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Abstract

A tacit assumption in linear regression is that (response, predictor)-pairs correspond to
identical observational units. A series of recent works have studied scenarios in which this
assumption is violated under terms such as “Unlabeled Sensing and “Regression with Un-
known Permutation”. In this paper, we study the setup of multiple response variables and
a notion of mismatches that generalizes permutations in order to allow for missing matches
as well as for one-to-many matches. A two-stage method is proposed under the assump-
tion that most pairs are correctly matched. In the first stage, the regression parameter
is estimated by handling mismatches as contaminations, and subsequently the generalized
permutation is estimated by a basic variant of matching. The approach is both compu-
tationally convenient and equipped with favorable statistical guarantees. Specifically, it is
shown that the conditions for permutation recovery become considerably less stringent as
the number of responses m per observation increase. Particularly, for m = Ω(log n), the
required signal-to-noise ratio no longer depends on the sample size n. Numerical results on
synthetic and real data are presented to support the main findings of our analysis.

1. Introduction

Linear regression and its numerous extensions is an object of timeless interest in statistics
and related disciplines. Continuous research efforts are being made to increase the range of
situations in which it can be applied with success. A specific challenge that has attracted
considerable interest recently is regression in the absence of correspondence between predic-
tors and responses, i.e., both are given as separate samples X = {xi}ni=1 and Y = {yi}ni=1,
but it is not (fully) known a priori which elements from X and Y are matching pairs in
the sense of belonging to the same observational unit. Motivated by a number of appli-
cations in engineering, regression in this setting has been discussed in a series of recent
papers (Emiya et al., 2014; Unnikrishnan et al., 2018; Pananjady et al., 2018; Abid et al.,
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2017; Hsu et al., 2017; Haghighatshoar and Caire, 2017; Pananjady et al., 2017; Dokmanić,
2019; Shi et al., 2020; Tsakiris et al., 2020; Wang et al., 2018; Tsakiris and Peng, 2019).
On the other hand, the above setup has a long history in statistics under the term “Broken
Sample Problem” dating back to the early 1970s (DeGroot et al., 1971; Goel, 1975; DeGroot
and Goel, 1976, 1980; Bai and Hsing, 2005; Wu, 1998; Chan and Loh, 2001) and a related
line of research involving record linkage and statistical analysis based on merged data files
(e.g., Neter et al. (1965); Lahiri and Larsen (2005); Goel and Ramalingam (2012); Scheuren
and Winkler (1993, 1997)) partially motivated by government agencies like the U.S. Cen-
sus Bureau that routinely combines data from multiple surveys and/or external data to
address questions of interest. In this context, the primary interest is in the estimation of
parameters (e.g., covariance matrix, regression coefficients, . . .) rather than restoration of
the correspondence between elements of X and Y. Instead, the focus is on the adjust-
ment of subsequent analyses for potential mismatches resulting from errors or ambiguities
in record linkage based on quasi-identifiers. In fact, unique identifiers such as the social
security number often need to be removed because of privacy concerns. Accordingly, in
an alternative perspective on the broken sample problem, identification of matching pairs
in X and Y is undesired because Y contains sensitive data, but an adversary makes the
attempt to use external data along with identifying information stored in X to retrieve
matching pieces in Y. Well-known instances of such “linkage attacks” are the identification
of the medical history of the former governor of Massachusetts (Sweeney, 2001) and the
partial de-anonymization of Netflix movie rankings with the help of publicly available data
in the Internet Movie Database (IMDb) (Narayanan and Shmatikov, 2008). Broken sample
problems thus bear a relationship to data confidentiality; we refer to Domingo-Ferrer and
Muralidhar (2016) for a detailed discussion.

Related Work. A starting point of recent research on the subject is the work by Unnikrishnan
et al. (2018) which studies linear regression in the absence of noise with a scalar response that
is observed up to an unknown permutation of the entries, i.e., yi = x>π�(i)β

∗, i = 1, . . . , n,

for a permutation π∗ on {1, . . . , n}. The authors show that β∗ ∈ Rd can be recovered with
probability one by exhaustive enumeration over all permutations if n ≥ 2d and the entries
of X are drawn i.i.d. from a distribution absolutely continuous w.r.t. the Lebesgue measure
on R. Alternative proofs of this result have been obtained in Tsakiris (2018); Dokmanić
(2019). Pananjady et al. (2018) study computational and statistical limits of recovering π∗

for Gaussian {xi}ni=1 and Gaussian additive noise with variance σ2. They show that least
squares estimation recovers π∗ exactly if the signal-to-noise ratio SNR = ‖β∗‖22/σ2 = nΩ(1)

which is also shown to be sharp up to a constant factor in the exponent. At the same
time, least squares estimation of π∗ is proved to be NP-hard. Abid et al. (2017); Hsu
et al. (2017) shed light on the estimation of β∗ under similar setups as in Pananjady et al.
(2018). Specifically, Hsu et al. (2017) establish that the requirement SNR = Ω(d/ log log n)
is necessary to ensure low relative squared `2-estimation error which is a dramatic gap
compared to the requirement SNR = Ω(d/n) if π∗ is known. The paper (Abid and Zou,
2018) proposes Expectation-Maximization (EM) schemes to tackle the least squares problem
for estimation of π∗. A clever initialization strategy for those schemes based on algebraic
considerations is developed in Tsakiris et al. (2020). The paper (Slawski and Ben-David,
2019) assumes that π∗ is k-sparse, i.e., π∗(i) = i except for k � n indices, and analyzes
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a convex formulation for estimating � � in this setting. A similar sparsity assumption is
employed in Shi et al. (2020) for spherical regression. Order-constrained regression problems
with unknown permutation are discussed in Flammarion et al. (2019); Rigollet and Weed
(2019); Carpentier and Schl•uter (2016); Ma et al. (2020).

Contributions. While several papers have elucidated important aspects of linear regression
with unknown permutation for a scalar response, only few papers (Pananjady et al., 2017;
Zhang et al., 2019a,b; Slawski et al., 2019; Zhang and Li, 2020) consider multivariate re-
sponse, i.e., thef y i gn

i =1 are m-dimensional, m > 1. This case is of independent interest for
at least two reasons. First, in the context of record linkage it is natural to assume that both
data setsX and Y to be merged are multi-dimensional. Second, the availability of multiple
responses a�ected by the same permutation is expected to facilitate estimation as is con-
�rmed by the results herein. Indeed, the requirements on theSNR to achieve permutation
recovery can be considerably weaker, with potential drops fromSNR= n
(1) for m = O(1)
to SNR = 
(1) for m = 
(log n). Similar bene�ts are shown in Pananjady et al. (2017);
Zhang et al. (2019a); Slawski et al. (2019). The results in Pananjady et al. (2017) concern
the prediction or denoising error rather than estimation of � � . Zhang et al. (2019a) provide
information-theoretic lower bounds for permutation recovery; however, the computational
scheme therein is only investigated empirically without theoretical support. The method
in Slawski et al. (2019) requiresm & d to perform well; another downside of the approach
is its cubic runtime in n. None of the aforementioned papers on the casem > 1 contain
rigorous results regarding the estimation of the regression parameter. In order to enable the
latter, the tolerable number of mismatchesk herein is limited to a su�ciently small fraction
of the number of samples, i.e.,k=n < c for c small enough. In this regime, estimation of the
regression coe�cients and restoration of the correct correspondence is shown to be possible
based on convex optimization.

Moreover, we consider a more general notion of faulty correspondence betweenX and Y
which goes beyond permutations, speci�cally allowing for missing matches and one-to-many
matches. The e�ectiveness of the approach is demonstrated by experiments on synthetic
and real data sets as well as a case study pertaining to data integration.

Outline. In x2, we state the problem and setting under consideration as well as the approach
taken. Our main theoretical results are presented inx3. Empirical corroboration based on
synthetic and real data is provided in x4. We conclude with a summary and an overview
on potential directions of future research inx5.

Notation. The symbol I is used for the indicator function with value one if its argument is
true and zero else. For a positive integer̀ , I ` denotes the` � ` identity matrix, and S̀ � 1

denotes the unit sphere inR` . We write jSj for the cardinality of a set S. The complement
of S with respect to context-dependent base sets is denoted bySc, and convS denotes the
convex hull of S. For a matrix A, kAk2 = � max (A) denotes its spectral norm respectively
maximum singular value, kAkF denotes its Frobenius norm, and range(A) denotes the
column space ofA. The i -th row of A is denoted by A i; :, and is treated as column vector.
For an index set I and a vector v of real numbers,vI denotes the subvector corresponding
to I . We write a _ b = max f a; bg and a ^ b = min f a; bg. Positive constants are denoted by
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C, c, c1 etc. We make use of the usual Big-O notation in terms ofO, o, 
 and �. We often
usea . b, b & a, and a � b as shortcuts for a = O(b), b = 
( a) and a = �( b), respectively.

2. Problem statement and proposed approach

We start by �xing the setup under consideration herein before outlining our approach. We
then provide a toy data example in order to illustrate some of the main challenges and
characteristics of the given problem and the proposed approach.

2.1 Setup

As stated in the introduction, we assume that we are given two samplesX = f x i gn
i =1 and

Y = f y i gn
i =1 taking values in Rd and Rm , respectively, that are related by the model

si y i = B �> x � � (i ) + � si � i ; 1 � i � n; (1)

where � � : f 1; : : : ; ng ! f 0; 1; : : : ; ng is a map representing the (unknown) underlying
correspondence between observations inX and Y, with the convention that x0 := 0, and
si = I(� � (i ) 6= 0) indicates whether y i has a match amongX , 1 � i � n. For the set of
non-matchesN = f i : si = 0g, we suppose thatf y i gi 2N is independent ofX .

If � � (i ) = i for 1 � i � n, the above model reduces to an ordinary multivariate regression
model with m responses andd predictor variables, regression coe�cients B � 2 Rd� m , and
random error variables f � i gn

i =1 . Model (1) can be expressed equivalently via

SY = � � XB � + � SE; (2)

where Y and E are n-by-m matrices whose rows are given byf y >
i g and f � >

i g, respectively,
S = diag( s1; : : : ; sn ), X is an n-by-d matrix with rows f x>

i gn
i =1 , and � � = (� �

ij )1� i;j � n has
entries � �

ij = 1 if � � (i ) = j for j 6= 0, and zero otherwise. Observe that by construction, � �

is contained in the following set of matrices

M =
n

� 2 Rn� n : � ij 2 f 0; 1g; 1 � i; j � n;
P

j � ij � 1; 1 � i � n
o

(3)

� P = f � 2 Rn� n : � > � = I n ; � ij 2 f 0; 1g; 1 � i; j � ng; (4)

which contains the set ofn-by-n permutation matrices P in (4). Model (1) is hence more
general compared to existing work in which� � is restricted to be a permutation. In par-
ticular, the generalization herein allows for missing matches via ��i; : = 0 for i 2 N , as well
as for one-to-many matches, i.e., more than one element inY may correspond to the same
element in X ; cf. Figure 1 for an illustration. We note that the case of one-to-many matches
is also considered in Pananjady et al. (2017), cf. Section 2.4 therein.

Depending on the application, the goals in the setup (1) concern estimation ofB � and/or
� � . If � � is recovered exactly by an estimatorb�, i.e., the event f b� = � � g occurs, estima-
tion of B � becomes an ordinary regression problem. In post-linkage data analysis, �� can
be used to model error in the �le linkage process, caused, e.g., by ambiguities resulting from
the use of quasi-identi�ers (say, the combination of age, gender, and race), but is typically
treated as a nuisance parameter while primary interest concernsB � . By contrast, in the
setting of linkage attacks, the adversary aims at leveraging the linear relationship between
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f yi gn
i =1

f x i gn
i =1

� � =

2

6
6
6
6
4

0 0 0 1 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

3

7
7
7
7
5

; S =

2

6
6
6
6
4

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

3

7
7
7
7
5

Figure 1: Illustration of the generalized permutation model herein for n = 5 including a
missing match (y3) and a one-to-many match between (y1; y5) and x4.

elements ofX and Y, and henceB � is only regarded as a means to retrieve �� . In the
sequel, we adopt neither viewpoint and consider estimation of bothB � and � � .

Assumptions. Below, we summarize and discuss the main assumptions of our analysis.

� The map � � is said to bek-sparse if � � (i ) = i except for indicesS� � f 1; : : : ; ng with
jS� j � k for k � n. Equivalently, S� = f i : � �

ii 6= 1g. Model (2) implies that

Y = XB � + � � + � SE; (5)

where � �
i; : = y i � B �> x i if � � (i ) = 0 and � �

i; : = B �> x � � (i ) � B �> x i otherwise, 1� i � n.
Observe that k-sparsity of � � implies that � � has at mostk non-zero rows. Throughout
this paper, we shall impose constraints on the size ofk. As of now, if � > 0 and k is
not restricted, no practical estimation scheme with provable guarantees is known even
if � � is a permutation. Apart from that, the sparse regime is relevant to applications
in record linkage as elaborated in detail in the case study inx4.

� The matrix X has i.i.d. Gaussian rowsx i � N (0; �), 1 � i � n. Without loss of
generality, we assume that � = I d as can be ensured by re-de�ningB � accordingly.

� Likewise, the matrix E has i.i.d. Gaussian rows� i � N (0; I m ), 1 � i � n, and is
independent ofX .

The second assumption and the �rst part of the third assumption do not appear critical to
our approach, but they considerably simplify results and proofs and thus aid presentation.
The main results in this paper continue to hold for X and E with i.i.d. sub-Gaussian rows
up to slight modi�cations, cf. Appendix F. Moreover, it is common to assume that the m
entries of the noise termsf � i gn

i =1 are correlated; such extension can be accommodated, too.
Finally, we note that representation (5) is general enough to cover various other scenarios

involving mismatched data in regression. For example, it also applies if a subset of the
predictors is collected jointly with the response, i.e., we observe samplesD1 = f (x (1)

i ; y i )gn
i =1

and D2 = f x (2)
i gn

i =1 with f x (1)
i gn

i =1 and f x (2)
i gn

i =1 having dimension d1 and d2, respectively,
d1 + d2 = d, and associated regression model

y i = B �>
(1) x (1)

i + B �>
(2) x (2)

� � (i ) + � � i ; i = 1 ; : : : ; n; (6)
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where � � is a permutation of f 1; : : : ; ng. Here, model (6) is subsumed by (5) by setting

B � =

"
B �

(1)
B �

(2)

#

, � �
i; : = B �>

(2) x (2)
� � (i ) � B �>

(2) x (2)
i , 1 � i � n, and S = I n . The approach and its

analysis below applies to this and presumably also to other modi�cations with slight changes.

2.2 Approach

We suggest to tackle estimation ofB � and � � in a two-stage approach that we motivate as
follows. Suppose �rst that there are no missing matches so that

P
j � �

ij = 1, 1 � i � n,
and denote byM the corresponding subset ofM that excludes matrices with all-zero rows.
Joint least squares estimation, i.e., min� 2 M ; B 2 Rd� m kY � � XB k2

F , is NP-hard (Pananjady
et al., 2018). However, ifB � is known, least squares estimation of �� reduces to a tractable
optimization problem that decouples along the rows ofY :

min
� 2 M

kY � � XB � k2
F =

nX

i =1

�
min

1� j � n
ky i � B �> x j k2

2

�
: (7)

Assuming for simplicity that the minimizing indices bj (i ) for the optimization problems inside
the curly brackets are unique, we haveb� ibj (i ) = 1 , 1 � i � n; all other entries of b� equal
zero. If in addition � � is known to be one-to-one (i.e., a permutation), minimization over
M can be replaced by minimization overP (4). The latter optimization problem reduces
to a linear assignment problem (Burkard et al., 2009), a speci�c linear program that can be
solved e�ciently by specialized techniques such as the Hungarian Algorithm (Kuhn, 1955)
or the Auction Algorithm (Bertsekas and Castanon, 1992).

In the case of missing matches, taking the minimum in (7) overM instead of over M
cannot be expected to ensure the successful identi�cation of missing matches. In fact, a row
of zeroes in � means that the corresponding row ofY is paired with the zero vector rather
than with any of the f B �> x j gn

j =1 , but the use of the zero vector as a reference for missing
matches is not meaningful. This observation prompts the following modi�cation of (8):

Compute min
1� j � n

ky i � B �> x j k2
2 ; set b� ij =

(
1 if j = bj (i ) and ky i � B �> xbj (i )k2 � �;

0 otherwise; 1 � i; j � n;
(8)

where f bj (i )gn
i =1 are the minimizing indices as above, and� > 0 is a suitably chosen thresh-

old whose choice is discussed in Theorem 2 below.

So far, B � was supposed to be known. IfB � is unknown, it has to be replaced by an
estimator bB . At this point, our approach makes use of the sparsity assumption for� � . In
view of relation (5), we consider

min
B 2 Rd� m ; � 2 Rn � m

1
2n � m

kY � XB �
p

n� k2
F + �

nX

i =1

k� i; :k2; (9)

for a tuning parameter � > 0, where � targets � � := � � =
p

n with � � as in (5), and k� i; :k2

being used as a convex surrogate forI (k� i; :k2 > 0), 1 � i � n, in order to promote row-wise
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sparsity of � (Yuan and Lin, 2006; Eldar and Mishali, 2009; Lounici et al., 2011). The use
of the re-scaled quantity � � in place of � � is done merely for technical reasons. We note
that a variant of (9) for a single response variable has been employed in the context of linear
regression with outliers (She and Owen, 2012; Laska et al., 2009; Nguyen and Tran, 2013).

Algorithm 1 Block coordinate descent for minimizing (9)

Compute the QR factorization X = QR of X , and initialize XB (0) = QQ> Y, � (0) � 0.
1. Update for �

� (t+1)  (1 � � (t ) )� (t ) + � (t )GroupThreshold (Y � XB (t ) ; � )=
p

n; � := m �
p

n � �;

where for a matrix A with rows f ai gn
i =1 and � � 0, GroupThreshold (A; � ) is de�ned by

ai  ai � (1 � �= kai k2)+ ; i = 1 ; : : : ; n; (�)+ := max f� ; 0g:

2. Update for XB :

XB (t+1)  (1 �  (t ) )XB (t ) +  (t )QQ> (Y �
p

n� (t+1) ):

The step sizes� (t ) ;  (t ) � (0; 1) are chosen by back-tracking line search (Bertsekas, 1999).

Optimization problem (9) can be solved e�ciently by block coordinate descent as out-
lined in Algorithm 1 that has performed extremely well throughout our experiments, typ-
ically converging after a small number of iterations. Formal convergence results follow
immediately from the general framework in Tseng (2010).

The estimator bB resulting from (9) can potentially be re�ned by a least squares re-
�tting step after removing data corresponding to bS(t) = f 1 � i � n : kb� i; :k2 � tg, where
b� denotes the minimizing � in (9) and t is a suitably chosen threshold. The rationale is to
remove mismatches as they hamper parameter estimation. This yields

min
B 2 Rd� m

X

i=2 bS(t )

ky i � B > x i k2
2: (10)

In summary, this yields the following two-stage (or optionally three-stage) approach for
estimating B � and subsequently � � .

1. Estimate B � from (9), and optionally re�ne via (10).

2. Estimate � � from (8) with B � replaced by the estimator obtained in step 1.

It is worth pointing out that sparsity of � � is incorporated at step 1. only. The proce-
dure (8) can be modi�ed accordingly by applying it only for the indices corresponding to
the k largest values amongfk y i � B �> x i k2

2g1� i � n , and setting b� ii = 1 for all remaining i .
We do not study this modi�cation in the sequel since it does not fundamentally change the
statistical limits in recovering � � as stated in Theorem 2 below.

Illustration. An illustration of the above approach is provided in Figure 2. The data set
consists of monthly average temperatures ofn = 46 U.S. cities as reported on Wikipedia
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Jan Mar May Jul Sep Nov X Y Feb Apr Jun Aug Oct Dec
16 33 59 74 62 34 Minneapolis Memphis 46 63 80 82 64 44
-8 12 50 63 45 3 Fairbanks San Antonio 56 70 83 85 71 53
1 54 72 83 75 53 Memphis Fairbanks -1 33 61 57 24 -4
34 44 64 78 68 47 Baltimore Dallas 50 66 81 86 68 47
46 58 74 86 78 57 Dallas Tampa 63 72 82 83 76 63
23 35 56 72 63 39 Milwaukee� Pittsburgh 31 51 69 72 53 33
61 67 78 83 82 69 Tampa Minneapolis 21 48 69 71 49 20
29 40 60 73 64 43 Pittsburgh � Portland 44 52 64 70 55 40
52 62 77 85 80 61 San Antonio Baltimore 36 54 73 76 57 37
41 48 58 69 65 47 Portland Milwaukee 26 46 67 71 52 27

bS Baltimore Dallas Fairbanks Las Vegas y Memphis Minneapolis
b� ( bS) Milwaukee Seattle Fairbanks Dallas Baltimore Minneapolis

continued:

bS Phoenix Portland San Antonio San Francisco y Seattley Tampa
b� ( bS) Las Vegas Memphis Phoenix San Francisco San Antonio Tampa

Figure 2: Top: mismatched subset of the U.S. cities temperatures data set. Bottom: esti-
mated subset of mismatched citiesbS and estimated correspondenceb� ( bS). Aster-
isked cities Milwaukee and Pittsburgh did not end up included in bS since the mis�t
resulting from shu�ing happened not to be substantial enough. The superscript
y refers to cities not a�ected by shu�ing yet included in bS.

(2019). The data set is broken into two samplesX and Y with the former containing the
temperatures of the odd numbered months (January, March,: : :, November) and the latter
containing the temperatures of the even numbered months. For a random subset ofk = 10
cities, we randomly permute matching records inX and Y. Linear regression is used to pre-
dict the m = 6 temperatures in Y from X . Due to high correlations among predictors, we
work with the top d = 3 principal components as regressors. In the absence of partial data
shu�ing, this yields a reasonable goodness of �t overall in terms of a coe�cient of determi-
nation R2 � 0:73, apart from poor model �t for several west coast cities (Los Angeles, San
Diego, Seattle and San Francisco) with mild winters and small seasonal di�erences, as well
as for cities in desert regions (Las Vegas and Phoenix) with extreme temperatures during
summer. After data shu�ing, model �t drops to R2 � 0:4. The approach outlined above
shows some potential in this setting. With the choice of� = 1

3 � b� 0=
p

n � m, where b� 0 is the
estimated error variance from the regression model in the absence of partial data shu�ing,
we ensureR2 � 0:62. Subsequent restoration of the correct correspondence betweenX and
Y is restricted to observations in bS = f i : kb� i; :k2 �

p
2mb� 0g; for all other observations,

no mismatches are assumed, i.e.,b� ii = 1, i =2 bS. The results highlight the challenges that
are encountered in the estimation of � � . Most crucially, the more an observation is distinct
from the rest, the easier it is identi�ed as mismatch and the easier to retrieve its matching
counterpart, with Fairbanks here being the most distinct instance. On the other hand, the
temperature di�erences between Milwaukee and Pittsburgh are only marginal, and accord-
ingly this mismatch remains undetected. Moreover, it is hard to disentangle cities a�ected
by shu�ing and poor �t of the linear model, respectively. Nevertheless, re-matching suc-
ceeds for three cities (Fairbanks, Minneapolis, Tampa) and gets close in case of Phoenix!
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Las Vegas and San Antonio! Phoenix.

Alternatives to (9). Formulation (9) treats mismatches in the same way as generic data
contamination (outliers). A promising alternative approach if an upper bound on k is
known and m = 1 can be found in Bhatia et al. (2017). A direct extension of this approach
to the multiple response case with row-sparse contaminations is given by

eB 2 argmin
B 2 Rd � m

kY � e� � XB k2
F ; where e� 2 argmin

� 2 Rn � m
kP?

X (Y � �) k2
F subject to

nX

i =1

I (� i; : 6= 0) � k;

(11)
whereP?

X denotes the projection on the orthogonal complement of range(X ). Following Bha-
tia et al. (2017), the rightmost optimization problem in (11) is tackled via iterative hard
thresholding (Blumensath and Davies, 2009), and the result is substituted into the leftmost
optimization problem to obtain an estimator for B � . In our experiments, the performance
of (11) is rather similar to that of the three-stage approach (10).

Given that both (9) and (11) treat mismatches as generic contaminations, it is worth
exploring whether the additional structure under consideration here can be leveraged for
improved performance. In the following, we present two approaches that are based on
optimization over the polyhedron

C =
n

� 2 Rn� n : � ij 2 [0; 1]; 1 � i; j � n;
P

j � ij � 1; 1 � i � n
o

: (12)

The �rst proposal can be seen as an immediate re�nement of (9):

min
� 2C

1
2n � m

kP?
X � Yk2

F + �
P n

i =1 kY > (I � �) > ei k2; (13)

with P?
X as de�ned below (11) andf ei gn

i =1 denoting the canonical basis ofRn . Similar to (9),
the penalty in (13) is motivated by the fact that ( I � � � )Y has only few non-zero rows.

Given an upper bound onk, an alternative to (13) is given by the optimization problem

min
� 2C

1
2n � m

kP?
X � Yk2

F subject to
P n

i =1 � ii � n � k: (14)

Given a minimizer e� of (13) or (14), an estimate of B � is obtained via least squares regres-
sion of e� Y on X . Both (13) and (14) are convex problems; (14) is a quadratic program.
In spite of this, (13) and (14) have signi�cant computational drawbacks compared to the
approaches (9) and (11) since the former involven2 variables and thus scale poorly with
problem size. According to own experiments, state-of-the art solvers for quadratic programs
such ascplexqpin CPLEX1 take prohibitively long to solve instances of (14) even forn = 200.
In Appendix G, we present reasonably practical algorithms for obtaining approximate solu-
tions of (13) and (14) based on the conditional gradient (aka Frank-Wolfe) method (Jaggi,
2013), which are also used in an empirical comparison with our primary proposal (9) inx4.
In that comparison, neither (13) nor (14) achieves substantial improvements over (9).

1. http://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
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3. Main results

This section provides theoretical results on the approach introduced in the previous section.
Theorem 1 quanti�es the error in estimating B � , while recovery of the correct correspon-
dence in terms of � � is discussed in a separate subsection.

Theorem 1 Consider model (5) and the minimizer ( bB; b�) of (9) with � � 2� 0, where

� 0 =
� n;d �
p

n � m

 

1 +

r
4 logn

m

!

; � n;d :=
�

n� d
n +

q
24log n

n

�
^ 1; (15)

and supposed=n < 1=4. Then for any " 2 (0; 1=3), there exist constantsc" ; c0
" > 0 so that

if k � c" n= log(n=k), it holds that

kb� � � � kFp
m

� 2" � 2 � �
p

m �
� + � 0

� � � 0

p
k (16)

with probability at least 1 � 2=n � 3:5 � exp(� c0
" n). Furthermore,

k bB � B � kFp
m

�
1

1 �
q

4d_ log n
n

 

�

r
5(d _ log(n))

n
+

kb� � � � kFp
m

!

with probability at least 1 � 2 exp(� 1
2(d _ logn)) � exp(� (d � m) _ log(n � m)) .

In order to better understand the consequences of Theorem 1, we spell out essential scalings
in (n; k; d; m) below. According to (15), the parameter � should be chosen proportional to

� 0 � 1p
n�m (1 +

p
log(n)=m) (17)

in which case kb� � � � kFp
m .

q
k
n (1 +

p
log(n)=m) which are familiar rates for multivariate

regression with block sparsity regularization (Lounici et al., 2011). At the same time, the

estimation error for the regression coe�cients scales ask
bB � B � kFp

m .
p

d=n+ kb� � � � kFp
m , where

the �rst term on the right hand side equals the estimation rate of least squares regression in
the absence of mismatches while the second term reects the slack arising from the presence
of the latter. The bottom line is that the estimation error is in check as long as the fraction
of mismatchesk=n is small. In fact, the condition preceding (16) imposes a bound on that
fraction as well. In experiments, performance degrades more noticeably oncek=n > 0:3.
Theorem 1 also indicates a positive inuence of the number of response variablesm in that
one can choose� � 1p

n�m oncem & logn which in turn eliminates the factor
p

logn in (17)
and thus also in (16). This is a known bene�t of block sparsity regularization in comparison
to element-wise sparsity regularization (Lounici et al., 2011).

Restoring Correspondence

In this subsection, we study recovery of � � . To begin with, we suppose that the regression
parameter B � is known, and establish one su�cient and one necessary condition for exact

10
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recovery of � � based on the oracle estimator (8). A crucial quantity in the analysis is

 2 = min
i<j

kB �> (x i � x j )k2
2

kB � k2
F

; (18)

the minimum squared distance among all pairs of linear predictors scaled bykB � k2
F . A

lower bound on 2 is clearly needed in order to reliably match noisy responsesf y i gn
i =1 to the

corresponding elements inf B �> x i gn
i =1 : if there exists a pair (i; j ) such that kB �> (x i � x j )k2

is smaller than the noise level, then there is a good chance that the corresponding responses
get swapped. The following two lemmas provide upper and lower bounds in (18).

Lemma 1 Let srank(B � ) := kB � k2
F

kB � k2
2

denote the stable rank ofB � , and consider  2 as de�ned

in (18). There exist universal constants� 0 2 (0; 1) and � such that for any " > 0, with
probability at least 1 � n� 2" , it holds that

 2 > min
�

2n
� 2(1+ " )

� � srank( B � ) ; � 0

� 2

: (19)

The stable rank of B � as de�ned in the lemma crucially governs the scaling of . It is
instructive to consider the extreme case srank(B � ) = 1: we then obtain  2 & n� C for
C > 0. Results in Slawski and Ben-David (2019) on the casem = 1 show that  2 . n� 2

with constant probability, which indicates sharpness of the above result in this case up to
a constant in the exponent ofn. On the other hand, if srank(B � ) = m & logn, we have

2n
� 2(1+ " )

� � srank( B � ) = exp
�

�
2(1 + ")

� � srank(B � )
log(2n)

�
= 
(1) ;

i.e., the lower bound on 2 does no longer decay withn. Additional insights can be obtained
by considering the special case in which all non-zero singular values ofB � are equal tob� > 0
and thus also srank(B � ) = rank( B � ) = r . For r = 2( q + 1) ; q � 0, the quantity (18) then
becomes analytically tractable based on a closed form expression for� 2-random variables
with an even degrees of freedom.

Lemma 2 Consider  2 as de�ned in (18) and suppose thatB � has exactlyr = 2( q+1) ; q 2
f 0; 1; : : :g non-zero singular values equal tob� > 0. Then for all � > 0

(Lower Bound): P
�

 2 �
2
e

(n� 2 � )
2
r

�
� 1 � �=2:

Moreover, if n > 8(r=2)r=2,

(Upper Bound): P
�

 2 � 2 � 82=r n� 2=r
�

� 0:75:

Lemma 2 sheds some light on the range of the exponent� in the previous Lemma 1, and
provides essentially matching upper and lower bounds on 2, where \essentially" refers to
n� 4=r .  . n� 2=r , i.e., the match is up to constant factors and a factor 2 in the exponent.

11
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In order to address the case of missing matches, we shall also consider

 2
0 = min

i 2N
1� j � n

ky i � B �> x j k2
2=kB � k2

F ; (20)

where we recall that N = f i : � � (i ) = 0 g denotes the set of missing matches. The quan-
tity (20) exhibits scalings very similar to  2 (18) as discussed in the remark following
Lemma B.1 in Appendix B.

Equipped with Lemma 1 & 2, we are in better position to interpret the following theorem.

Theorem 2 Let bB = bB (X; Y ) be an estimator ofB � , and let b�( bB ) =
� b� ij ( bB )

�
denote the

estimator (8) with � > � 0 := � (
p

m +2
p

logn)+max 1� j � nkx j k2kB � � bB k2 and B � replaced
by bB , i.e.,

b� ij ( bB ) =

(
1; if j = bj (i ) and ky i � bB > xbj (i )k2 � �;

0 otherwise; 1 � i; j � n;

where the indexbj (i ) is de�ned by ky i � bB > xbj (i )k2 = min 1� j � nky i � bB > x j k2; 1 � i � n.

Let  2 and  2
0 be as in (18) and (20), respectively, and de�ne the signal-to-noise ratio by

SNR= kB � k2
F

� 2m . Consider the event

B =

8
<

:
minf  2

0;  2gSNR> 36 max

8
<

:
k bB � B � k2

2

� 2m
max

1� i � n
kx i k2

2; 2

 

1 +

r
4 logn

m

! 2

;
� 2

� 2m

9
=

;

9
=

;
:

Conditional on B, with probability at least 1 � P(Bc) � 1=n, f b�( bB ) = � � g. Conversely, in
the case that� � (i ) 6= 0 for 1 � i � n, the following holds:

� There existsc > 0 so that if SNR< c log n
m , P( b�( B � ) 6= � � ) � 1=3.

� If additionally m = O(1), there exists c0 > 0 so that if minf  2
0;  2gSNR < c 0,

P( b�( B � ) 6= � � ) � 1=3.

The above theorem contains both an achievability result in the form of a su�cient
condition for successful recovery of �� given any estimator of bB , as well as inachievability
results concerning failure of recovery in the situation whereB � is known. As explained in
more detail below, the above su�cient and necessary conditions agree up to multiplicative
constants in certain regimes. To shed more light on the implications of the theorem, it is
instructive to consider certain special cases of interest and to discuss them in connection
with the error bounds stated in Theorem 1.

i) The conditions of Theorem 2 involve SNRas the ratio of the signal energykB � k2
F =m

per response variable and noise variance� 2. If bB = B � and every element ofY has
match in X , the condition of the event B becomes

minf  2
0;  2gSNR� 2(1 +

p
log(n)=m)2: (21)

If m = O(1), the scaling of  2 according Lemmas 1 and 2 imply that the condition
SNR= 
( nc) for a constant c depending on srank(B � ) su�ces for recovery of � � .

12
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ii) The second bullet in Theorem 2 implies that for m = O(1), the condition SNR =

( nc) is also necessary (up to a constant factor in the exponent ofn). In particular,
Theorem 2 qualitatively recovers earlier results in Pananjady et al. (2018) and Slawski
and Ben-David (2019) onm = 1.

iii) Regarding the scaling of m, the threshold case appears to bem � logn � srank(B � ).
In this regime, (21) requires only SNR= 
(1) which is a far less stringent condition
compared to the regime of uniformly boundedm. Again, the su�cient condition is
matched up to a constant multiplicative factor by the necessary condition stated in
the �rst bullet of Theorem 2.

iv) Once m respectively srank(B � ) grow at a faster rate than logn, the necessary condition
of the �rst bullet is no longer aligned with (21). It remains an open question whether
Theorem 2 can be sharpened in this regard.

We now discuss the situation in which B � is replaced by an estimator bB . In the ab-
sence of mismatches, random matrix theory (Vershynin and Rudelson, 2011) shows that
ordinary least squares estimation obeysE[k bB � B � k2

2=(� 2m)] . (d + m)=(n � m) while
max1� i � nkx i k2

2 . d with high probability assuming that d & logn, which implies that the
�rst term in the outer \max" of the event B is at best of the orderd2=(n � m). A slightly less
favorable condition is obtained when substituting the error bound of the proposed estimator
in Theorem 1. In this case,

k bB � B � k2
2=(� 2m) � k bB � B � k2

F =(� 2m) . (k + d)=n

with the stated probability, and thus Theorem 2 yields the condition n & d � (k _ d). In
summary, the e�ect of replacing B � by the proposed estimator can either be compensated
by imposing a more stringent condition on SNRor the ratio d=n.

Lastly, let us comment on the case of missing matches, i.e.,N 6= ; , and the choice of
� . As long as � is chosen proportional to the threshold � 0, the requirements on the SNR
remain qualitatively unchanged. The dependence of� 0 on the noise level is intrinsic, hence
approximate knowledge of� is inevitable to guide the choice of� . While � 0 also depends on
k bB � B � k2, the latter can be estimated given bounds on the estimation error as discussed
in the preceding paragraph. Clearly,� can be set to zero whenever it is known thatN = ; .

Identi�cation of Mismatched Data

In the following, we discuss a simpler task than recovery of �� , namely recovery ofS� =
f 1 � i � n : � � (i ) 6= ig, or equivalently, S� = f 1 � i � n : � �

i; : 6= 0g with � � = � � =
p

n
as de�ned in (5). The following statement provides a condition that ensures that we can
separate mismatched dataS� and correctly matched dataSc

� in terms of fk b� i; :k2gn
i =1 , where

b� is obtained from optimization problem (9) and analyzed in Theorem 1.

Proposition 1 Let b� be as in Theorem 1, and let 2
0,  2, and SNR be as in Theorem 2.

We then havemin i 2 S� kb� i; :k2 > maxi 2 Sc
�
kb� i; :k2 if

minf  2
0;  2gSNR�

4 max1� i � nk
p

n(b� i; : � � �
i; :)k

2
2

� 2m
: (22)

13
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The practical consequences are as follows: if it holds that mini 2 S� kb� i; :k2 > maxi 2 Sc
�
kb� i; :k2,

we can sort thefk b� i; :k2gn
i =1 and retain the observations corresponding to theb�n c smallest

elements for� 2 (0; (1 � k=n)]. Any choice of � = 
(1) in that range identi�es Q � Sc
� with

jQj = 
( n). The least squares estimator eB of B � using observations inQ only, i.e.,

eB = argmin
B 2 Rd� m

X

i 2 Q

ky i � B > x i k2
2

can substantially improve over the estimator bB in Theorem 1. The condition of Proposition 1
tends to be easier to satisfy than that for recovery of � � in Theorem 2. The right hand
side of (22) is of the orderO(1 + log( n)=m) and O(kf 1 + log(n=m)g) in the best and worst
case, respectively, in view of Theorem 1; the best case is obtained if maxi kb� i; : � � �

i; :k
2
2 .

kb� � � � k2
F =k, i.e., the error in Frobenius norm is spread out roughly evenly over 
(k) rows.

4. Experiments

In the sequel, we present empirical evidence supporting central aspects of our analysis, and
provide numerical comparisons to the alternative methods outlined at the end ofx2 as well as
to an extension of the EM scheme in Wu (1998); Abid and Zou (2018) for multiple response
variables. For simplicity, we con�ne ourselves to the case in which �� is a permutation
matrix, i.e., an element of (4). Accordingly, the minimization in (7) is performed over the
set of permutation matrices by means of the Auction Algorithm (Bertsekas and Castanon,
1992). We note that this modi�cation does not a�ect our theoretical results. Speci�cally,
the achievability result in Theorem 2 continues to hold because it asserts recovery over a
superset of (4). Similarly, the inachievability results continue to hold if � � is required to
be a permutation.

Synthetic data

Setup. Data is generated according to the model

y i = B �> x � � (i ) + � � i ; i = 1 ; : : : ; n;

where the f x i gn
i =1 and f � i gn

i =1 , are i.i.d. from N (0; I d) and N (0; I m ), respectively, � � is a
random permutation that shu�es f 1; : : : ; kg uniformly at random, and is the identity map
when restricted to the remaining indices, i.e,� � (i ) = i for i > k . The matrix B � is obtained
by �rst generating a d-by-d matrix (i.e., d = m) with i.i.d. N (0; 1)-entries, then computing
its singular value decompositionB � = USV> , and replacing the diagonal entriesf s1; : : : ; sdg
of S according to sj  j � q, 1 � j � d for q 2 f 0; 0:05; 0:1; 0:2; 0:5; 1; 2; 5g; �nally, B � is
re-scaled such thatkB � k2

F = m. This construction ensures that the stable rank srank(B � ),
which has a critical inuence on the recovery of � � , varies betweenm = d (achieved for
q = 0) and 1 (achieved for q ! 1 ). In addition, the signal-to-noise ratio then results as
SNR= � � 2 with � 2 f 0:01; 0:02; 0:05; 0:1; 0:2; 0:5; 1; 2g. Lastly, the fraction of mismatches
k=n varies between 0:05 and 0:4 in steps of 0:05 with n 2 f 200; 500; 1000g and d=n 2
f 0:03; 0:06; 0:12g. For each con�guration of (n; d; k; q; � ), 100 independent replications are
performed.
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In the experiments, the following approaches are compared:

naive, oracle. Plain least squares and estimation ofB � with knowledge of � � , respectively.

proposed. B � is estimated according to (9) with the choice� = � ? = 4 � 1p
n�m which is the

lower bound on � suggested by Theorem 1 when treating
p

4 log(n)=m simply as 1.

proposed+ . The re-�tting approach (10) building on proposed, cf. also Proposition 1.
Assuming that k is known, the set of mismatchesS� is estimated by bS = f 1 � i � n :
kb� i; :k2 > t (n� k)g, where t (i ) ; 1 � i � n, denotes thei -th order statistic of the fk b� i; :k2gn

i =1 .

CRR. \C onsistent Robust Regression", following the title for the approach (11) used in Bha-
tia et al. (2017). The number of mismatchesk is assumed to be known.

EM. The EM-scheme in Wu (1998); Abid and Zou (2018) in which � � is treated as missing
data in conjunction with the use of the EM algorithm. Since the E-step involves intractable
integration over the set of permutation matrices, MCMC is employed to approximate this
step. In our implementation, the permutation is initialized as the identity, and the number
of MCMC iterations per EM iteration is set to 10,000 given a "burn-in period" of 1,000.

DS-reg. The approach (13) that arises as a re�nement of proposed, and here involves
optimization over the set of doubly stochastic matrices of sizen. We consider � 2 2� p� ?,
p 2 f� 1; 0; : : : ; 3g, with � ? as in the description of proposed above, and choosep replication
by replication to minimize the estimation error w.r.t. k�kF of the resulting estimator of B � .

DS-cons. The approach (14) with k assumed to be known.

DS-reg+ , DS-cons+ . Re-�tting approaches associated withDS-reg and DS-cons. The set
S� is estimated by eS = f 1 � i � n : e� ii < et (n� k)g, where e� is the estimator of � � from (13)

and (14), respectively, andet (i ) ; 1 � i � n, denotes thei -th order statistic of f e� ii gn
i =1 .

Since solving the optimization problems associated withDS-reg and DS-cons entails
substantial additional e�orts even with customized solvers (Appendix G) given O(n2) vari-
ables, we only consider a reduced set of con�gurations for (n; d; k; q; � ) with n 2 f 200; 500g,
d=n = 0 :03, and q = 0, while the ranges for k=n and � remain unchanged. In addition, the
number of replications per con�guration is lowered to 20.

Results (I): Estimation of B � . For better comparison across experimental con�gurations,
we visualize the following \standardized" estimation error

� � 1m� 1=2kB est � B � kF �
p

d=n; (23)

whereB est is a placeholder for the various estimators mentioned in the previous paragraph.
Note that (23) approximately equals zero in expectation for the oracle estimator equipped
with � � , thus (23) can be interpreted as the excess error relative to that oracle. For the esti-
mator bB analyzed in Theorem 1, the quantity (23) is expected to be proportional to

p
k=n.

Selected results are shown in Figure 3, which displays averages of (23) forn 2 f 500; 1000g
and � 2 f 0:05; 0:1; 0:2g; the number of di�erent values for � considered in a single plot had
to be limited to ensure readability since for naive and EM, (23) still depends substantially
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on � . To account for that, shaded areas are used to represent the ranges of (23) for those
two approaches; the upper and lower margins of the shaded areas represent the normalized
estimation error for � = 0 :05 and � = 0 :2, respectively, while the dashed lines inside the
shaded areas correspond to� = 0 :1. Accordingly, the performance ofnaive and EM (initial-
ized by naive) relative to (23) improves, which is unsurprising given that as �

p
m % kB � kF

(recall that kB � kF =
p

m), the error induced by mismatches is of the same order as the
noise in which case the gap betweennaive and oracle narrows. With the same reasoning,
remedies for mismatches compared here are most e�ective if�

p
m=kB � kF is small: for ex-

ample, proposed achieves a roughly tenfold reduction in standardized estimation error over
naive for � = 0 :05; that margin reduces gradually with increasing� .

Figure 3: Average standardized estimation errors (23) on a log10-scale, with one curve for
each � 2 f 0:05; 0:1; 0:2g. For naive (in red) and EM (in green), the resulting
curves do not cluster together, and are hence captured by the upper (� = 0 :05)
and lower (� = 0 :2) boundaries of the shaded areas plus a dashed line (� = 0 :1).

Figure 3 also shows that re�tting after applying proposed and estimating S� consid-
erably boosts performance. The performance of the resulting approachproposed+ is in-
distinguishable from CRR. While EM performs on par with the oracle for n = 500 (and
n = 200, not shown), the approach degrades withn. One likely explanation is that the
challenges associated with the E-step become more severe withn: speci�cally, the MCMC
approximation tends to be less reliable for larger valuesn. For the same reason,EM is at
least an order of magnitude slower thanproposed+ and CRR.
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Figure 4: Average standardized estimation errors� � 1m � 1=2kB est � B � kF

(d=(n� k)) 1=2 (log2-scale) of the re-

�tting approach proposed+ (lines) and EM (shaded areas) for di�erent rates of
decay of the singular values ofB � corresponding to decreasing srank(B � ) from left
to right. Curves for di�erent combinations of n and � appear in the same plots;
due to poor clustering of those curves forEM in conjunction with the chosen error
normalization, their range is indicated by shaded areas for better readability.

In Figure 4, the performance of proposed+ relative to EM is investigated in more
detail. In addition to poor scalability with n, the competitiveness ofEM also hinges on the
stable rank of B � not to be too small. The sequence of three plots in Figure 4 indicates a
transition from superior to comparable and eventually not competitive performance ofEM
as the singular values inB � decay more rapidly.

Finally, Figure 5 provides a comparison to the approachesDS-reg and DS-cons. De-
spite the additional sophistication involved, the results only indicate minor improvements,
which largely disappear when considering re�tting. In particular, the observed gains in
performance do not appear to justify the massive computational e�ort associated with the
solution of the optimization problems underlying DS-reg and DS-cons.

Figure 5: Average standardized estimation errors (23) ofDS-reg and DS-cons in compar-
ison to proposed along with their counterparts for re�tting.
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