β||1. (1)

Here λ > 0 is the regularization hyper-parameter. xj• is the j-th row (vector) of X . (Later we will
denote xi the i-th column (vector) of X .) β ∈ Rp×1 is model parameter vector. We first review the
existing methods for `1 convex problems, and then briefly state our contributions.

1.1 Sequential and Dynamic Screening

The basic idea of screening method is to use an approximate solution (usually the dual variable) to
estimate the activity (the likelihood of the corresponding entry in model fitting parameter is non-zero)
of each feature. There are two main categories of screening methods for sparse models: sequential
and dynamic screening methods. Sequential screening requires to solve a sequence of sparse learning
problems corresponding to a sequence of descending model penalty parameters to tighten the range
estimates of the dual variable to achieve the high screening power. The strong rule [32] derives the
sequential screening rule based on the assumption that the absolute values of the inner products
between features and the residue are non-expansive with respect to the parameter values. The
sequential screening methods proposed by [13, 24, 35, 33, 28, 34] do not take the unsafe assumptions
that the strong rule uses, but try to develop safe feature screening rules based on the structure of the
problem. Such a sequential procedure is suitable and efficient when solving a sequence of sparse
learning problems with different regularization parameters.

Sequential screening methods are not absolutely safe since most of these methods do not consider the
safe duality gap, which is pointed out by the authors of dynamic screening methods [21]. Instead of
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using the solution information from a heavier parameter, dynamic screening methods [2, 9, 21, 22] rely
on many iterations of sub-gradient computation regarding the whole feature set to gain a small duality
gap. The computation cost of these operations dilutes the screening benefits as the iterations have to
be repeated many times to arrive at a sufficient small duality gap to achieve desired screening power.

1.2 Homotopy Method

Homotopy methods have been applied for sparse models to compute the solution path when λ
varies [25, 8, 18, 12, 10, 38]. This type of methods relies on a sequence of decreasing λ values and
“warm start" (starting the active set with the solution from the previous λ) to achieve computational
efficiency. Usually these methods have multiple iteration loops to incorporate the strong rule screening,
active set, and path-wise coordinate descent. The inner loop performs coordinate descent and active
set management. The outer-loop goes through a sequence of decreasing λ values and initializes the
active set at each λ with the strong rule and warm start. Since they do not utilize safe convergence
stopping criteria for the active set, they may miss some of the active features in the optimal solutions
to the original LASSO formulation with the corresponding λ values.

1.3 Working Set Method

Working set methods [15, 16, 26, 19, 20] maintain a working set according to some violation
rules and solve a sub-problem regarding the working set at each step. [15] estimate an extreme
feasible point based on the current solution, this method constructs the working set for the next
step by the constraints that are closest to the feasible point. The method in [19, 20] employs dual
extrapolation [29] strategies to improve the accuracy of dual variable estimation. With a more
accurate dual variable, their method can improve feature recruiting and can exit early especially when
the required solution accuracy is not high. While not effectively leveraging the power of feature
screening during algorithm updating, this approach may recruit a large number of inactive features
especially when a highly accurate solution is needed. Furthermore, working sets [15, 19, 20] usually
try to solve a sequence of sub-problems with a high precision, thus it may further introduce redundant
computational cost to the original problem.

1.4 Our Contributions

In this paper, we propose a novel safe LASSO feature selection method (Thunder) to further scale
up LASSO solutions by overcoming the issues in the existing methods. Our algorithm starts from a
small set of features, which is taken as the active setA. Time-consuming operations are performed on
A. The rest coordinates or features are stored in the remaining setR. Features are actively recruited
by or removed from the active set according to the operation rules derived from the estimation range
of optimal dual variables. Based on the duality properties, safe stopping criteria have been developed
to keep most inactive and redundant features out of the active set. The efficiency of the proposed
approach is further improved by employing two remaining sets. Feature recruiting complexity can be
relieved in addition to the reductions of inactive features thanks to both remaining sets.

The proposed Thunder solver is not a typical working set method that usually has to solve a sequence
of sub-problems with high solution precision in order to approach the optimal solution. Thunder
actively refines the active set by integrating feature screening and feature recruiting to maximally
reduce the number of inactive features involved in the active set. The methods [15, 19, 20] have
to sequentially solve a large number of sub-problems. Each sub-problem is required to reach the
same solution precision asked by the user. The working sets of these sub-problem usually involve a
large number of inactive features. Numerous redundant operations consumed by the inactive features
involved in the sub-problems can harm the efficiency of the working set methods.

Meanwhile, Thunder can avoid a large number of inactive features by utilizing the derived safe
stopping rule for feature recruiting. Once the stopping condition is reached, the updating steps of
Thunder can produce a solution with any level of precision without recruiting any new features to
the active set. While for some existing working set solvers [19, 20], when the given accuracy is not
reached, they may double the working set size in each step of the outer loop without checking any
stopping condition. The large number of inactive features taken by these solvers will reduce the
algorithm efficiency especially when the required precision is high. With the safe stopping condition,
Thunder can avoid these issues. Theoretical analysis shows that under high solution precision requests,
the proposed Thunder complexity only relates to the number of true active features that the algorithm
trying to recover. Experiments on both simulated and real-world data sets validate the advantages.
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2 Methodology

Let f∗ be the conjugate of f in problem (1), and the dual form [3, 23] is as follows,

D : sup
θ
−

n∑
j=1

f∗(−λθj , yj) s.t. |x>i θ| ≤ 1, ∀xi ∈ F . (2)

Here θ is the dual variable, F is the feature set, and xi is the feature i (i.e., i-th column of X). The
optimal primal β∗ and the optimal dual variable θ∗ relationship is f ′(xj•β∗) = −λθ∗j , where f ′ is
the first-order derivative of f . Gap dynamic screening [21, 9, 2] can scale up sparse model solutions
by dual variable range estimation during the algorithm iterations. Let P (β) and D(θ) be the primal
and dual objective value at β and θ, respectively. The ball region for θ∗ is estimated based on the
duality gap as a function of the primal and dual objective function values at iterative updates [21, 9]:

∀θ ∈ ∆F , β ∈ Rp×1, B
(
θ,

2

λ2
[P (β)−D(θ)]

)
=
{
θ∗
∣∣||θ∗ − θ||22 ≤ 2

λ2

[
P (β)−D(θ)

]}
. (3)

Here ∆F = {θ | |x>i θ| ≤ 1,∀xi ∈ F} is the dual feasible space corresponding to the feature set F ;
β is the current estimation of primal variables; and θ is the projected feasible dual variables of β. The
proposed active incremental approach starts from a small active set A and updates the solutions of
the corresponding sub-problem.

2.1 Solving the Sub-problem with an Active Set

At step t (where t is the index for the outer loop of the proposed algorithm), we useAt to represent the
active set, andRt the remaining set (F = At ∪Rt), respectively. The proposed active incremental
method tries to solve the following sub-problem that focuses on At.

Pt : min
β∈R|At|

n∑
j=1

f(
∑

i:xi∈At

xjiβi, yj) + λ||β||1. (4)

Dt : sup
θ
−

n∑
j=1

f∗(−λθj , yj) s.t. |x>i θ| ≤ 1, ∀xi ∈ At, (5)
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Proof : Let pH be the total number of features involved in the ADD operations. Qh(—) = Ph(—) ≠ Ph(—ú
h).

We add up the time complexity of the outer loops regarding each added feature. O(K1u) is the time
complexity for K1 base CM operations; ‹h, ÎËh and (1≠ Î)Ëh be the size of set A, R1 and R2, respectively.
Here ÷ is the ratio of O(n(‹h+÷Ëh)) is the computation complexity for duality gap and the ADD operation
in one iteration of outer loop. We have
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Æu
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3
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Figure 1: At starts from a small initial set, actively
recruits features fromF∩Act , and removes features
unlikely belonging to Ā according to the derived
rules. At finally converges to set Ā.

Similar to gap dynamic screening [21, 9, 2], our
approach relies on the dual variable estimation
to actively recruit and remove features. We use
Ā to represent the optimal active feature set
{xi : |x>i θ∗| = 1}. Figure 1 shows the relations
among F , At, and Ā. Based on the current es-
timated solution of the sub-problem, we define
feature recruiting and feature screening opera-
tions to manipulate features betweenAt andRt.
Feature recruiting operation choose the potential
active features inRt and move them to At.
According the to dual form of the problem (5), the activity of a feature xi is determined by the value
|x>i θ∗t |. The range of θ∗t is estimated with ball region ||θt − θ∗t || ≤ rt. rt is the radius of the ball
region estimated with the duality gap according to (3). Let θ∗t represent the optimal dual variable
regarding the sub-problem at step t, we have the following lemma to show the relationship between
the sub-problem and the original problem.

Lemma 1 With ||θt− θ∗t || ≤ rt as the dual estimation at step t, if maxi:xi∈Rt |x>i θt|+ ||xi||2rt < 1,
then θ∗t = θ∗, and we can safely stop the feature recruiting operations.

Proof: With At ⊆ F , we have ∆F ⊆ ∆At , and D(θ∗) ≤ D(θ∗t ). As ∀xi ∈ {Rt = F \
At},we have |x>i θ∗t | ≤ |x>i θt| + ||xi||2rt < 1, and θ∗t ∈ ∆F . With θ∗ = supθ∈∆F D(θ), we get
D(θ∗) ≥ D(θ∗t ). As we already know D(θ∗) ≤ D(θ∗t ), we get D(θ∗) = D(θ∗t ). Since the dual
problem is concave and smooth, and the feasible set is closed and convex, it means θ∗t = θ∗. It tells
us that the active set already obtained all the features in the optimal feature set, i.e., Ā ⊆ At, and the
feature recruiting operation can be stopped. �
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Figure 2: In this example, we have 3 features,
{x1, x2, x3}, and Ā = {x1}. At step t, At =
{x1, x2},Rt = {x3}, and |x>3 θt|+ ||x3||2rt < 1,
then we do not need to move x3 fromRt to At.

Figure 2 gives an example to illustrate the above
lemma. For a highly sparse data set, most triv-
ial features can be avoided in the computation
with an accurate dual estimation according to
Lemma 1.

Remark 1 At step t, if a new feature is added
into At, then At ⊆ At+1, ∆At ⊇ ∆At+1 , and
D(θ∗t+1) ≤ D(θ∗t ).

Remark 1 shows that the algorithm can always
converge with feature recruiting. The feature
screening operation basically follows the gap
screening rule [21]. The safety of screening
and recruiting rules ensures the safety of the
algorithm. Lemma 1 provides a safe stopping
condition for the feature recruiting operation in
the Thunder algorithm.

Feature Screening: For xi ∈ At, with ||θt − θ∗t || ≤ rt, if |x>i θt|+ ||xi||2rt < 1, move xi from At
toRt.
We will present more details about feature recruiting in the following two subsections.

2.2 Feature Recruiting with Sampling Strategy

For feature xi, its activity can be estimated from the ball region estimation for θ∗t (||θt− θ∗t || ≤ rt) as
|x>i θt| − ||xi||2rt ≤ |x>i θ∗t | ≤ |x>i θt|+ ||xi||2rt . Based on the upper and lower bounds of feature
activities, we define the following operation to move the potential active feature fromRt to At .

Feature Recruiting: For xi ∈ Rt, if ∀ î : xî ∈ Rt, î 6= i,
∣∣|x>i θt| − ||xi||2rt∣∣ > |x>î θt|+ ||xî||2rt,

move xi to At.

Input: θt, rt,Rt, At, X , τ (0 < τ < 1)
Result: Rt+1, At+1

µ← d|At|/2e
//Select recruiting candidates:
LetH be the subset ofRt containing the elements

with the first µ largest values of |x>i θt|;
//Sample a subset to compare with:
Construct a set B with randomly selected

elements in setRt \ H;
i← minî:x

î
∈H |x

>
î
θt|;

V ← {xî
∣∣xî ∈ B, |x>i θt| − ||xi||2rt ≤

|x>
î
θt|+ ||xî||2rt} ;

//Accept or reject:
if |V|/|B| < τ then
At+1 ← At ∪H ;
Rt+1 ←Rt \ H;

end

Algorithm 1: Feature Recruiting

The cost of recruiting operations may dilute the
benefits of the whole algorithm. Instead of check-
ing the activity of features one by one, we jointly
check a batch of features’ activity in an approx-
imation way. Let’s use H to represent the top µ
features based on the descending order of |x>i θt|.
Since the recruiting operation is to select the most
active features inRt, we use the least active one
inH to decide whether we need to addH to the ac-
tive set At or not. Rather than comparingH with
all the features in Rt \ H, we only check with a
small number of randomly sampled features from
Rt \ H. This approach can significantly reduce
the cost of feature selection. The algorithm for
the recruiting operation is given in Algorithm 1,
where we use a subset ofRt to determine whether
or not we accept the recruited features.

2.3 Improve Feature Recruiting with Bi-level Selection

To further improve the efficiency of feature recruiting, we split the remaining set to two sub-remaining-
sets R1 and R2, i.e., R = R1

⋃
R2. The first remaining set R1

t , which is closer to the active set
At, stores the features with relatively higher activity compared with the features in the second one,
R2
t . The algorithm actively chooses the features with high activity inR1

t and move them to At with
the feature recruiting operations. Features can be moved betweenR1

t andR2
t based on their activity

with the shrinking operations. With ς as the size ratio betweenR1
t andR2

t , the shrinking operation is
given as follows:
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Feature Shrinking: Sorting all the features in Rt = {xi
∣∣xi ∈ R1

t ∪ R2
t} according to the

descending order of |x>i θt|, and take the first ς|Rt| features as the R1
t+1, and the rest (1− ς)|Rt|

ones asR2
t+1.

A R1 R2

Inner 
Solver

Screening

Recruiting
Shrinking

Data

Control

Figure 3: The scheme of the proposed method.

With the three defined operations, the algorithm
tries to keep the most active features in At, the
features with high potential activity inR1

t , and
potentially inactive features in R2

t . Figure 3
shows the scheme of the proposed approach. Al-
gorithm 2 gives the flow of the proposed Thun-
der algorithm. We can see the algorithm will
reassign features in the remaining sets to R1

t
andR2

t every K2 outer iterations.

Input: X , y, λ, ε
Result: β
Choose a small set of features from F in the descending order of |X>f ′(0)|;
DoRecruit← True, t← 0;
while True do

Update βt with K1 iterations of soft-thresholding operations on At; //Sub-problem solver
Compute a ball region B(θt, rt); //Dual range estimation
if DoRecruit = False & Duality Gap < ε then

Stop; //Algorithm exits
end
Feature Screening; t← t+ 1;
if t mod K2 = 0 then

Feature Shrinking;
end
if DoRecruit = False then

Continue; //Recruiting already stopped
else

//Determine stop recruiting or not (Lemma 1):
if maxxi∈R1

t
|x>i θt|+ ||xi||2rt < 1 and maxxi∈R2

t
|x>i θt|+ ||xi||2rt < 1 then

DoRecruit← False; Continue;
end
Feature Recruiting; //If decide to continue with recruiting

end
end
Put βt into β, and set the other entries to be 0.

Algorithm 2: Thunder Algorithm

During the updates, the inter-products between inactive features and the dual variable will finally
converge to values in [-1, 1]. The next lemma illustrates the shrinking property [14] of the features.

Lemma 2 Let β∗ be the optimal solution of the primal problem (1), and θt be the current estimation
of the dual variable for (2), then a) If β∗i = 0, then ∃ti,∀t > ti, |x>i θt| ≤ 1; b) If β∗i 6= 0, then
∃ti and ε,∀t > ti,

∣∣|x>i θt| − 1
∣∣ < ε.

Proof: According to the KKT condition of the primal problem (1), at the optimal point, we

have x>i θ
∗
{

= sign([β∗]i) if [β∗]i 6= 0

∈ [−1, 1] if [β∗]i = 0.
. Then we have limt→∞ |x>i θt| ≤ 1, if β∗i = 0;

limt→∞ |x>i θt| = 1 if β∗i 6= 0. Thus if β∗i = 0, then ∃ti,∀t > ti, |x>i θt| ≤ 1, and if β∗i 6= 0,
then ∃tiand ε,∀t > ti,

∣∣|x>i θt| − 1
∣∣ < ε. �

Lemma 2 tells us that, with a larger t, the algorithm is more confident about the activities of the
features. For an inactive feature xi, the value limt→∞ |x>i θt| ≤ 1. With the second redundant setR2

t ,
we try to reduce the number of inactive features involved in the recruiting operations by leveraging
the shrinking strategy [14]. We can store the less active features in the second remaining setR2

t . In
each outer iteration, the recruiting operation only needs to consider the activity of the features inR1

t ,
rather than the whole feature set outside of At.
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Input: R1
t ,R2

t , θt, ς
Result: R1

t+1,R2
t+1

Rt ← R1
t

⋃
R2

t

σ ← dς|Rt|eth largest value in set {|x>i θt|
∣∣ xi ∈ Rt}

δ ← max(σ, 1);
R1

t+1 ← {xi
∣∣|x>i θt| ≥ δ;xi ∈ Rt}

R2
t+1 ← {xi

∣∣|x>i θt| < δ;xi ∈ Rt}

Algorithm 3: Feature Shrinking

This approach reduces the computation cost
for recruiting operations. To ensure the safety
of the algorithm, we just need to check the
activity of the features inR2

t every K2 outer
iterations, and reassign the membership in
bothR1

t andR2
t . The steps for shrinking op-

eration are described in Algorithm 3. The
accuracy of the dual variable estimation is es-
sential for the defined three operations. In our
implementation, we employ the extrapolation
strategy [19, 29] to improve dual estimation.

3 Convergence Analysis

The sub-problem solver in Algorithm 2 can be ISTA/FISTA [1], or other coordinate descent methods.
Our algorithm employs a cyclic block coordinate minimization/descent (CM/CD) type method [11]
as the sub-problem solver. Different from working set methods [15, 19], the inner solver in Thunder
is not required to converge to update the active set. After K1 coordinate minimization or descent
steps with the inner solver, we do screening and recruiting to update the active set At. The shrinking
operation is performed every K2 outer iterations.

3.1 Complexity Analysis for Feature Recruiting

The solution accuracy of the dual problem is almost linearly proportional to the accuracy of the primal
problem after a number of algorithm iterations. Let f(Xβ) =

∑n
j=1 f(xj•β, yj), and we further

assume that f is γ-convex function in our analysis. For nonstrongly convex minimization, we only
need to add a strongly convex perturbation to the objective function to meet the assumption [17, 30].
Let L̄ =

√
σmaxL, σmax is the largest eigenvalue of X>X , L is the Lipschitz constant of the gradient

of f . Similarly, L̄t is the Lipschitz constant of the gradient of the sub-problem objective function at
step t [17]. The following lemma tells us that, with more features, the Lipschitz constant of the loss
function’s gradient will also increase.

Lemma 3 With one recruiting operation at step t, we have L̄t+1 ≥ L̄t. For all the sub-problems, we
have L̄ ≥ L̄t.
Proof: With the recruiting operation, we can see At ⊆ At+1. Without losing generality, we

add one feature u to Xt, i.e., Xt+1 = [Xt, u]. Since σt+1
max = sup||v||=1

∣∣∣∣∣∣∣∣v>X>t+1Xt+1v

∣∣∣∣∣∣∣∣ ≥∣∣∣∣∣∣∣∣[vt0 ]>[Xt, u]>[Xt, u]
[vt

0

]∣∣∣∣∣∣∣∣ = σtmax, then we get L̄t+1 ≥ L̄t, and L̄ ≥ L̄t,∀t. �

A larger Lipschitz constant usually requires more steps for the algorithm to converge. A sub-problem
with more features means more computation steps. The algorithm has two main phases, feature
recruiting and feature screening. Feature recruiting corresponds to the iterations when DoRecruit
is True; feature screening phase corresponds to the iterations after DoRecruit is changed to False.
Let H be the total number of features involved in the recruiting operation; after the h-th feature (h
in the sequence of {1, 2, ..., h, ...,H}) has been added into the active set, we use Ph, ph, and β∗h to
denote the primal objective function, the size of the active set, and the optimal primal solution of the
sub-problem, respectively. Let Qh(β) = Ph(β)−Ph(β∗h) be the primal objective accuracy to adding
feature h. With O(u) as the complexity for one iteration of coordinate minimization, the following
lemma gives the complexity for the feature recruiting phase.

Lemma 4 With O(u) as the complexity for one iteration of coordinate minimization for a LASSO-
type problem, H is the total number of features involved in recruiting operations, and pH the
size of the active set when DoRecruit is set to false, the complexity for the feature recruiting

phase of the proposed algorithm is O
((
u+ p

(
nς
K1

+ n(1−ς)
K1K2

))(
U + L̄2

γ2 Φ + pH
L̄2

γ2 log Q̄
QH(βH)

))
,

where Q̄ =
(
ΠH−1
h=1 Qh+1(βh)ph+1−ph

) 1
pH , U = log

(
ΠH−1
h=1

Qh+1(βh)

Qh(βh)

ph
ph+1

1
QH(βH)

)
, and Φ =

log
(
ΠH−1
h=1

Qh+1(βd)ph

Qh(βh)ph

)
.
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A larger K1 may lead to a smaller value in the first part of the complexity, but it may increase
the second part of it. It is due to that a larger K1 can increase the primal precision Qh(β) =
Ph(β) − Ph(β∗h) for feature h to be added to the active set At, and redundant operations will be
introduced to pursue an unnecessary higher precision for a sub-problem (4) at step t. We also notice
that the accuracy for the last recruited feature (QH(βH)) is important. However, the H-th feature
might not be in the optimal set Ā. Early stop of feature recruiting is critical as it can reduce the number
of inactive features involved in recruiting phase. It also reduces the complexity of feature screening.

3.2 Complexity of Thunder Algorithm

The complexity of the proposed method is given by the following theorem.

Theorem 1 With O(u) as the complexity for one iteration of coordinate minimization of the
LASSO problem with a γ-convex loss function, the time complexity for the proposed algorithm

is O
(
u L̄

2

γ2

(
ηp̄ log Q̄

εD
+ ηp̄H + |Ā| log εD

ε

))
. Here H is the total number of features involved in

recruiting operations, p̄ is the maximum size of the active set during the algorithm iterations, Q̄ is the
geometric mean of the sub-problem primal objective function precision values corresponding to each
recruiting operation, and εD is the primal objective function precision for the last feature screening
operation. η = 1 + npς

uK1
+ np(1−ς)+p log p

uK1K2
, and ς is the feature partition ratio forR1 andR2.

Remark 2 From Theorem 1, we can see that the complexity of the proposed method is determined by
both εD and ε. Under the assumption ε < εD, the requested accuracy will affect the whole algorithm
complexity with coefficient |Ā|.
Besides the feature number (p) and the sample number (n), Theorem 1 shows that the optimal active
set size (|Ā|), the number of features involved in recruiting operations (H), and the maximum size of
the active set (p̄) impact the algorithm efficiency as well. The less number of trivial features recruited
by A, the more efficiency the algorithm can achieve. Theorem 1 also indicates that the value of K1

can be set proportional to the product of n and p. After reaching the precision εD, the complexity
for Thunder to reach ε is only proportional to |Ā|. With the safe recruiting stopping condition based
on Lemma 1, Thunder can avoid many trivial features in pursuing high solution accuracy. Without
the safe stopping condition for feature adding, the large number of trivial features will impair the
efficiency of most working set methods [15, 19] to reach high precision solutions. The correlation
between features may affect the efficiency of Thunder, but it does not impact the algorithm’s safety.
Based on the proof of Theorem 1, the optimal K1 can be a value proportional to

√
np/u.

4 Experiments

In this section, we present experiments to compare the proposed method with other existing sparse
optimization methods. We evaluate the selected methods for the LASSO formulation with a simulation
data set and three real-world data sets. We specifically focus on the performance comparison among
(1) working set method [15] (Blitz1), (2) the recently proposed Celer [19]. We use the online packages
for the BLITZ [15] and Celer [19] methods, respectively. For Celer, experimental results are based
on the initial version published with paper [19]. All the three algorithms are safe methods that do not
require the help from a heavier penalty parameter, and they are implemented with Cython or C/C++
wrapped with python. We set ς = 1

3 and the initial size of A as 50 for Thunder in the following
experiments. We use λmax to represent the smallest λ value that leads to all zero β∗ entries.

4.1 Simulation Study

First, we simulate the data sets with n = 104 samples and p = 108 features according to a linear
model y = Xβ + ε, where each column of X is a vector with random values uniformly sampled
from the interval [−1.0, 1.0], and the white noise ε ∼ N(0, 0.1). For the linear coefficients β, 10%
entries (0.1p) are randomly set to the values in [1.0,−1.0], and the rest (0.9p) to zero. For this data
set, we can derive λmax = 31.41. The first plot in Figure 4 illustrates the running time of different
methods with λ = 0.3λmax, 0.5λmax, and 0.7λmax at stopping accuracy 1.0E− 4. The third plot
gives the results at duality gap 1.0E− 7. The second and fourth plots show the running time ratio
at two duality gaps, respectively. We can see that the proposed method is much faster compared to
other methods in reaching the optimal solution under a specified accuracy. The results also show that
Thunder is more efficient compared with the existing safe methods when λ is small.
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Figure 4: Simulated data. Running times of three algorithms at three λ values, for two duality gap
values (1.0E − 4 and 1.0E − 7). Note that the x-axis is λ/λmax. The 1st and 3rd plots depict the
absolute execution times while the 2nd and 4th plots show the improvement of efficiency for Thunder.
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Figure 5: Finance data. Running times of three algorithms at three λ values, for two duality gap
values (1.0E − 7 and 1.0E − 9). Note that the x-axis is λ/λmax. The 1st and 3rd plots depict the
absolute execution times while the 2nd and 4th plots show the improvement of efficiency for Thunder.

4.2 Finance Data Set

The finance data set (E2006-log1p) is publicly available on LIBSVM website. After pre-processing
with the methods in [19], there are 16,087 samples, and 1, 668, 738 features in the data set. The
first plot in Figure 5 gives the running times of different solvers at the duality gap 1.0E− 7 with λ
values 0.02λmax, 0.01λmax and 0.005λmax. The third plot presents running times at the duality gap
1.0E− 9. The second and fourth plots present running time ratio at two duality gaps, respectively.
The proposed Thunder algorithm takes least time in both cases.
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Figure 6: The left column is the running time of Thunder
and Celer at different solution accuracy with fixed λ on
the finance data set. Besides, the right column illustrates
the time ratios between Celer and Thunder.

The results in this set of experiments
show that higher solution accuracy does
not lead to drastic computation increase
for the proposed method. To ensure
this conclusion, we further evaluate the
proposed method and Celer [19] with
λ fixed to 0.005λmax and solution ac-
curacy varying from 1.0E-4 to 1.0E-11.
From the results in Figure 6, we can see
that with the pre-specified accuracy ε de-
creasing, the running time consumed by
Celer increases dramatically. While the
computation increment for the proposed
method is relatively marginal. With Fig-
ure 7, we further investigate the active set
size of Thunder and the working set size of Celer during algorithm updating with λ = 0.005λmax. We
can see that during the updating steps of Thunder the active set size is always around |Ā|. While for
Celer, the working set size is always increasing and this may hurt its performance. The experimental
results are consistent with the theoretical analysis in the previous section.

4.3 LASSO Path

In practice, people usually solve LASSO problems involve a sequence of λ values to choose the best
one. Given a sequence of decreasing λ values, we adapt Thunder to LASSO path problems with
warm starting strategy, i.e., initializing the active set A with the solution from a larger λ value. We
compare Thunder with Celer on a coarse LASSO path problem for both the KDD2010 and URL
data sets (more details about the data sets in supplemental file). We evenly select 10 λ values on the
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Figure 7: The 1st plot shows the active set size of Thunder, |A|, the 2nd one gives the duality gap of
Thunder. The 3rd plot is the working set size of Celer, and the last plot gives the duality gap of Celer.

logarithmic scale of the range [λmax, 0.01λmax]. Figure 8 gives the running time for both solvers at
duality gaps 1.0E-5 and 1.0E-8. The results show that the Thunder takes much less computation for
both data sets at different accuracy levels. Similar to single λ problems, Thunder has more advantages
with higher solution accuracies. More experimental results can be found in the supplemental file.

5 Discussion
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Figure 8: Running time of Thunder and Celer to solve
LASSO path at different duality gaps.

Thunder follows a passive feature adding
manner compared to [19]. In each outer
loop of Thunder, the inner solver runs
a small number (K1) of updating steps,
and then the algorithm conducts feature
screening and recruiting. Feature screen-
ing (GAP screening, [21]) is always safe
regarding the current sub-problem and
active set A. Feature recruiting is per-
formed passively under the condition
given by line 6 in Algorithm 1. If the
recruiting condition is met, only a small number of features will be added to A, otherwise do nothing.
The advantages for passive feature adding are:

• The passive approach can ensure that the recruited features always have high potentiality in
order to keep more redundant features out of the active set.

• Dynamical checking of the feature screening and recruiting can keep maximum redundant
feature out of A in order to keep A’s size mall.

• Most importantly, with small numbers of recruiting features, the passive feature recruiting
method can ensure that the new sub-problems likely to have smaller initial duality gaps.
Smaller initial duality gaps are important because they are essential to ensure the GAP
feature screening to continuously maintain its screening power.

• Sampling strategies can be used to significantly reduce the complexity of condition checking
in the feature recruiting.

These strategies can ensure that Thunder has a smaller active set during algorithm updating, effective
feature screening, efficient feature recruiting. Moreover, the proposed safe feature recruiting stopping
condition ensures Thunder can give solutions to any level of high precision with only very little
computation addition. Thunder can potentially be extended to high dimensional large-data-sample
problems with stochastic optimization [27, 36].

6 Conclusions
In this manuscript, we propose a new `1 sparse learning solver. With the proposed approaches to
improve the efficiency of coordinate selection, the computation cost of sparse learning can be further
reduced. Our theoretical analysis shows that the computation cost for higher solution accuracy is
only proportional to the optimal active features. Experiments on synthetic and real-world data sets
show the advantages of the proposed method and validation of the analysis. Our future work includes
further theoretical analysis of the algorithm complexity, and theoretical and experimental study of
hyper-parameters, such as the sensitivity of the feature partition ratio ς . The proposed algorithm can
be extended to more general loss functions such as logistic regression and support vector machines.
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Broader Impact

Sparse learning methods, e.g., LASSO, have broad applications in real-world problems, such as price
prediction, biological data analysis. Real-world data sets usually come with high dimensionality and
involve too much unpredictable noise. LASSO is a fundamental statistic tool to select important
features and improve the prediction as well. Moreover, with the simple form and theoretical guarantees
already studied by many people, these types of models can provide us interpretation about the data
and reliable prediction results as well. Algorithms proposed in this paper can scale up the solutions of
sparse learning. The training procedure can be reduced even under high solution precision requests.
Our method can potentially enlarge the application of sparse learning to scenarios such as real-time
high dimensional data processing.
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Appendix-A. More Experimental Results

A-1. KDD2010 Data Set
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Figure 9: Computation time at different λ values and duality gaps on KDD2010 data set. The last
plot presents Celer and Thunder time-ratios.

KDD2010 is another large-scale data set from LIBSVM website. There are 8,407,752 data samples,
and 20,216,830 features in the data set. The data set is from Carnegie Learning and DataShop, and
was used in KDD Cup 2010. As BLITZ takes much more computation time than Thunder and Celer
on large data sets, we do not include it in the results from this set of experiments. Figure 9 compares
the running time for Thunder and Celer at different λ values and solution accuracies. The solution
accuracies are 1.0E-5, 1.0E-8, and 1.0E-11. The λ values include 0.01λmax and 0.001λmax. Figure 9
shows that the running time of Thunder increases slowly with the solution accuracy increasing, and
the time used by Celer increases significantly.

A-2. URL Data Set
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Figure 10: Running time of Celer and Thunder on URL data set at different λ values and duality gaps.

We further compare Thunder with Celer on one more LIBSVM data set. There are 3,231,961 features
and 2,396,130 samples in the URL data set. Similar to the finance and KDD2010 data sets, the
data are stored in sparse format. We test both solvers at three λ values, 0.01λmax, 0.005λmax, and
0.001λmax. Figure 10 gives the running times at two solution resolutions, 1.0E-5 and 1.0E-8. The
plots illustrate that Thunder consistently takes much less time at different λ values and duality gaps.
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A-3. More Results for LASSO Path on URL Data Set

We evenly select 50 λ values on the logarithmic scale of the range [λmax, 0.001λmax] for the URL
data set. Table 1 gives the running for both methods.

Method Time (Sec.)
Celer 61936.9

Thunder 15823.4
Table 1: Running time of LASSO path with Celer and Thunder on URL data set at accuracy 1.0E-8.

Appendix-B. Convergence of Feature Recruiting

Lemma 4 WithO(u) as the complexity for one iteration of coordinate minimization for a LASSO-type
problem, H as the total number of features involved in recruiting operations, and pH as the size of
the active set when DoRecruit is set to false, the complexity for the feature recruiting phase of the
proposed algorithm is

O

((
u+ p

( nς
K1

+
n(1− ς)
K1K2

))(
U +

L̄2

γ2
Φ + pH

L̄2

γ2
log

Q̄

QH(βH)

))
,

where

Q̄ =
(
ΠH−1
h=1 Qh+1(βh)ph+1−ph

) 1
pH ,

U = log
(
ΠH−1
h=1

Qh+1(βh)

Qh(βh)
ph
ph+1

1

QH(βH)

)
,

and

Φ = log
(
ΠH−1
h=1

Qh+1(βd)
ph

Qh(βh)ph

)
.

Proof: To prove Lemma 4, we assume there is an accuracy threshold for each feature to be added into
the active set, and then we just need to add up all the operations required to reach the thresholds for
all the final active features. LetQh(β) = Ph(β)−Ph(β∗h). According to the coordinate minimization
analysis in [17], the updating iteration number to add the h-th feature is approximately given by
logψh

Qh(βh)
Qh(βh−1) , where ψh =

phL̄
2
h

phL̄2
h+γ2 . We add up the time complexity of the outer loops regarding

each added feature. O(K1u) is the time complexity forK1 base CM operations; νh, ςϑh and (1−ς)ϑh
are the size of set A, R1 and R2, respectively. O(n(νh + ςϑh)) is the computation complexity for
duality gap and the recruiting operation in one iteration of outer loop. The complexity upper bound
Ta for feature recruiting phase is

Ta ≤
H∑
h=1

logψh
Qh(βh)
Qh(βh−1)

K1
(K1u+ nςϑh) +

H∑
h=1

logψh
Qh(βh)
Qh(βh−1)

K1K2
(n(1− ς)ϑh + ϑh log ϑh)

≤ u
H∑
h=1

logψh
Qh(βh)

Qh(βh−1)
+

(
nς

K1
+
n(1− ς) + log p

K1K2

) H∑
h=1

ϑh logψh
Qh(βh)

Qh(βh−1)
.

Let φ = nς
K1

+ n(1−ς)+log p
K1K2

, then

Ta ≤
H∑
h=1

logψh
Qh(βh)u+φϑh

Qh(βh−1)u+φϑh
.
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With Φh = u+ φϑh, we have

Ta ≤
H∑
h=1

logψh
Qh(βh)Φh

Qh(βh−1)Φh

=− logψ1
Q1(β0)Φ1 +

H−1∑
h=1

(
logψh Qh(βh)Φh − logψh+1

Qh+1(βh)Φh+1
)

+ logψH QH(βH)ΦH

=

A︷ ︸︸ ︷
logψH QH(βH)ΦH − logψ1

Q1(β0)Φ1 +

B︷ ︸︸ ︷
H−1∑
h=1

logψh+1

Qh(βh)
logψh+1

logψh
Φh

Qh+1(βh)Φh+1
.

With ψh =
phL̄

2
h

phL̄2
h+γ2 , k ≥ log−1( k

k−1 ), we have

log−1(
phL̄

2
h + γ2

phL̄2
h

) ≤
ph+1L̄

2
h+1 + γ2

γ2
.

Each term in B becomes

logψh+1

Qh(βh)
logψh+1

logψh
Φh

Qh+1(βh)Φh+1
≤
ph+1L̄

2
h+1 + γ2

γ2
· log

Qh+1(βh)Φh+1

Qh(βh)
logψh+1

logψh
Φh
.

Let mh = γ2

phL̄2
h

, m̄h = 1
1−mh2

logψh+1

logψh
=

log(1 + γ2

ph+1L̄2
h+1

)

log(1 + γ2

phL̄2
h

)
=

∑∞
i=1(−1)i+1mi

h+1/i∑∞
i=1(−1)i+1mi

h/i

≤ mh+1

mh −m2
h/2

=
mh+1/mh

1−mh/2
=
mh+1

mh

(
1 +

mh

2
m̄h

)
.

Here w = u + φp, M0h =
L̄2
h

γ2 , M1h = m̄h + mh, M2h =
L̄2
h

L̄2
h+1ph+1

+ M0h As L̄h ≈ L̄h+1, ∀h,

without loss of the generality, we use L̄ to replace all of the L̄h.

As M1h = m̄h +mh,

ph+1L̄
2
h+1 + γ2

γ2
log

Qh+1(βh)Φh+1

Qh(βh)
logψh+1

logψh
Φh

≤
(

1 +
ph+1L̄

2
h+1

γ2

)
log

Qh+1(βh)u+φ(p−ph+1)

Qh(βh)
mh+1
mh

(
1+

mh
2 m̄h

)
(u+φ(p−ph))

=

(
u+ pφ+

(
(u+ pφ)

L̄2
h+1

γ2
− φ

)
ph+1 −

φL̄2
h+1

γ2
p2
h+1

)
logQh+1(βh)

−
(
u+ φ(p− ph)

)(
1 +

ph+1L̄
2
h+1

γ2

)(
L̄2
hph

L̄2
h+1ph+1

+
γ2m̄h

L̄2
h+1ph+1

)
· logQh(βh)

=w log
Qh+1(βh)

Qh(βh)M1h
+

(
φ
(
M1h − 1 +

ph − p
ph+1

)
− u

ph+1

)
logQh(βh)ph

+
(
w
L̄2

γ2
− φ

)
log

Qh+1(βh)ph+1

Qh(βh)ph
− φL̄2

γ2
log

Qh+1(βh)p
2
h+1

Qh(βh)p
2
h

.
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Similarly, for term A, we have

logψH QH(βH)ΦH ≤pH L̄
2
H + γ2

γ2
logQH(βH)ΦH =

pH L̄
2
H + γ2

γ2
(u+ φp− φpH) logQH(βH)−1

≤
(
w + (w

L̄2

γ2
− φ)pH −

φL̄2

γ2
p2
H

)
logQH(βH)−1.

Then the following inequality holds true:

Ta ≤

Ta1︷ ︸︸ ︷
w log ΠH−1

h=1

Qh+1(βh)

Qh(βh)M1h

1

QH(βH)
+

Ta2︷ ︸︸ ︷
H−1∑
h=1

(
φ
(
M1h − 1 +

ph − p
ph+1

)
− u

ph+1

)
logQh(βh)ph

+

Ta3︷ ︸︸ ︷(
w
L̄2

γ2
− φ

)
log ΠH−1

h=1

Qh+1(βh)ph+1

Qh(βh)ph
1

QH(βH)pH
−

Ta4︷ ︸︸ ︷
φL̄2

γ2
log ΠH−1

h=1

Qh+1(βh)p
2
h+1

Qh(βh)p
2
h

1

QH(βH)p
2
H

,

where

M1h =mh + m̄h = mh +
1

1− mh
2

= mh + 1 +
mh

2
+O(

m2
h

22
)

=1 +
3

2
mh +O(

m2
h

22
) = 1 +

3γ2

2L̄2ph
+O(

γ4

4L̄4p2
h

),

and

φ
(
M1h − 1 +

ph − p
ph+1

)
− u

ph+1
= φ

( γ2

L̄2ph
+O(

γ4

4L̄4p2
h

) +
ph − p
ph+1

)
− u

ph+1
.

Because

Ta1 =w log ΠH−1
h=1

Qh+1(βh)

Qh(βh)M1h

1

QH(βH)

=w

(H−1∑
h=1

log
Qh+1(βh)

Qh(βh)
+

H−1∑
h=1

( 3γ2

2L̄2ph
+O(

γ4

4L̄4p2
h

)
)

logQh(βh)−1 + logQH(βH)−1

)
,

and

Ta2 =

H−1∑
h=1

(
φ
(
M1h − 1 +

ph − p
ph+1

)
− u

ph+1

)
logQh(βh)ph

≤
H−1∑
h=1

(
φ
( 3γ2

2L̄2
+O(

γ4

4L̄4ph
) + ph − p

)
− u
)

logQh(βh)

=

H−1∑
h=1

(
φ
(
p− ph −

3γ2

2L̄2
−O(

γ4

4L̄4ph
)
)

+ u

)
logQh(βh)−1

≤
H−1∑
h=1

(
φ
(
p− ph

)
+ u

)
logQh(βh)−1,
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we can derive that

Ta1 + Ta2 ≤w
(H−1∑
h=1

log
Qh+1(βh)

Qh(βh)
+ logQH(βH)−1

)
+

H−1∑
h=1

(
φ
(
p− ph

)
+ u+

3wγ2

2L̄2ph
+O(

wγ4

4L̄4p2
h

)
)

logQh(βh)−1

=(u+ φp)

H−1∑
h=1

log
Qh+1(βh)

Qh(βh)
+ (u+ φp) logQH(βH)−1+

H−1∑
h=1

(
u+ φ

(
p− ph

)
+

3γ2(u+ φp)

2L̄2ph
+O(

γ4(u+ φp)

4L̄4p2
h

)
)

logQh(βh)−1. (6)

Ta3 =
(
w
L̄2

γ2
− φ

)
log ΠH−1

h=1

Qh+1(βh)ph+1

Qh(βh)ph
1

QH(βH)pH

=
(
w
L̄2

γ2
− φ

)( H∑
h=1

ph log
Qh+1(βh+1)

Qh(βh)
+ log

ΠH−1
h=1 Qh+1(βh+1)ph+1−ph

QH(βH)pH

)

≤wL̄
2

γ2

( H∑
h=1

ph log
Qh+1(βh+1)

Qh(βh)
+ log

ΠH−1
h=1 Qh+1(βh+1)ph+1−ph

QH(βH)pH

)
. (7)

Ta4 =
φL̄2

γ2
log ΠH−1

h=1

Qh+1(βh)p
2
h+1

Qh(βh)p
2
h

1

QH(βH)p
2
H

=
φL̄2

γ2

( H∑
h=1

p2
h log

Qh+1(βh+1)

Qh(βh)
+ log

ΠH−1
h=1 Qh+1(βh+1)p

2
h+1−p

2
h

QH(βH)p
2
H

)
.

As Ta4 < Ta3, Ta3 − Ta4 < Ta3. Then

Ta <Ta1 + Ta2 + Ta3

=(u+ φp)

H−1∑
h=1

log
Qh+1(βh)

Qh(βh)
+ (u+ φp) logQH(βH)−1

+

H−1∑
h=1

(
u+ φ

(
p− ph

)
+

3γ2(u+ φp)

2L̄2ph
+O(

γ4(u+ φp)

4L̄4p2
h

)
)

logQh(βh)−1

+ w
L̄2

γ2

( H∑
h=1

ph log
Qh+1(βh+1)

Qh(βh)
+ log

ΠH−1
h=1 Qh+1(βh+1)ph+1−ph

QH(βH)pH

)
.

Since the first term is smaller than Ta3 , we have the complexity for the feature recruiting phase as

Ta <Ta1 + Ta2 + Ta3

=O

( H∑
h=1

(
u+ φ

(
p− ph

))
logQh(βh)−1+

w
L̄2

γ2

( H∑
h=1

ph log
Qh+1(βh+1)

Qh(βh)
+ log

ΠH−1
h=1 Qh+1(βh+1)ph+1−ph

QH(βH)pH

))
.

With

Q̄ =
(
ΠH−1
h=1 Qh+1(βh)ph+1−ph

) 1
pH ,
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U = log
(
ΠH−1
h=1

Qh+1(βh)

Qh(βh)
ph
ph+1

1

QH(βH)

)
,

and

Φ = log
(
ΠH−1
h=1

Qh+1(βd)
ph

Qh(βh)ph

)
,

we get the complexity for feature recruiting as

O

((
u+ p

( nς
K1

+
n(1− ς)
K1K2

))(
U +

L̄2

γ2
Φ + pH

L̄2

γ2
log

Q̄

QH(βH)

))
.

�

Appendix-C. Convergence of Feature Screening

After Thunder sets DoRecruit to False, usually there are some inactive features remaining in At.
They can be removed from the active set At with the screening operation. Let Gd = P (βd)− P (β∗)
represent the primal accuracy for the screening of the d-th feature. Ā is the optimal active feature
set of the original LASSO problem that {xi : |x>i θ∗| = 1}. Let GpH = QpH , the complexity for the
feature screening phase is given by Lemma 5.

Lemma 5 Let ZD be the total number of features removed from the active set after DoRecruit is set
to False. The upper bound of the complexity for feature screening phase is

u log
GpH
ε

+
uL̄2

γ2

(
(pH − |Ā|) log

GpH
GZD

+ |Ā| log
GpH
ε

)
+

n

K1

(
pH log

GpH
GZD

+
L̄2

γ2
p2
H log

GpH
GZD

)
.

Proof: To prove Lemma 5, we can use the similar strategies as for Lemma 4. We need to add up the
operations needed to reach the screening accuracy threshold for all the inactive features. Let Tb
denotes the time consumed by both inactive feature screening and accuracy pursuing phases. pd is
the size of feature set after d features have been removed with the screening procedure. We have

Tb =

ZD∑
d=1

logψd−1

Gd
Gd−1

K1
(K1u+ npd−1) + u logψZD

ε

GZD

=

Tb1︷ ︸︸ ︷
u

ZD∑
d=1

logψd−1

Gd
Gd−1

+ u logψZD
ε

GZD
+

Tb2︷ ︸︸ ︷
n

K1

ZD∑
d=1

pd−1 logψd−1

Gd
Gd−1

.

The first two terms can be written as

Tb1 =u

ZD∑
d=1

logψd−1

Gd
Gd−1

+ u logψZD
ε

GZD

≤u log
GpH
ε

+
uL̄2

γ2

(
(pH − |Ā|) log

GpH
Ḡ

+ |Ā| log
GpH
ε

)
.

Here Ḡ =
(
ΠZD
d=1Gd

) 1
pH−|Ā| .

Tb2 =
n

K1

ZD∑
d=1

pd−1 logψd−1

Gd
Gd−1

≤ n

K1

ZD∑
d=1

(pd−1 +
p2
d−1L̄

2

γ2
) log

Gd−1

Gd

=
n

K1

(
log

GpHpH

ḠpH−|Ā|G
|Ā|
ZD

+
L̄2

γ2
log

G
p2
H
pH

G̃p
2
H−|Ā|2G

|Ā|2
ZD

)
,
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where G̃ =
(
ΠZD
d=1G

p2
d−1−p

2
d

d

) 1

p2
H
−|Ā|2 .

Since

Ḡ ≥
(
ΠZD
d=1GZD

) 1
pH−|Ā| = GZD ,

and

G̃ ≥
(
ΠZD
d=1G

p2
d−1−p

2
d

ZD

) 1

p2
H
−|Ā|2 = GZD ,

we get

Tb1 ≤u log
GpH
ε

+
uL̄2

γ2

(
(pH − |Ā|) log

GpH
GZD

+ |Ā| log
GpH
ε

)
, (8)

and

Tb2 ≤
n

K1

(
pH log

GpH
GZD

+
L̄2

γ2
p2
H log

GpH
GZD

)
. (9)

Thus the upper bound of the complexity for feature screening stage is as stated in the lemma. �

Appendix-D. Proof of Theorem 1

Based on the analysis in Lemma 4 and 5, the complexity of the proposed method is given by the
following theorem.

Theorem 1 With O(u) as the complexity for one iteration of coordinate minimization of the
LASSO problem with a γ-convex loss function, the time complexity for the proposed algorithm

is O
(
u L̄

2

γ2

(
ηp̄ log Q̄

εD
+ ηp̄H + |Ā| log εD

ε

))
. Here H is the total number of features involved in

recruiting operations, p̄ is the maximum size of the active set during the algorithm iterations, Q̄ is the
geometric mean of the sub-problem primal objective function precision values corresponding to each
recruiting operation, and εD is the primal objective function precision for the last feature screening
operation. η = 1 + npς

uK1
+ np(1−ς)+p log p

uK1K2
, and ς is the feature partition ratio forR1 andR2.

Proof: With GpH = QH(βH), φ = nς
K1

+ n(1−ς)+log p
K1K2

, based on Lemma 4 and Lemma 5, the time
complexity for the proposed algorithm can be written as

T < Ta + Tb = Ta1 + Ta2 + Ta3 + Tb1 + Tb2.

Based on the proofs for Lemma 4 and Lemma 5, according to (7), (8) and (9)
Ta3 + Tb = Ta3 + Tb1 + Tb2

=(u+ pφ)
L̄2

γ2

( H∑
h=1

ph log
Qh+1(βh+1)

Qh(βh)
+ log

ΠH−1
h=1 Qh+1(βh+1)ph+1−ph

QH(βH)pH

)
+ u log

GpH
ε

+
uL̄2

γ2

(
(pH − |Ā|) log

GpH
GZD

+ |Ā| log
GpH
ε

)
+

n

K1

(
pH log

GpH
GZD

+
L̄2

γ2
p2
H log

GpH
GZD

)
≤
(
u+ pφ

)( L̄2

γ2
Φ + pH

L̄2

γ2
log

Q̄

QH(βH)

)
+ u log

GpH
ε

+
uL̄2

γ2

(
(pH − |Ā|) log

GpH
GZD

+ |Ā| log
GpH
ε

)
+

n

K1

(
pH log

GpH
GZD

+
L̄2

γ2
p2
H log

GpH
GZD

)
=
(
u+ pφ

)( L̄2

γ2
Φ + pH

L̄2

γ2
log

Q̄

GpH

)
+ u log

GpH
ε

+
uL̄2

γ2

(
pH log

GpH
GZD

+ |Ā| log
GZD
ε

)
+
npH
K1

(
log

GpH
GZD

+
L̄2

γ2
pH log

GpH
GZD

)
≤pH

(
u+

nς

C
+
n(1− ς) + log p

CK2

)
L̄2

γ2
log

Q̄

GZD
+ u

L̄2

γ2
|Ā| log

GZD
ε

+ (u+
n

C
)
L̄2

γ2
Φ+

u log
GpH
ε

+
n

C
log

GpH
GZD

.
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Here C = K1/p. Let η = 1 + nς
uC + n(1−ς)+log p

uCK2
, p̄ = maxh:1≤h≤H ph, and c1 =

maxh:1≤h≤H−1 log Qh+1(βh)
Qh(βh) , then we have

(u+
n

C
)
L̄2

γ2
Φ

≤u(η − n(1− ς) + log p

uCK2
)
L̄2

γ2
log
(
ΠH−1
h=1

Qh+1(βh)ph

Qh(βh)ph

)
≤uη L̄

2

γ2
p̄Hc1.

According to (6),

Ta1 + Ta2 ≤c2
H∑
h=1

(
u+ φp

)
logQh(βh)−1

≤c2c3uηH,

where c3 = maxh:1≤h≤H logQh(βh)−1 and 0 < c2 < 2.

Thus

T < uηpH
L̄2

γ2
log

Q̄

GZD
+ u

L̄2

γ2
|Ā| log

GZD
ε

+ uη
L̄2

γ2
p̄Hc1 + c2c3uηH + u log

GpH
ε

+
n

C
log

GpH
GZD

.

Let εD = GZD , the time complexity for the proposed algorithm can be simplified as

O

(
u L̄

2

γ2

(
ηp̄ log Q̄

εD
+ ηp̄H + |Ā| log εD

ε

))
. Here η = 1 + npς

uK1
+ np(1−ς)+p log p

uK1K2
. �

According to the proof of Theorem 1, the algorithm complexity is given by

O

(
u
L̄2

γ2

(
ηp̄ log

Q̄

εD
+ c1ηp̄H + |Ā| log

εD
ε

))
.

Here c1 = 1
H−1 log

ΠH−1
i=1 Qh+1(βh)

ΠH−1
i=1 Qh(βh)

= 1
H−1 log

ΠH−1
i=1 Qh+1(βh)

ΠH−1
i=1

(
Qh(βh−1)−K1dh

) , and dh is the average step

size of the primal sub-problem. With η = 1 + npς
uK1

+ np(1−ς)+p log p
uK1K2

, after some calculation, we
obtain the optimal approximation of K1 given by a

√
np/u, where a is a constant value. In the

algorithm, we can set K1 proportional to
√
np/u. Experimentally, the performance of Thunder is

not sensitive to the value of K2.
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