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Abstract

The DANE algorithm is an approximate Newton method popularly used for communication-
efficient distributed machine learning. Reasons for the interest in DANE include scalability
and efficiency. Convergence of DANE, however, can be tricky; its appealing convergence
rate is only rigorous for quadratic objective function, and for more general convex func-
tions the known results are no stronger than those of the classic first-order methods. To
remedy these drawbacks, we propose in this article some new alternatives of DANE which
are more suitable for analysis. We first introduce a simple variant of DANE equipped with
backtracking line search, for which global asymptotic convergence and sharper local non-
asymptotic convergence guarantees can be proved for both quadratic and non-quadratic
strongly convex functions. Then we propose a heavy-ball method to accelerate the conver-
gence of DANE, showing that the near-tight local rate of convergence can be established
for strongly convex functions, and with proper modification of the algorithm about the
same result applies globally to linear prediction models. Numerical evidence is provided to
confirm the theoretical and practical advantages of our methods.

Keywords: Communication-efficient distributed learning, Approximate Newton method,
Global convergence, Heavy-Ball acceleration.

1. Introduction

Distributed learning is a promising tool for alleviating the pressure of ever-increasing data
and/or model scale in modern machine learning systems. In this article, we study the
distributed optimization algorithms for solving the following empirical risk minimization
(ERM) problem:

min
w∈Rp

F (w) :=
1

N

N∑
i=1

f(w;xi, yi), (1)

where {xi, yi}Ni=1 is a training sample of size N , f(w;xi, yi) is a loss function evaluated at
the data point (xi, yi) which is smooth and convex in w. Such a finite-sum formulation
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encapsulates a large body of statistical learning problems including least square regression,
logistic regression and support vector machines, to name a few. We assume without loss
of generality that the training data D = {D1, ..., Dm} with N = mn samples is evenly and
randomly distributed over m different machines; each machine j locally stores and accesses
n training samples Dj = {xji, yji}ni=1. Let us denote Fj(w) := 1

n

∑n
i=1 f(w;xji, yji) the

local empirical risk evaluated on Dj . The global objective is then to minimize the average
of these local empirical risk functions

min
w∈Rp

F (w) =
1

m

m∑
j=1

Fj(w). (2)

Recently, significant interest has been dedicated to designing distributed algorithms and
systems that have flexibility to adapt to the communication-computation tradeoffs, e.g., for
parameter estimation (Jaggi et al., 2014; Shamir et al., 2014) and statistical inference (Wang
et al., 2017a; Jordan et al., 2018). A common spirit of these communication-efficient meth-
ods is trying to quickly optimize the objective value (or estimation accuracy) to certain
precision using a minimal number of inter-machine communication rounds.

In this article we revisit the Distributed Approximate NEwton (DANE) algorithm pro-
posed by Shamir et al. (2014) for solving (2), which is now one of the most popular second-
order methods for communication-efficient distributed machine learning. We analyze its
convergence behavior, expose problems and issues, and propose alternative algorithms more
suitable for the task. We contribute to derive some new results, insights and algorithms,
using a unified and more elementary framework of Lyapunov analysis.

1.1 Review of the DANE Method

For the distributed ERM problem (2), the iteration (communication) complexity of first-
order distributed approaches including (accelerated) gradient descent and ADMM (alternat-
ing direction method of multipliers) (Boyd et al., 2011) tend to suffer from the unsatisfactory
polynomial dependence on condition number. To tackle this problem, Shamir et al. (2014)
proposed the DANE method that takes advantage of the stochastic nature of problem: the
i.i.d. data samples {xi, yi} are uniformly distributed and each local subproblem should be
close to the global problem when data size becomes sufficiently large. At the t-th iteration
loop of DANE, in parallel each individual worker machine j optimizes a local subproblem

w
(t)
j = arg minw P

(t−1)
j (w) in which

P
(t−1)
j (w) :=〈η∇F (w(t−1))−∇Fj(w(t−1)), w〉+

γ

2
‖w − w(t−1)‖2 + Fj(w). (3)

Then the master machine computes and broadcasts the averaged model w(t) = 1
m

∑m
j=1w

(t)
j

and its full gradient ∇F (w(t)) = 1
m

∑m
j=1∇Fj(w(t)) in a map-reduce fashion.

The construction of the local objective (3) is inspired by the idea of leveraging the global
first-order information and local higher-order information for local processing. If F (w) is
quadratic with condition number κ = L/µ (see Table 2 for notation), then the commu-
nication complexity (with high probability) of DANE to reach ε-precision was shown to
be O

(
κ2n−1 log(1/ε)

)
which has a much improved dependency on the condition number κ
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(a) Quadratic loss: communication complexity (b) Logistic loss: global convergence

Figure 1: (a) The number of communication rounds (y-axis) versus number of machines
(x-axis) curves of DANE on a synthetic ridge regression task (N = 2000, p =
200). Here we set µ = O(1/

√
mn), γ = O(1/

√
n) and precision ε = 10−5.

Roughly speaking, the communication complexity scales linearly with respect
to
√
m. (b) Illustration of the convergence behavior of D2ANE, DANE-LS and

InexactDane on a synthetic logistic regression task (N = 1000, p = 200,m = 4)
with γ = O(1/

√
n). Each experiment is randomly replicated 10 times.

that could scale as large as O(
√
mn) in statistical learning problems. The InexactDane

(Reddi et al., 2016) method is an inexact implementation of DANE that allows the local
sub-problem to be solved inexactly but still possess the above improved communication
complexity bounds for quadratic problems. By applying Nesterov’s acceleration technique,
AIDE (Reddi et al., 2016) and MP-DANE (Wang et al., 2017b) further reduce the commu-
nication complexity to O

(√
κn−1/4 log(1/ε)

)
in the quadratic case, which is nearly tight in

view of the lower bound established by Arjevani and Shamir (2015).

On top of the attractive communication-efficiency, another appealing aspect of DANE
lies in its versatility in implementation. This is because by nature DANE is an algorithm-
agnostic optimization framework, in the sense that the local subproblems can be solved by
applying virtually any algorithms designed for the global problem. From the perspective
of implementation, this enables fast adaptation of the available single-machine algorithm
code to distributed software platform. This contrasts DANE from those algorithm-specific
methods such as DiSCO (Zhang and Xiao, 2015) (rooted from damped Newton method)
and DSVRG (Shamir, 2016; Lee et al., 2017) (rooted from SVRG). What’s more, DANE
does not require to access a second-order oracle for its execution, nor does it restrict to any
specific problem structure such as the linear prediction models focused by DSCOVR (Xiao
et al., 2019) and GIANT (Wang et al., 2018).
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Open issues and motivation. Despite the above-mentioned advantages of DANE and its
variants, this family of algorithms still exhibits several issues regarding convergence that
remain open for exploration, which are raised below.

• Question 1. Is the convergence bound of plain DANE tight even for quadratic prob-
lems? The communication complexity of plain (exact or inexact) DANE is known to
be O

(
κ2n−1 log(1/ε)

)
for stochastic quadratic problems (Shamir et al., 2014; Reddi

et al., 2016). Since for outer-loop communication DANE only needs to access a first-
order oracle of the global problem, we have strong reason to conjecture that the
factor on condition number matching this mechanism should be as sharp as κn−1/2,
even without any momentum acceleration. As visualized in Figure 1(a) for a ridge
regression example with κ = O(

√
mn), it is roughly the case that the number of

communication rounds scales linearly with respect to
√
m. This leaves a potential

theoretical gap between m and
√
m to be closed.

• Question 2. Can the strong guarantees of DANE be extended to non-quadratic prob-
lems? The strong communication complexity bounds of DANE-type methods, with
or without acceleration, are so far only rigorous for quadratic problems (Shamir et al.,
2014; Reddi et al., 2016; Wang et al., 2017b). For more generic convex loss functions,
the related bounds are obtained under γ = O(L) which are as slow as those of the
ordinary first-order methods and thus are less informative for theoretical justification
of performance. It is not clear if DANE-type methods can be guaranteed to converge
in the regime γ � L of interest. In Figure 1(b), we plot the convergence curves
of InexactDane under γ = O(Ln−1/2) on a synthetic logistic regression task, from
which we can observe that apparent zigzag effect occurs in the early stage of communi-
cation. Therefore, a natural question to ask is whether the desirable strong guarantees
of DANE can be extended to a wider problem spectrum beyond ridge regression.

The primary goal of this work is to answer Question 1 and Question 2 so as to gain
deeper understanding of the convergence behavior of DANE in theory and practice.

1.2 Overview of Our Contribution

We address the above questions regarding the convergence of DANE and make progress
towards fully understanding DANE both for quadratic and non-quadratic convex functions.
To achieve this goal, we propose two new alternatives which are more suitable for con-
vergence analysis as well as for algorithm acceleration. We first propose the DANE-LS
algorithm as a slight modification of DANE equipped with backtracking line search. The
motivation of introducing the line search step is to ensure global asymptotic convergence
and facilitate local non-asymptotic analysis for non-quadratic convex problems, which is
key to answering Question 2. As another notable difference, DANE-LS only requires the
master machine (say F1) to solve its local subproblem to obtain the next iterate, while the
worker machines (say Fj , j = 2, ...,m) wait. Such a modification turns out to be beneficial
for improving the convergence analysis for quadratic loss, which answers Question 1.

We then show that DANE can be readily accelerated via applying the heavy-ball accel-
eration technique (Polyak, 1964; Qian, 1999). To this end, we modify the iteration of DANE
by adding a small momentum term β(w(t−1)−w(t−2)) for some β > 0 to the current iterate
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Method Quadratic Problem Non-quadratic Problem

Without
momentum
acceleration

DANE O
(
κ2

n log
(

1
ε

))
O
(
κ log

(
1
ε

))
InexactDane O

(
κ2

n log
(

1
ε

))
O
(
κ log

(
1
ε

))
DANE-LS (ours) O

(
κ√
n

log
(

1
ε

)) Globally convergent with

local rate O
(
p1/2κ√

n
log
(

1
ε

))
With

momentum
acceleration

AIDE O
( √

κ

n1/4 log
(

1
ε

))
O
(√
κ log

(
1
ε

))
MP-DANE O

( √
κ

n1/4 log
(

1
ε

))
7

DANE-HB (ours) O
( √

κ

n1/4 log
(

1
ε

))
Local rate: O

(
p1/4
√
κ

n1/4 log
(

1
ε

))
D2ANE (ours) O

( √
κ

n1/4 log
(

1
ε

))
O
( √

κ

n1/4 log2
(

1
ε

))
Table 1: Comparison of communication complexity bounds of different DANE-type meth-

ods without (top panel) or with (bottom panel) momentum acceleration. All the
bounds for quadratic problem and our results for non-quadratic problem hold with
high probability over the random draw of local i.i.d. data. The other results are
deterministic. The x-mark “7” indicates that the related result was not available
in the original reference of method.

w(t). We call this alternative as DANE-HB. For quadratic problems, we prove that such a
simple momentum strategy boosts the communication complexity of DANE to match those
of AIDE and MP-DANE but with more elementary analysis. As a perhaps more interesting
contribution, DANE-HB can also be shown to have about the same near-optimal bound for
strongly convex and twice differentiable objectives in a vicinity of the minimizer, which has
not been covered by the previous analysis. For the widely used linear prediction model with
smooth and convex losses, we further develop D2ANE as a nested Newton-type extension
of DANE-HB which can be shown to converge globally at a near-optimal rate.

Highlight of results. Table 1 summarizes our main results on communication complexity
of DANE-LS and DANE-HB/D2ANE in stochastic setting and compares them with prior
DANE-type methods. These results are divided into two groups respectively for quadratic
and non-quadratic strongly convex problems. We use the big O notation to hide the log-
arithmic factors involving quantities other than ε. As highlighted in the colored cells of
Table 1, we contribute several new theoretical insights into DANE, as elaborated below.

• The bound highlighted in light red shade gives an affirmative answer to Question 1.
That is, in the quadratic case, DANE-LS attains a tighter communication complex-
ity bound O

(
κn−1/2 log(1/ε)

)
than the already known O

(
κ2n−1 log(1/ε)

)
bound for

DANE. Such an improvement is achieved by applying a minimal modification of al-
gorithm with model averaging removed on the master machine (note that the line
search option of DANE-LS is not activated for quadratic problems). This implies that
even without any momentum acceleration, DANE actually can converge faster than
already recognized in theory.
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• The result highlighted in light blue shade answers Question 2 affirmatively. To be more
specific, blessed by the backtracking line search, DANE-LS with arbitrary values of
γ > 0 can be proved to converge globally to the unique minimizer when the objec-
tive function is strongly convex and twice differentiable. In Figure 1(b) we illustrate
the global convergence of DANE-LS when applied to a synthetic logistic regression
task. The benefit of line search to DANE-type methods has also been numerically
observed in Wang et al. (2018), but without theoretical justification. In the late stage
of iteration when the iterate is sufficiently close to the minimizer, the communication
complexity of DANE-LS is upper bounded by O

(
p1/2κn−1/2 log(1/ε)

)
. Here the addi-

tional factor p1/2 arises from invoking uniform concentration analysis to the spectral
norm ‖∇2F1 −∇2F‖ over a bounded domain of interest.

• From the third column of Table 1 we can see that DANE-HB matches AIDE and
MP-DANE in communication complexity for quadratic problem. For non-quadratic
smooth and strongly convex loss functions, the results highlighted in light brown shade
shows that DANE-HB possesses an O

(
p1/4√κn−1/4 log(1/ε)

)
communication com-

plexity bound in a local area around the minimizer. Specially for linear prediction
models, by integrating DANE-HB into an inexact Newton-type quadratic approxima-
tion framework, we can show that an improved near-tight boundO

(√
κn−1/4 log2(1/ε)

)
holds globally for D2ANE, hence answers Question 2 when algorithm acceleration is
considered. In contrast, the global convergence bound is as slow as O (

√
κ log (1/ε))

for AIDE, while for MP-DANE such a bound is not available. See Figure 1(b) for
an illustration of the convergence behavior of D2ANE and Table 3 for additional
comparison with some other relevant distributed learning methods.

1.3 Other Related Work

Driven by the ever-increasing demand on scaling up machine learning models in modern
distributed computing environment, a vast body of distributed optimization algorithms has
been developed in several relevant lines of research. A substantial number of these works,
including the DANE-type algorithms we work on in this article, focus on communication-
efficient distributed learning which is preferable when the network has severely limited
bandwidth and high latency (Jaggi et al., 2014; Richtárik and Takáč, 2016; Lee et al.,
2017; Jordan et al., 2018; Chen et al., 2020). For a class of self-concordant empirical risk
functions, Zhang and Xiao (2015) proposed DiSCO as a distributed inexact damped Newton
method in which the Newton step is optimized via a preconditioned conjugate gradient
procedure. For quadratic problems, DiSCO attains a near-tight communication complexity
bound O

(√
κn−1/4 log(1/ε)

)
which was soon after matched by AIDE. The SPAG method

proposed by Hendrikx et al. (2020) is a preconditioned accelerated first-order algorithm that
achieves near-tight rate of convergence for distributed optimization. For high-dimensional
sparse estimation, EDSL (Wang et al., 2017a) and DINPS (Liu et al., 2019) respectively
extend the idea of DANE to solving distributed `1-ERM and `0-ERM problems, obtaining
analogous improvement in communication efficiency.

For large-scale convex learning with linear models, CoCoA (Jaggi et al., 2014) and Co-
CoA+ (Ma et al., 2015; Smith et al., 2018) were developed inside the framework of block
coordinate descent/ascent to perform expensive local computations with the aim of reduc-
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ing the overall communications across the network. In the same problem setting, Xiao
et al. (2019) proposed DSCOVR as a family of randomized primal-dual block coordinate
algorithms for asynchronous distributed optimization with a roughlyO (m log(1/ε)) commu-
nication complexity bound. Also for linear prediction models, the GIANT method (Wang
et al., 2018) improves over DANE in communication complexity bound under the condition
that sample size should be sufficiently larger than feature size.

With additional memory and preprocessing at each machine, Lee et al. (2017) showed
that SVRG (Johnson and Zhang, 2013) can be adapted for distributed optimization to
attain O(1) communication complexity, and nearly linear speed-up in first-order oracle
computation complexity can be achieved in the regime where sample size dominates condi-
tion number. Specifically for linear models, a more efficient implementation of distributed
SVRG method was proposed and analyzed by Shamir (2016) under the without replacement
sampling strategy. By combining DSVRG with minibatch passive-aggressive updates, the
MP-DSVRG method (Wang et al., 2017b) was shown to have provably better tradeoff be-
tween communication and memory efficiency for quadratic loss functions. The equivalence
between a distributed implementation of SVRG and InexactDane has been revealed in the
framework of Federated SVRG (Konečnỳ et al., 2016) for distributed machine learning with
extremely large number of nodes. Last but not least, the well designed distributed learning
platforms such as MapReduce (Dean and Ghemawat, 2008), Apache Spark (Zaharia et al.,
2016), Petuum (Xing et al., 2015), Parameter Server (Li et al., 2014), “AI-Box” (GPU
parameter servers for commercial Ads CTR models) (Zhao et al., 2019, 2020), etc., have
significantly facilitated the system implementation of distributed optimization algorithms.

1.4 Organization and Notation

Paper organization. The rest of this article is organized as follows: In Section 2, we introduce
DANE-LS as a new alternative of DANE with backtracking line search and analyze its
convergence rate for quadratic and non-quadratic convex problems. In Section 3, we propose
DANE-HB to accelerate DANE using heavy-ball approach, along with a variant specifically
designed for linear prediction with convex losses. The numerical evaluation results are
presented and discussed in Section 4. Finally, we conclude this article in Section 5. All the
technical proofs of theoretical results are deferred to the appendix section.

Notation. The key quantities and notations that commonly used in our analysis are sum-
marized in Table 2. In stochastic setting, unless otherwise stated, we use the big O notation
that hides inside the logarithmic factors involving quantities other than ε.

2. Globalization of DANE with Sharper Analysis

In this section, we provide a global and sharper analysis of the plain version of DANE
method without applying any momentum acceleration. The analysis is actually conducted
on a modified version of DANE augmented with backtracking line search, while only a
master machine is allocated to do local computation in an inexact manner. Such simple
modifications turn out to be beneficial for the global asymptotic and local non-asymptotic
analysis of DANE.
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Notation Definition

m number of worker machines
n number of training samples distributed on each individual worker machine

N = mn total number of training samples
p number of features

F (w) global risk function
F1(w) local risk function on the master machine
L Lipschitz smoothness modulus of the gradient vector ∇F (w)
ν Lipschitz smoothness modulus of the Hessian matrix ∇2F (w)
µ strong convexity modulus of F (w)

κ = L/µ condition number of F (w)
β momentum strength coefficient for heavy-ball acceleration
ε sub-optimality of the global problem
ε sub-optimality of the local subproblem
γ regularization strength of the local subproblem
δ tail probability bound in stochastic setting

[N ] abbreviation of the index set {1, ..., N}
‖x‖ =

√
x>x Euclidean norm of a vector x

λmax(A) the largest eigenvalue of a matrix A
λmin(A) the smallest eigenvalue of a matrix A
A � B A−B is symmetric, positive semi-definite
A � B A−B is symmetric, positive definite
‖A‖ spectral norm of matrix A
ρ(A) spectral radius of A, i.e., its largest (in modulus) eigenvalue

Table 2: Table of notation.

2.1 Leveraging Backtracking Line Search

Since DANE is essentially an approximated second-order method, it is natural to consider
introducing an additional line search operation to hopefully guarantee global convergence
while preserving the appealing local rate of convergence. In practice, the numerical evidence
in the work of Wang et al. (2018) has already demonstrated that backtracking line search
is beneficial for improving the convergence performance of DANE-type methods, although
without any theoretical support. In view of these, we propose the DANE-LS (DANE with
Line Search) method which is outlined in Algorithm 1. The notable differences between
DANE-LS and the vanilla DANE are summarized in below:

• For non-quadratic problems, two optional backtracking line search steps (as high-
lighted in gray shade) are conducted on the master machine. The Option-I needs
to evaluate the global objective value and hence requires additional communication
cost. By only accessing the locally available information, the Option-II is free of
evaluating the global objective value but at the price of introducing an additional
hyper-parameter ν which quantifies the smoothness of Hessian.
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Algorithm 1: DANE with backtracking Line Search: DANE-LS(γ, ρ, ν)

Input : Parameters γ, ν > 0, ρ ∈ (0, 1/3].
Output: w(t).
Initialization Set w(0) = 0 or w(0) ≈ arg minw F1(w).
for t = 1, 2, ... do

/* Global computation on the master machine associated with F1(w)
*/

Compute ∇F (w(t−1)) = 1
m

∑m
j=1∇Fj(w(t−1));

Estimate w̃(t) such that ‖∇P (t−1)(w̃(t))‖ ≤ εt, where

P (t−1)(w) := 〈∇F (w(t−1))−∇F1(w(t−1)), w〉+
γ

2
‖w − w(t−1)‖2 + F1(w); (4)

if The objective function F is non-quadratic then
/* Backtracking line search */

Update w(t) = (1− ηt)w(t−1) + ηtw̃
(t) with proper ηt ∈ (0, 1] which

satisfies either of the following sufficient descent condition for the provided ρ:

(Option-I) /* Line-search with global value evaluation. */

F (w(t)) ≤ F (w(t−1))− ψ(w̃(t), w(t−1)), (5)

where

ψ(w̃(t), w(t−1)) :=ηtρ〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉
− ηtεt‖w̃(t) − w(t−1)‖;

(Option-II) /* Line-search without global value evaluation. */

〈∇F (w(t−1)), w(t) − w(t−1)〉+ (w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3 ≤ −ψ(w̃(t), w(t−1)).

end
else

w(t) = w̃(t);
end
/* Local gradient evaluation on worker machines */

For each machine j, compute ∇Fj(w(t)) and send it to the master machine;

end
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• As another notable difference, only a master machine is in charge of solving a local
subproblem associated with F1(w) to obtain the next iterate, during which time the
other worker machines stay idle. Such a master-slave architecture has been widely
adopted and investigated in many distributed machine learning and statistical infer-
ence approaches (Shamir, 2016; Lee et al., 2017; Wang et al., 2017a; Jordan et al.,
2018). Allowing only master to do the heavy lifting is certainly more energy saving
and less sensitive to network latency.

As the consequence of the above modifications, DANE-LS can be shown to improve
over DANE not only for non-quadratic convex objectives (see Section 2.3) but also for the
well-studied quadratic case (see Section 2.2). Moreover, the master-slave computing ar-
chitecture eases the extension of analysis to the heavy-ball acceleration presented in the
next section. It is noteworthy that the local subproblem is allowed to be solved inexactly
with sub-optimality ‖∇P (t−1)(w̃(t))‖ ≤ εt. Such a local sub-optimality condition is com-
putationally more tractable for verification than those of InexactDane and AIDE with
unknown local minimizers involved, and hence is more practical from the perspective of
algorithm implementation.

2.2 Sharper Bounds for Quadratic Functions

We start by analyzing DANE-LS in a simple yet informative regime where the loss functions
are quadratic. In this setting, the line search options will not be activated throughout the
algorithm execution. Our analysis assumes the conditions of strong convexity and Lipschitz
smoothness which are conventionally used in analyzing distributed optimization algorithms.

Definition 1 (Strong Convexity/Smoothness) A differentiable function g is µ-strongly-
convex and L-smooth if ∀w,w′,

µ

2
‖w − w′‖2 ≤ g(w)− g(w′)− 〈∇g(w′), w − w′〉 ≤ L

2
‖w − w′‖2.

The ratio value κ = L/µ is referred to as the condition number. We further introduce the
concept of Lipschitz continuous Hessian which characterizes the smoothness of gradient.

Definition 2 (Lipschitz Continuous Hessian) We say a twice continuously differen-
tiable function g has Lipschitz continuous Hessian with constant ν ≥ 0 (ν-LH) if ∀w,w′,∥∥∇2g(w)−∇2g(w′)

∥∥ ≤ ν‖w − w′‖.
Let w∗ = arg minw F (w) denote the global minimizer of F . The following theorem is

our main result on the convergence rate of DANE-LS for quadratic functions in terms of
parameter estimation error.

10



On Convergence of Distributed Approximate Newton Methods

Theorem 3 (Convergence rate of DANE-LS for quadratic loss) Assume that the loss
function is quadratic. Let H and H1 be the Hessian matrices of the global objective F
and local objective F1, respectively. Assume that µI � H � LI. Given precision ε > 0,

if ‖H1 − H‖ ≤ γ and εt ≤ µ2‖∇F (w(t−1))‖
2(µ+2γ)L , then Algorithm 1 will output w(t) satisfying

‖w(t) − w∗‖ ≤ ε after

t ≥ 2(µ+ 2γ)

µ
log

(√
κ‖w(0) − w∗‖

ε

)
rounds of iterations.

As a comparison, the communication complexity bounds established for DANE (Shamir
et al., 2014, Lemma 1) and InexactDane (Reddi et al., 2016, Corollary 1) are both of
the order O

(
γ2/µ2 log(1/ε)

)
, which are inferior to the O (γ/µ log(1/ε)) bound established

in Theorem 3, as long as γ/µ > 1. After a careful inspection of the technical proofs
in Shamir et al. (2014); Reddi et al. (2016), we notice that the looseness of the former
bounds essentially comes from the reduce step conducted by master machine for aggregating
models from local workers, and such an issue is seemingly difficult to be remedied inside the
original architecture of DANE. In this paper, with the proposed modifications, the tighter
bound in Theorem 3 can be attained based on a fairly elementary analysis. This answers
Question 1 affirmatively.

We further derive the following result as an implication of Theorem 3 to the stochastic
setting where the samples are uniformly randomly distributed over machines.

Corollary 4 Assume the conditions in Theorem 3 hold and ‖∇2f(w;xi, yi)‖ ≤ L for all
i ∈ [N ]. Then for any δ ∈ (0, 1), with probability at least 1 − δ over the samples drawn to

construct F1, Algorithm 1 with γ = L

√
32 log(p/δ)

n will output w(t) satisfying ‖w(t)−w∗‖ ≤ ε
after

t ≥

(
2 + 4κ

√
32 log(p/δ)

n

)
log

(√
κ‖w(0) − w∗‖

ε

)
rounds of iterations.

Remark 5 In statistical learning problems, the condition number κ could scale as large
as O(

√
mn) for optimal generalization (Shalev-Shwartz et al., 2009). If this is the case,

then Corollary 4 implies an O (
√
m log(1/ε)) communication complexity bound for stochastic

quadratic problems, which contrasts itself from the O (m log(1/ε)) bound previously known
for vanilla DANE and InexactDane methods. Notice, such improvement is of particular
interest in the regime of federated machine learning where the number of computing nodes
m could be huge (Konečnỳ et al., 2016; McMahan et al., 2017).

We comment that in the quadratic case, DANE-LS shares an identical spirit of precondi-
tioning to the distributed preconditioned conjugate gradient (DPCG) method developed for
computing the inexact Newton step of DiSCO (Zhang and Xiao, 2015). Actually, based on
the similarity between local and global Hessian matrices, F1 essentially serves as a precon-
ditioner which is effective in significantly reducing the condition number of local objective

11
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P (t) when local data is sufficiently correlated to the global one. As we will show shortly in
the next subsection that such a preconditioning effect of F1 is also beneficial for improv-
ing the communication efficiency of DANE-LS for non-quadratic strongly convex problems.
From the viewpoint of implementation, in contrast to DPCG that is implemented based
on preconditioned conjugate gradient method, the local preconditioned subproblems in our
method can be more flexibly optimized via a wider spectrum of algorithms including the
stochastic variance reduction methods to gain better computational efficiency.

2.3 Global Analysis for Strongly Convex Functions

We now move to consider the more general regime in which the objective function is strongly
convex and twice differentiable with Lipschitz continuous Hessian. First, we show in the
following key lemma that the proposed global and local backtracking line search steps are
always feasible under natural conditions.

Lemma 6 (Feasibility of line search) Assume that F is L-smooth and F1 is µ-strongly
convex. For any given ρ ∈ (0, 1),

(a) if the length of search satisfies

0 < ηt ≤ min

{
1,

2(γ + µ)(1− ρ)

L

}
,

then the global backtracking line search (Option-I) is feasible, i.e.,

F (w(t)) ≤ F (w(t−1))− ψ(w̃(t), w(t−1)),

where ψ(w̃(t), w(t−1)) := ηtρ〈∇F1(w̃(t))−∇F1(w(t−1))+γ(w̃(t)−w(t−1)), w̃(t)−w(t−1)〉−
ηtεt‖w̃(t) − w(t−1)‖.

(b) Moreover, assume that F1(w) has ν-LH and ∃D > 0 such that ‖w̃(t) − w(t−1)‖ ≤ D
for all t ≥ 0. If

ηt ≤ min

{
1,
−(3νD + 6(γ + µ)) +

√
(3νD + 6(γ + µ))2 + 96(1− ρ)νD(γ + µ)

4νD

}
,

then the local backtracking line search (Option-II) is feasible, i.e.,

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3 ≤ −ψ(w̃(t), w(t−1)).

Remark 7 The bound D in the part (b) of Lemma 6 is reasonable if we focus on an `2-
norm bounded domain of interest Ω such that D = maxw,w′∈Ω ‖w − w′‖. The result also
implies that if the Option-I is carried out under Armijo rule for global line search, then the
additional rounds of communication needed for global objective evaluation is roughly of the

order O
(

log
(

L
(γ+µ)(1−ρ)

))
.

12
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The following theorem is our main result on the global convergence of DANE-LS.

Theorem 8 (Global convergence of DANE-LS) Assume that F (w) and F1(w) are L-

smooth, µ-strongly-convex and have ν-LH. Suppose that εt ≤ ρ(µ+γ)
2(L+γ)+ρ(µ+γ)‖∇F (w(t−1))‖.

(a) Then the objective value sequence {F (w(t))} generated by Algorithm 1 with the global
line search step (Option-I) converges and the difference norm sequence {‖w̃(t)−w(t−1)‖}
converges to zero.

(b) Assume in addition that supw ‖∇2F1(w)−∇2F (w)‖ ≤ γ and ‖w̃(t)−w(t−1)‖ is bounded
from above for all t ≥ 0. Then the objective value sequence {F (w(t))} generated by
Algorithm 1 with the local line search step (Option-II) converges and the difference
norm sequence {‖w̃(t) − w(t−1)‖} converges to zero.

Remark 9 Theorem 8 suggests a natural way of controlling the termination of Algorithm 1
by monitoring either the objective value progress |F (w(t)) − F (w(t−1))| or the estimation
vector difference ‖w̃(t) − w(t−1)‖.

Local non-asymptotic convergence. We further study the local convergence behavior of
DANE-LS. The starting point is to show, via the following lemma, that the unit length
eventually satisfies the sufficient descent condition in (5).

Lemma 10 (Acceptability of unit length for line search) Assume that the conditions
in Theorem 8 hold. Then for any fixed ρ ∈ (0, 1/3], the unit length ηt = 1 guarantees the
sufficient descent condition (5) provided that t is sufficiently large.

The following lemma establishes the local convergence rate of Algorithm 1 when ηt ≡ 1,
i.e., when the unit length is always accepted by the backtracking line search.

Lemma 11 (Local convergence rate of DANE-LS) Assume that F and F1 are L-smooth,
µ-strongly-convex and have ν-LH. Assume that supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ. Let τ =⌈
µ+2γ

2µ log (4κ)
⌉

. Suppose that εt ≤ min
{

(γ + µ)2, ‖∇F (w(t−1))‖2
L2

}
and max0≤i≤τ−1 ‖w(i) −

w∗‖ ≤ (γ+µ)
4(6ν+1)

√
κτ

. Then for any ε > 0, Algorithm 1 with ηt ≡ 1 will attain estimation error

‖w(t) − w∗‖ ≤ ε after

t ≥ 4τ log

(
γ + µ

4(6ν + 1)
√
κτνε

)
rounds of iterations.

Remark 12 Lemma 11 essentially shows that up to the logarithmic factors on κ and τ , the
local communication complexity of DANE-LS is upper bounded by O(γ/µ log (1/ε)), which
matches the bound for the quadratic function.

We are now ready to present our main result on the local non-asymptotic convergence
of DANE-LS for strongly convex functions.
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Theorem 13 (Non-asymptotic convergence of DANE-LS) Assume that F and F1

are µ-strongly-convex, L-smooth and have ν-LH. Assume that supw ‖∇2F1(w)−∇2F (w)‖ ≤
γ. Suppose that ρ ∈ (0, 1/3] and

εt ≤ min

{
(γ + µ)2,

‖∇F (w(t−1))‖2

L2
,

ρ(µ+ γ)

2(L+ γ) + ρ(µ+ γ)
‖∇F (w(t−1))‖

}
.

Let τ =
⌈
µ+2γ

2µ log (4κ)
⌉

. Then there exists a time stamp t0, which is invariant to ε, such

that Algorithm 1 will output solution w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ t0 + 4τ log

(
γ + µ

4(6ν + 1)
√
κτ

(
1

ε

))
rounds of iterations.

Remark 14 Theorem 13 reveals that DANE-LS converges globally towards w∗ and in a
local area around w∗ it enjoys a linear rate of convergence with complexity O(γ/µ log(1/ε)).
We comment on the choice of γ in the stochastic setting. For the considered L-smooth
objective functions, standard uniform concentration theory (see, e.g., Zhang and Xiao,
2015; Mei et al., 2018) suggests that the concentration bound supw ‖∇2F1(w)−∇2F (w)‖ ≤
γ = O

(
L
√
p/n

)
holds with high probability over a bounded domain of interest. Then

with such a choice of γ the local communication complexity of DANE-LS is bounded as
O
(
p1/2κn−1/2 log(1/ε)

)
with high probability, which shows the benefit of statistical correla-

tion of local problems for global optimization when n � p. This result partially answers
Question 2 as raised in Section 1.1.

3. Heavy-Ball Acceleration of DANE

We further introduce a simple yet effective momentum acceleration method for DANE
based on the classic heavy-ball approach (Polyak, 1964), which has long been acknowledged
to work favorably for accelerating first-order optimization methods (Ghadimi et al., 2015;
Wilson et al., 2016; Loizou and Richtárik, 2017; Zhou et al., 2018; Chee and Li, 2020).

3.1 The DANE-HB Algorithm

As outlined in Algorithm 2, the proposed DANE-HB method shares an almost identical
centralized computing architecture to DANE-LS. The main difference is that for local sub-
problem optimization in the master machine, we first estimate w̃(t) ≈ arg minw P

(t−1)(w),
and then compute w(t) = w̃(t) + β(w(t−1) − w(t−2)) as a linear combination of w̃(t) and the
previous two iterates, where β > 0 is the momentum strength coefficient. It is optional to
implement the backtracking line search steps (like in Algorithm 1) which work well in our
numerical practice to obtain global convergence, although there is no theoretical guaran-
tee that the difference vector w(t) − w(t−1) should point to a descent direction. Regarding
initialization, the simplest way is to set w(−1) = w(0) = 0, i.e., starting the iteration from
scratch. Since F1(w) is expected to be close to F (w) in stochastic setting, another reason-
able option of initialization is to set w(−1) = w(0) ≈ arg minw F1(w) which is also expected
to be close to the global solution w∗.
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Algorithm 2: DANE with Heavy-Ball acceleration: DANE-HB(γ, β)

Input : Parameters γ, β > 0.
Output: w(t).
Initialization Set w(0) = 0 or w(0) ≈ arg minw F1(w). Let w(−1) = w(0).
for t = 1, 2, ... do

/* Global computation on master machine */

Compute ∇F (w(t−1)) = 1
m

∑m
j=1∇Fj(w(t−1));

Estimate w̃(t) such that ‖∇P (t−1)(w̃(t))‖ ≤ εt, where P (t−1) is defined by (4);
Compute w(t) = w̃(t) + β(w(t−1) − w(t−2));
(Optionally) Conduct backtracking line search.
/* Local gradient evaluation on worker machines */

For each machine j, compute ∇Fj(w(t)) and send it to the master machine;

end

3.2 Convergence Results for Quadratic Functions

The following result shows that the heavy-ball acceleration strategy can improve the com-
munication efficiency of DANE for quadratic problems.

Theorem 15 (Convergence rate of DANE-HB for quadratic function) Assume that
the loss function is quadratic. Let H and H1 be the Hessian matrices of the global objective

F and local objective F1, respectively. Assume that µI � H � LI. Set β =
(

1−
√

µ
µ+2γ

)2

and εt =
√

2(µ+γ)‖∇F (w(0))‖
2L(t+1)2

(
1− 1

2

√
µ

µ+2γ

)t+1
. Given precision ε > 0, if ‖H1 − H‖ ≤ γ,

then Algorithm 2 will output w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ 2

√
µ+ 2γ

µ
log

(
2
√

2c‖w(0) − w∗‖
ε

)
rounds of iterations, where c is a constant relying on

√
µ/(µ+ 2γ).

The following corollary is the implication of Theorem 15 in stochastic setting.

Corollary 16 Assume the conditions in Theorem 15 hold and ‖∇2f(w;xi, yi)‖ ≤ L for all
i ∈ [N ]. Then for any δ ∈ (0, 1), with probability at least 1 − δ over the random samples

drawn to construct F1, Algorithm 2 with γ = L

√
32 log(p/δ)

n will attain estimation error

‖w(t) − w∗‖ ≤ ε after

t ≥ O
( √

κ

n1/4
log1/4

(p
δ

)
log

(
1

ε

))
rounds of iterations.

Remark 17 The result shows that in the quadratic case, DANE-HB matches the commu-
nication complexity lower bounds (up to logarithmic factors) proved by Arjevani and Shamir
(2015). Similar guarantees for quadratic problems have also been proved for AIDE and MP-
DANE based on the catalyst acceleration technique (Lin et al., 2015), and for DiSCO based
on preconditioned conjugate gradient methods.
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3.3 Convergence Results for Strongly Convex Functions

We further study the performance of DANE-HB when applied to a broad class of strongly
convex functions with Lipschitz continuous Hessian. In this general case, the following result
shows that in a vicinity of the global minimizer, DANE-HB enjoys the same appealing rate
of convergence as established for the ridge regression problems.

Theorem 18 (Local convergence rate of DANE-HB) Assume that F and F1 are L-
smooth, µ-strongly-convex and has ν-LH. Assume that supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ.

Choose β =
(

1−
√
µ/(µ+ 2γ)

)2
. Let τ =

⌈
2
√

(µ+ 2γ)/µ log(2c)
⌉

in which c is a constant

dependent on
√
µ/(µ+ 2γ). Assume that εt ≤ min

{
(γ + µ)2, ‖∇F (w(t−1))‖2/L2

}
. Given

precision ε > 0, if max−1≤i≤τ−1 ‖w(i) − w∗‖ ≤ γ+µ

4(6ν+1)
√

2cτ
, then Algorithm 2 will output

w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ 4τ log

(
γ + µ

4(6ν + 1)cτ

(
1

ε

))
rounds of iterations.

Remark 19 It has been proved that AIDE converges at the rate of O (
√
κ log (1/ε)) for

non-quadratic strongly convex functions with γ = O(L), and that result is global (Reddi
et al., 2016, Theorem 6). In a local area around the global minimizer, we obtain the

O
(√

γ/µ log (1/ε)
)

rounds of communication bound in Theorem 18 for an arbitrary γ > 0

as long as the γ-related condition supw ‖∇2F1(w)−∇2F (w)‖ ≤ γ holds. Particularly, with

the choice of γ = O
(
L
√
p/n

)
as suggested by Zhang and Xiao (2015, Lemma 5), the local

communication complexity of DANE-HB scales as O
(
p1/4√κn−1/4 log(1/ε)

)
with high prob-

ability, which matches DiSCO and outperforms AIDE when n� p in large-scale statistical
learning problems.

3.4 Extension for Convex Optimization with Linear Models

So far, DANE-HB has been shown to converge globally for the quadratic objective, whilst
for non-quadratic problems it can merely be shown to converge in a vicinity of the global
minimizer. In this section, we move to study a special class of convex learning problems
with linear regression or prediction models. More specifically, we consider the loss function
of the form

f(w;xi, yi) = l(w>xi, yi) +
µ

2
‖w‖2,

where l(w>xi; yi) is a convex function that measures the linear regression/prediction loss of
w at data point (xi, yi) and µ > 0 controls the strength of `2-regularization. For example,
the quadratic loss l(w>xi, yi) = 1

2(yi − w>xi)2 is used in least squares regression and the
logistic loss l(w>xi, yi) = log

(
1 + exp(−yiw>xi)

)
in logistic binary classification. Then we

can re-express Problem (1)

min
w∈Rp

F (w) = F̃ (w) +
µ

2
‖w‖2,
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where F̃ (w) := 1
N

∑N
i=1 l(w

>xi, yi). For such a special strongly convex problem, we propose
a double-loop extension of DANE-HB and showcase that the proposed method enjoys a
global near-optimal communication complexity bound.

3.4.1 The D2ANE Algorithm

Algorithm 3: Distributed Doubly Approximate Newton: D2ANE(γ, β, `)

Input : Hyper-parameters γ, β, ` > 0. Typically γ = O(1/
√
n).

Output: w(t).
Initialization Set w(0) = 0 or w(0) ≈ arg minw F1(w).
for t = 1, 2, ... do

(S1) Construct a quadratic approximation function to F at w(t−1) which is
expressed as Q(t−1)(w) :=

F (w(t−1)) + 〈∇F (w(t−1)), w − w(t−1)〉+
1

2
(w − w(t−1))>H(w − w(t−1)), (6)

where H = `XX>

N + µI.

(S2) Estimate w(t) = DANE-HB(γ, β) by applying DANE-HB (Algorithm 2) to
Q(t−1)(w) with a warm-start initialization w(t−1) such that

Q(t−1)(w(t)) ≤ min
w
Q(t−1)(w) + εt.

end

D2ANE (Distributed Doubly Approximate NEwton) is formally stated in Algorithm 3.
The algorithm contains an outer-loop iteration for constructing an approximate Newton-
type quadratic approximation to the global empirical risk, which is then optimized via an
inner-loop DANE-HB method. More specifically, at each iterate w(t−1), we first construct in
the step S1 a quadratic approximation function Q(t−1)(w) to the original problem around
w(t−1) as expressed by (6). Then in the step S2 we apply DANE-HB as an inner-loop
iterative procedure to (approximately) optimize Q(t−1) in a distributed fashion. Suppose
that the loss function l(·, ·) is twice differentiable with respect to its first argument and
|l′′(a, ·)| ≤ ` for all a. Then we can verify that for any w, the Hessian matrix of F can be

upper bounded as∇2F (w) = 1
N

∑N
i=1 l

′′(w>xi, yi)xix
>
i +µI � `XX>

N +µI = H. This implies

that Q(t−1) is an upper bound of the second-order Taylor expansion of F at w(t−1), which
justifies our calling Q(t−1) as an approximate Newton-type quadratic approximation to F .

An alternative way for constructing the outer-loop quadratic approximation in Algo-
rithm 3 is to replace H with the exact Hessian matrix ∇2F (w(t)) in Q(t). For DiSCO,
such an exact Newton approximation step has been shown to work favorably for optimizing
self-concordant functions via damped Newton method (Zhang and Xiao, 2015). While it
is prospective to adapt D2ANE to that framework with quadratic subproblems solved by
DANE-HB rather than DPCG, we nevertheless still choose to work on the inexact Newton
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step (6) with a fixed Hessian H, which turns out to imply stronger communication bound
than its exact Newton counter part in terms of the dependence on feature dimension.

3.4.2 Convergence Analysis

Let X1 denote the subset of data samples associated with F1 that were stored on the master
machine. The following is our main result on the convergence rate of D2ANE for strongly
convex learning with linear models.

Theorem 20 (Convergence of D2ANE) Assume that the univariate functions li are `-
smooth and σ-strongly convex. Assume without loss of generality that ‖xi‖ ≤ 1. Let

H = `
NXX

> + µI and H1 = `
nX1X

>
1 + µI. Choose β =

(
1−

√
µ

µ+2γ

)2
and εt =

σ
2` exp

{
−σ(t−1)

2`

}
. If ‖H1 − H‖ ≤ γ, then Algorithm 3 will output solution w(t) with sub-

optimality F (w(t))− F (w∗) ≤ ε after

t ≥ 2`

σ
log

(
max

{
1, F (w(0))− F (w∗)

}
ε

)
rounds of outer-loop iterations and

O
(
`

σ

√
γ

µ
log2

(
1

ε

))
rounds of inner-loop iterations of DANE-HB.

Remark 21 When the univariate function li is second-order differentiable, the condition
of `-smooth and σ-strongly convex is identical to σ ≤ l′′i (·) ≤ `. For the quadratic loss
function l(w>xi, yi) = 1

2(yi − w>xi)
2, we have ` = σ = 1. For the binary logistic loss

l(w>xi, yi) = log
(
1 + exp(−yiw>xi)

)
, without loss of generality we assume ‖xi‖ ≤ 1 ∀i and

the domain of interest1 is bounded, i.e., ‖w‖ ≤ B for some B > 0. Then we can verify that
` = 1/4 and σ = exp(B)/(1+exp(B))2 which typically does not scale with feature dimension.

The following is a stochastic variant of Theorem 20 in the setting where the samples are
uniformly randomly distributed over machines.

Corollary 22 Assume the conditions in Theorem 20 hold. Then for any δ ∈ (0, 1), with
probability at least 1 − δ over the samples drawn to construct F1(w), Algorithm 3 with

γ = (`+ µ)

√
32 log(p/δ)

n will attain sub-optimality F (w(t))− F (w∗) ≤ ε after

t = O
(
`
√
κ

σn1/4
log1/4

(p
δ

)
log2

(
1

ε

))
.

rounds of inner-loop iterations of DANE-HB.

1. Concerning the domain of interest for D2ANE, let us consider the initialization w(0) = argminw F1(w)+
γ
2
‖w‖2 with γ = O(1/

√
n). Then in view of the stability arguments (see, e.g. Zhang and Xiao,

2015, Lemma 5) we can verify that E[F (w(0))] ≤ F (w∗) + O(1/
√
n) holds under mild conditions.

It can be seen from the proof of Theorem 20 that F (w(t)) ≤ F (w(t−1)) for all t ≥ 1, and thus
W := {w : F (w) ≤ F (w∗) +O(1/

√
n)} is a domain of interest which is expected to be well bounded

around w∗, e.g., in view of the strong convexity of F such that W ⊆
{
w : ‖w − w∗‖ ≤ µ−1/2n−1/4

}
.
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Method Ridge regression Logistic regression

GIANT O
(
log
(
κ
ε

))
7

DSVRG O
(
κ
n log

(
1
ε

)
+ κ2

mn log2
(

1
ε

))
O
(
κ
n log

(
1
ε

)
+ κ2

mn log2
(

1
ε

))
DiSCO O

( √
κ

n1/4 log
(

1
ε

))
O
(
p1/4

( √
κ

n1/4 log
(

1
ε

)
+ κ3/2

n3/4

))
DANE-HB (ours) O

( √
κ

n1/4 log
(

1
ε

))
Local rate: O

(
p1/4

√
κ

n1/4 log
(

1
ε

))
D2ANE (ours) O

( √
κ

n1/4 log
(

1
ε

))
O
( √

κ

n1/4 log2
(

1
ε

))
Table 3: Comparison of communication complexity for different distributed learning meth-

ods. The x-mark “7” indicates that the related result was not explicitly reported
in the corresponding reference.

Remark 23 To our best knowledge, this is the first provable near-optimal communication
complexity bound of DANE-type methods for non-quadratic loss functions.

3.5 Comparison against Prior Methods

In Section 1.2 we have highlighted the advantages of our proposed algorithms over sev-
eral prior DANE-type methods (see Table 1). In this subsection, to further compare our
methods against other distributed learning algorithms beyond DANE, we list in Table 3
the amount of communication required by DANE-HB/D2ANE and several representative
sample-distributed learning algorithms for solving ridge regression and logistic regression
problems. The amount of communication is measured by the number of vectors of size
p transmitted among the networked machines. Here we do not count the communication
cost spent for distributing data to machines which is required virtually by all the sample-
distributed methods. The only exception is DSVRG which, in addition to data allocation,
also requires to distribute a random subset of data in order to guarantee unbiased estima-
tion of batch gradient for local optimization. In the following elaboration, we highlight the
key messages taken from Table 3.

• Results for ridge regression. In this quadratic loss setting, GIANT (Wang et al.,
2018) has logarithmic dependence on the condition number κ and hence is superior
to the other methods that have polynomial bounds on κ. However, such an im-
provement of GIANT is only valid in the well-conditioned regime where the sample
size N should be sufficiently larger than feature dimension p. In contrast, with-
out needing to assume N � p, DiSCO (Zhang and Xiao, 2015), DANE-HB and
D2ANE require O

(√
κn−1/4 log(1/ε)

)
rounds of communications with O(p) bits com-

municated per round. The amount of communication required by DSVRG (Lee
et al., 2017) is O

(
κn−1 log(1/ε) + κ2(mn)−1 log2(1/ε)

)
in which the additional term

κ2(mn)−1 log2(1/ε) arises from distributing a multi-set sampled with replacement from
the entire data, and it certainly dominates the bound when κ = Ω(m). If this is the
case, then DSVRG will be comparable or superior to DiSCO/DANE-HB/D2ANE
when κ = O(n1/2m2/3), and otherwise the former will be inferior to the latter in
communication efficiency.
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• Results for logistic regression. For general smooth loss functions such as logistic
loss, GIANT exhibits linear-quadratic local convergence behavior but without any
communication complexity bound explicitly provided. The amount of communica-
tion required by DSVRG is still O

(
κn−1 log(1/ε) + κ2(mn)−1 log2(1/ε)

)
. For DiSCO,

the communication complexity becomes O
(
p1/4

(√
κ/n−1/4 log(1/ε) + κ3/2n−3/4

))
in

which the factor p1/4 comes from the uniform concentration analysis of the time vary-
ing Hessian matrices. DANE-HB has a slightly improvedO

(
p1/4

(√
κ/n−1/4 log(1/ε)

))
bound in a local area around the minimizer. These bounds are inferior to that of
DSVRG in high dimensional settings. For D2ANE, the bound isO

(√
κn−1/4 log2(1/ε)

)
which has no polynomial dependence on p thanks to the shared Hessian H among the
approximate Newton approximation steps. Similar to the previous discussions for
the quadratic case, given that κ = Ω(m), DSVRG will be comparable or superior to
D2ANE when κ = O(n1/2m2/3), and otherwise D2ANE performs better.

To summarize the above discussions, DANE-HB and D2ANE are able to offer competitive
or superior communication efficiency to the considered distributed learning algorithms in
high-dimensional and ill-conditioned (e.g., κ = Ω(n1/2m2/3)) problem regimes.

4. Experiments

In this section, we present a numerical study for theory verification and algorithm eval-
uation. In the theory verification part, we conduct simulations on linear regression and
binary logistic regression problems to verify the strong convergence guarantees established
for DANE-LS, DANE-HB and D2ANE. Then in the algorithm evaluation part, we run exper-
iments on synthetic and real data binary logistic regression tasks to evaluate the numerical
performance of these alternatives with comparison to several state-of-the-art distributed
learning methods. We simulate the distributed environment on a single server powered by
dual Intel(R) Xeon(R) E5-2630V4@2.2GHz CPU with multiple logic processors simulating
multiple machines. All the considered methods are implemented in Matlab R2018b on Mi-
crosoft Windows 10. The local subproblems on the master machine are solved by an SVRG
solver from SGDLibrary (Kasai, 2017), and the momentum coefficient β in DANE-HB is
set according to Theorem 15. We replicate each experiment 10 times over random split
of data and report the results in mean-value along with error bar. We initialize w(0) = 0
throughout our numerical study.

4.1 Theory Verification

The following experimental protocol is considered for theory verification study.

• To verify the bounds established in Theorem 3 for DANE-LS and in Theorem 15 for
DANE-HB for quadratic problems, we consider the ridge regression model with loss
function f(w;xi, yi) = 1

2(w>xi−yi)2 + µ
2‖w‖

2. The feature points {xi}Ni=1 are sampled
from standard multivariate normal distribution. The responses {yi}Ni=1 are generated
according to a linear model yi = w̄>xi + ei with a random Gaussian vector w̄ ∈ Rp
and random Gaussian noise ei ∼ N (0, σ2).
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• For D2ANE, we verify its communication complexity bounds as in Theorem 20 by
applying it to the binary logistic regression model with loss function f(w;xi, yi) =
log
(
1 + exp(−yiw>xi)

)
+ µ

2‖w‖
2. We consider a simulation task in which each data

feature xi is sampled from standard multivariate normal distribution and its label
yi ∈ {−1,+1} is determined according to the conditional probability P(yi|xi; w̄) =
exp(2yiw̄

>x)/(1 + exp(2yiw̄
>xi)) with a p-dimensional Gaussian vector w̄.

For our simulation study, we test with feature dimensions p ∈ {200, 500}. We fix N =
10p, µ = 1/

√
N , and study the impact of varying number of machines m and regularization

γ = O(1/
√
n) on the needed rounds of communication to reach sub-optimality ε = 10−6.

We replicate the experiment 10 times over random split of data.

(a) p = 200

(b) p = 500

Figure 2: Theory verification: the number of communication rounds (y-axis) versus number
of machines (x-axis) curves of DANE-LS (left panels) and DANE-HB (middle
panels) on a synthetic ridge regression task, and of D2ANE (right panels) on a
synthetic logistic regression task.

Figure 2 shows the evolving curves (error bar shaded in color) of the needed commu-
nication rounds as functions of number of machines achieved by DANE-LS (left panel),
DANE-HB (middle panel) and D2ANE (right panel)in the considered setting. Visually
speaking, the number of communication rounds scales roughly linearly with respect to

√
m

for DANE-LS and to m1/4 for DANE-HB and D2ANE, under varying values of γ. We
can also observe that smaller γ leads to fewer rounds of communication. These results are
consistent with the theoretical predictions in Theorem 3, Theorem 15 and Theorem 20.
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4.2 Algorithm Evaluation

We further compare the convergence performance of our methods with several representative
communication-efficient distributed learning methods. For the sake of presentation clarity,
we divide the numerical study into two categories using the DANE-type methods and other
type of methods as baselines, respectively.

4.2.1 Comparison against DANE-type Methods

In this part, we carry out experiments to compare our methods with InexactDane and
AIDE (Reddi et al., 2016), for binary logistic regression problems. We begin with a simu-
lation study using the same data generation protocol as in the previous theory verification
study, with p = 200, N = 10p, γ = 40/

√
n, µ = 1/

√
N and m ∈ {4, 16, 32}.

(a) Synthetic

(b) gisette

(c) rcv1.binary

Figure 3: Algorithm evaluation with comparison to DANE-type methods: the objective
value sub-optimality evolving curves on synthetic and real-data logistic regression
tasks with m = 4 (left panels), m = 16 (middle panels) and m = 32 (right panels).
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Figure 3(a) shows the sub-optimality (in objective value) convergence curves (w.r.t.
communication rounds) of the considered algorithms. From these curves we can see that
DANE-LS, DANE-HB and D2ANE are stable in convergence while InexactDane and
AIDE exhibit zigzag effect in early iterations when m = 4, 16. The convergence instability
of the plain DANE method has also been observed in the original work of Shamir et al.
(2014). The stability of our proposed methods shows the benefit of line search (for DANE-
LS and DANE-HB) and double-loop Newton approximation (for D2ANE) for improving the
convergence behavior of DANE-type methods. In terms of communication efficiency, we can
see that: i) DANE-LS is superior or comparable to InexactDane and AIDE in optimizing
the global objective value after the same rounds of communication; and ii) DANE-HB and
D2ANE converge considerably faster than other methods. These observations confirm the
effectiveness of heavy-ball approach for accelerating the convergence of DANE.

Next, we evaluate the convergence performance of the considered algorithms on two real
data sets gisette (Guyon et al., 2005) (p = 5000, N = 6000) and rcv1.binary (Lewis
et al., 2004) (p = 47236, N = 20242). For each data set, we fix the regularization parameter
µ = 10−5 and test with m ∈ {4, 16, 32}. The results are shown in the middle and bottom
rows of Figure 3 from which we have the following observations:

• For gisette, Figure 3(b) shows that DANE-LS, DANE-HB and D2ANE converge
more stably than InexactDane and AIDE. In terms of communication efficiency,
D2ANE outperforms the other considered methods with a clear margin and DANE-
HB is the runner-up. DANE-LS converges slightly faster than InexactDane and
AIDE when m = 4, 16, while these three algorithms are comparable when m = 32.

• For rcv1.binary, Figure 3(c) shows that all the considered algorithms converge
smoothly. In most cases, DANE-HB and D2ANE outperform DANE-LS, InexactDane
and AIDE which exhibit very close performance on this data.

To summarize this set of experiments, our proposed algorithms are stabler than the
prior DANE-type methods which matches the global convergence theory established for
our algorithms. In many cases, DANE-HB and D2ANE substantially outperform the other
methods in communication efficiency.

4.2.2 Comparison Against the Methods beyond DANE

In this group of evaluation, we compare the performance of D2ANE with DSVRG (Lee et al.,
2017) and DiSCO (Zhang and Xiao, 2015) which are among others two representative first-
order and second-order algorithms for communication-efficient distributed learning. The
evaluation is conducted on the same data sets as used in the previous experiment, and the
results are shown in Figure 4. Here we omit the results of DANE-LS and DANE-HB in
order to avoid redundancy of presentation because in most cases these two methods are
inferior or comparable to D2ANE as previously shown.

Below we summarize the main observations that can be made from these results:

• Results on synthetic data: D2ANE ≥ DiSCO ≥ DSVRG. As shown in Figure 4(a),
DiSCO outperforms the other considered algorithms when relatively small m = 4
number of machines is used. For relatively large m = 16, 32, D2ANE and DiSCO
converge faster than DSVRG.
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(a) Synthetic

(b) gisette

(c) rcv1.binary

Figure 4: Algorithm evaluation with comparison to the distributed optimization methods
beyond DANE: the objective value sub-optimality evolving curves on synthetic
and real logistic regression tasks with m = 4 (left panels), m = 16 (middle panels)
and m = 32 (right panels).

• Results on gisette: D2ANE > DiSCO ≥ DSVRG. From the curves in Figure 4(b)
we can see that D2ANE outperforms DiSCO and DSVRG with a clear margin.

• Results on rcv1.binary: D2ANE > DiSCO > DSVRG. Figure 4(c) shows that
D2ANE significantly outperforms DiSCO and DSVRG especially for relatively large
m = 16, 32.

Overall, D2ANE performs the best in communication efficiency among all the considered
algorithms. DiSCO is found to be competitive or superior to DSVRG in many places.
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5. Conclusions

In this article, we have made progress towards deeply understanding the mysterious con-
vergence behavior of the popularly applied DANE method for communication-efficient dis-
tributed convex optimization. To this end, we propose two new alternatives, DANE-LS
and DANE-HB, which are more suitable for global asymptotic and local non-asymptotic
analysis, and also effective for momentum acceleration. The core messages conveyed by our
study include:

(1) The plain DANE method can actually converge faster than already known. For quadratic
problems, even without any momentum acceleration, DANE-LS attains a tighter com-
munication complexity bound than what already revealed for plain DANE.

(2) Line search is beneficial to DANE. For non-quadratic strongly convex functions,
blessed by the backtracking line search under Armijo rule, DANE-LS converges glob-
ally under a wider spectrum of γ than DANE, at an appealing local rate of convergence.

(3) Heavy-ball acceleration is effective for DANE. DANE-HB possesses a near-tight com-
munication complexity bound for quadratic functions. Whilst for non-quadratic con-
vex functions, DANE-HB exhibits an identical performance in the vicinity of mini-
mizer. For convex optimization with linear models, we proposed the D2ANE method
as a double-loop approximate Newton extension of DANE-HB that has been shown
to have global convergence with near-tight communication complexity bounds.

Numerical results support our theoretical findings and confirm that DANE-LS, DANE-HB
and D2ANE are safe and in many places more attractive alternatives to the prior DANE-
type methods for both quadratic and non-quadratic convex optimization problems. We
expect that the theory and algorithms developed in this article will fuel future investiga-
tion on distributed non-convex optimization problems such as distributed training of deep
neural nets across multiple machines or GPUs. Also, we believe our improved DANE-
type methods should have practical implications in large-scale federated optimization for
privacy-preserving collaborative machine learning.
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Appendix A. Some Auxiliary Lemmas

Here we introduce a set of auxiliary lemmas which will be used for proving the main results
in the article. For the sake of readability, we defer the relevant proofs into Appendix D.
The following elementary lemmas will be used frequently throughout our analysis.

Lemma 24 Let A and B be two symmetric and positive definite matrices and B � µI for
some µ > 0. If ‖A−B‖ ≤ γ, then (A+ γI)−1B is diagonalizable and

λmax(A+ γI)−1B ≤ 1, λmin((A+ γI)−1B) ≥ µ

µ+ 2γ
.

Moreover, the following spectral norm bounds hold:

‖I − (A+ γI)−1/2B(A+ γI)−1/2‖ ≤ 2γ

µ+ 2γ
, ‖I −B1/2(A+ γI)−1B1/2‖ ≤ 2γ

µ+ 2γ
.

Let us denote ρ(A) the spectral radius of A, i.e., the largest (in modulus) eigenvalue of
a square matrix A.

Lemma 25 Let A ∈ Rd×d be a square matrix with positive real eigenvalues such that 0 <
µ ≤ λmin(A) ≤ λmax(A) ≤ L. Assume that A is diagonalizable. Then

ρ

([
(1 + β)I − ηA −βI

I 0

])
≤ max{|1−√ηµ|, |1−

√
ηL|},

where β = max{|1−√ηµ|, |1−
√
ηL|}2.

An important relationship between the spectral norm ‖A‖ and spectral radius ρ(A) is
given by the equality ρ(A) = limt→∞ ‖At‖1/t, which implies the following classic lemma.

Lemma 26 For limt→∞A
t = 0 it is necessary and sufficient that ρ(A) < 1 and for every

δ > 0 there exists a constant c = c(δ) such that

‖At‖ ≤ c(ρ(A) + δ)t

for all positive integers t.

The following lemma is elementary and will be used in many places of our analysis.

Lemma 27 Assume that function g has ν-LH. Then∥∥∆g(w,w′)
∥∥ ≤ ν

2
‖w − w′‖2,

where ∆g(w,w′) := ∇g(w)−∇g(w′)−∇2g(w′)(w − w′).

The next lemma, which is based on a matrix concentration bound (Tropp, 2012), shows
that the Hessian of F1(w) is close to that of F (w) when the sample size is sufficiently large.
The same result appears in the work of Shamir et al. (2014).

Lemma 28 Assume that ‖∇2f(w>xi, yi)‖ ≤ L holds for all i ∈ [N ]. Let H(w) = ∇2F (w)
and H1(w) = ∇2F1(w). Then for each fixed w, with probability at least 1 − δ over the
samples drawn to construct F1(w), the following bound holds:

‖H1(w)−H(w)‖ ≤
√

32L2 log(p/δ)

n
.
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Appendix B. Proofs for Section 2

We collect in this appendix section the technical proofs of the results in Section 2, including
Theorems 3, Theorem 8 and Theorem 13, and their corollaries.

B.1 Proof of Theorem 3

In this appendix subsection, we prove Theorem 3 as restated in below.

Theorem 3 (Convergence rate of DANE-LS for quadratic loss) Assume that the loss
function is quadratic. Let H and H1 be the Hessian matrices of the global objective F
and local objective F1, respectively. Assume that µI � H � LI. Given precision ε > 0,

if ‖H1 − H‖ ≤ γ and εt ≤ µ2‖∇F (w(t−1))‖
2(µ+2γ)L , then Algorithm 1 will output w(t) satisfying

‖w(t) − w∗‖ ≤ ε after

t ≥ 2(µ+ 2γ)

µ
log

(√
κ‖w(0) − w∗‖

ε

)

rounds of iterations.

Proof Since the objective is quadratic, for any w(t−1) the optimal solution w∗ = arg minw F (w)
can always be expressed as

w∗ = w(t−1) −H−1∇F (w(t−1)).

Since H
(t)
1 ≡ H1 holds in the quadratic case, the gradient equation of P (t−1) at w(t) implies

w(t) = w(t−1) − (H1 + γI)−1∇F (w(t−1)) + (H1 + γI)−1∇P (t−1)(w(t)).

Combining the above two equalities yields

w(t) − w∗ = (I − η(H1 + γI)−1H)(w(t−1) − w∗) + (H1 + γI)−1∇P (t−1)(w(t)).

By multiplying H1/2 on both sides of the above recurrent form we have

H1/2(w(t)−w∗) = (I−H1/2(H1+γI)−1H1/2)H1/2(w(t−1)−w∗)+H1/2(H1+γI)−1∇P (t−1)(w(t))

Let u(t) = H1/2(w(t) − w∗). Based on the basic inequality ‖Tx‖ ≤ ‖T‖‖x‖ we obtain

‖u(t)‖
≤‖I −H1/2(H1 + γI)−1H1/2‖‖u(t−1)‖+ ‖H1/2(H1 + γI)−1H1/2‖‖H−1/2∇P (t−1)(w(t))‖
ζ1
≤ 2γ

µ+ 2γ
‖u(t−1)‖+

εt√
µ

ζ2
≤
(

1− µ

µ+ 2γ

)
‖u(t−1)‖+

µ

2(µ+ 2γ)
‖u(t−1)‖

=

(
1− µ

2(µ+ 2γ)

)
‖u(t−1)‖,
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where in the inequality “ζ1” we have used Lemma 24 and ‖H1/2(H1 + γI)−1H1/2‖ ≤ 1
which are valid in view of ‖H1 − H‖ ≤ γ and H � µI, “ζ2” follows from the condition

εt ≤ µ2‖∇F (w(t−1))‖
2(µ+2γ)L which implies εt√

µ ≤
µ
√
µ‖w(t−1)−w∗‖

2(µ+2γ) ≤ µ‖u(t−1)‖
2(µ+2γ) . The above inequality

directly leads to

‖w(t) − w∗‖

≤ 1
√
µ
‖u(t)‖ ≤ 1

√
µ

(
1− µ

2(µ+ 2γ)

)t
‖u(0)‖

≤

√
L

µ

(
1− µ

2(µ+ 2γ)

)t
‖w(0) − w∗‖.

Since (1− x)t ≤ exp {−xt}, we can show from the above that ‖w(t)−w∗‖ ≤ ε is valid when

t ≥ 2(µ+ 2γ)

µ
log

(√
L‖w(0) − w∗‖
√
µε

)
.

This concludes the proof.

Further, we prove Corollary 4 as restated in below.

Corollary 4 Assume the conditions in Theorem 3 hold and ‖∇2f(w;xi, yi)‖ ≤ L for all
i ∈ [N ]. Then for any δ ∈ (0, 1), with probability at least 1 − δ over the samples drawn to

construct F1, Algorithm 1 with γ = L

√
32 log(p/δ)

n will output w(t) satisfying ‖w(t)−w∗‖ ≤ ε
after

t ≥

(
2 + 4κ

√
32 log(p/δ)

n

)
log

(√
κ‖w(0) − w∗‖

ε

)
rounds of iterations.

Proof Since H(w) ≡ H and H1(w) ≡ H1 in the quadratic case, we know from Lemma 28

that ‖H1 − H‖ ≤ γ = L

√
32 log(p/δ)

n holds with probability at least 1 − δ. By invoking
Theorem 3 we obtain the desired bound.

B.2 Proof of Theorem 8

We provide in this appendix subsection a detailed proof of Theorem 8 as restated below.

Theorem 8 (Global convergence of DANE-LS) Assume that F (w) and F1(w) are L-

smooth, µ-strongly-convex and have ν-LH. Suppose that εt ≤ ρ(µ+γ)
2(L+γ)+ρ(µ+γ)‖∇F (w(t−1))‖.

(a) Then the objective value sequence {F (w(t))} generated by Algorithm 1 with the global
line search step (Option-I) converges and the difference norm sequence {‖w̃(t)−w(t−1)‖}
converges to zero.
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(b) Assume in addition that supw ‖∇2F1(w)−∇2F (w)‖ ≤ γ and ‖w̃(t)−w(t−1)‖ is bounded
from above for all t ≥ 0. Then the objective value sequence {F (w(t))} generated by
Algorithm 1 with the local line search step (Option-II) converges and the difference
norm sequence {‖w̃(t) − w(t−1)‖} converges to zero.

As a key step, we first need to prove the following restated Lemma 6.

Lemma 6 (Feasibility of line search) Assume that F is L-smooth and F1 is µ-strongly
convex. For any given ρ ∈ (0, 1),

(a) if the length of search satisfies

0 < ηt ≤ min

{
1,

2(γ + µ)(1− ρ)

L

}
,

then the global backtracking line search (Option-I) is feasible, i.e.,

F (w(t)) ≤ F (w(t−1))− ψ(w̃(t), w(t−1)),

where ψ(w̃(t), w(t−1)) := ηtρ〈∇F1(w̃(t))−∇F1(w(t−1))+γ(w̃(t)−w(t−1)), w̃(t)−w(t−1)〉−
ηtεt‖w̃(t) − w(t−1)‖.

(b) Moreover, assume that F1(w) has ν-LH and ∃D > 0 such that ‖w̃(t) − w(t−1)‖ ≤ D
for all t ≥ 0. If

ηt ≤ min

{
1,
−(3νD + 6(γ + µ)) +

√
(3νD + 6(γ + µ))2 + 96(1− ρ)νD(γ + µ)

4νD

}
,

then the local backtracking line search (Option-II) is feasible, i.e.,

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3 ≤ −ψ(w̃(t), w(t−1)).

Proof Let us define

r(t) = ∇P (t−1)(w̃(t)) = ∇F1(w̃(t)) +∇F (w(t−1))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)). (A.1)

From the definition of w̃(t) we have that ‖r(t)‖ ≤ εt. Since F (w) is L-smooth, we have

F (w(t))

≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉+
L

2
‖w(t) − w(t−1)‖2

=F (w(t−1)) + ηt〈∇F (w(t−1)), w̃(t) − w(t−1)〉+
Lη2

t

2
‖w̃(t) − w(t−1)‖2

ζ1
≤F (w(t−1))− ηt〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+ ηt〈r(t), w̃(t) − w(t−1)〉+
Lη2

t

2
‖w̃(t) − w(t−1)‖2

ζ2
≤F (w(t−1))−

(
ηt −

Lη2
t

2(γ + µ)

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+ ηtεt‖w̃(t) − w(t−1)‖,
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where “ζ1” follows from (A.1) and “ζ2” is due to the µ-strong-convexity of F1 which implies
〈∇F1(w̃(t))−∇F1(w(t−1))+γ(w̃(t)−w(t−1)), w̃(t)−w(t−1)〉 ≥ (µ+γ)‖w̃(t)−w(t−1)‖2. To make

a successful global line search, we simply require −
(
ηt − Lη2t

2(γ+µ)

)
≤ −ηtρ, which obviously

can be guaranteed by setting

0 < ηt ≤ min

{
1,

2(γ + µ)(1− ρ)

L

}
.

This prove the result in Part(a).
To prove the result in Part(b), we first note that the equality (A.1) is identical to

∇F (w(t−1)) = −(∇2F1(w(t−1)) + γI)(w̃(t) − w(t−1))−∆F1(w̃(t), w(t−1)) + r(t). (A.2)

Then based on the definition of w(t) we can derive that

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

=ηt〈∇F (w(t−1)), w̃(t) − w(t−1)〉+
η2
t

2
(w̃(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w̃(t) − w(t−1))

+
νη3

t

6
‖w̃(t) − w(t−1)‖3

ζ1
=ηt〈∇F (w(t−1)), w̃(t) − w(t−1)〉 − η2

t

2
〈∇F (w(t−1)), w̃(t) − w(t−1)〉+

νη3
t

6
‖w̃(t) − w(t−1)‖3

− η2
t

2
〈∆F1(w̃(t), w(t−1)), w̃(t) − w(t−1)〉+

η2
t

2
〈r(t), w̃(t) − w(t−1)〉

ζ2
≤
(
ηt −

η2
t

2

)
〈∇F (w(t−1)), w̃(t) − w(t−1)〉+

(
νη2

t

4
+
νη3

t

6

)
‖w̃(t) − w(t−1)‖3

+
η2
t

2
〈r(t), w̃(t) − w(t−1)〉

ζ3
=−

(
ηt −

η2
t

2

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+

(
νη2

t

4
+
νη3

t

6

)
‖w̃(t) − w(t−1)‖3 + ηt〈r(t), w̃(t) − w(t−1)〉

≤ −
(
ηt −

η2
t

2

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+

(
νη2

t

4
+
νη3

t

6

)
D‖w̃(t) − w(t−1)‖2 + ηtεt‖w̃(t) − w(t−1)‖

ζ4
≤
(
−
(
ηt −

η2
t

2

)
+

(
νη2

t

4
+
νη3

t

6

)
D

γ + µ

)
×

〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ ηtεt‖w̃(t) − w(t−1)‖,

where “ζ1” follows from (A.2), “ζ2” uses ‖∆F̃ (w(t−1), w̃(t))‖ ≤ ν
2‖w̃

(t)−w(t−1)‖2, “ζ3” follows

from (A.1) and “ζ4” is due to the µ-strong-convexity of F1 which implies 〈∇F1(w̃(t)) −
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∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉 ≥ (µ+ γ)‖w̃(t) − w(t−1)‖2. In order to make
a successful line search, it suffices to set

−
(
ηt −

η2
t

2

)
+

(
νη2

t

4
+
νη3

t

6

)
D

γ + µ
≤ −ηtρ

which indeed can be guaranteed by setting

0 < ηt ≤ min

{
1,
−(3νD + 6(γ + µ)) +

√
(3νD + 6(γ + µ))2 + 96(1− ρ)νD(γ + µ)

4νD

}
.

The proof of Part(b) is concluded.

We also need the following lemma which bounds the values of ‖∇F (w̃(t))‖ and ‖w̃(t) −w∗‖
with respect to the distance ‖w̃(t) − w(t−1)‖ and sub-optimality εt.

Lemma 29 Assume that F and F1 have Lipschitz continuous Hessian. If supw ‖∇2F1(w)−
∇2F (w)‖ ≤ γ, then at any time instant t it is true that

‖∇F (w̃(t))‖ ≤ 2γ‖w̃(t) − w(t−1)‖+ εt, ‖w̃(t) − w∗‖ ≤ 2γ

µ
‖w̃(t) − w(t−1)‖+

εt
µ
.

Proof From the local sub-optimality condition we have

‖∇P (t−1)(w̃(t))‖ = ‖∇F1(w̃(t)) +∇F (w(t−1))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1))‖ ≤ εt.

Then

‖∇F (w̃(t))‖
=‖∇F (w̃(t))−∇P (t−1)(w̃(t)) +∇P (t−1)(w̃(t))‖
≤‖∇F (w̃(t))−∇F1(w̃(t))−∇F (w(t−1)) +∇F1(w(t−1))− γ(w̃(t) − w(t−1))‖+ εt

=‖(∇2(F − F1)(w′) + γI)(w̃(t) − w(t−1))‖+ εt

≤2γ‖w̃(t) − w(t−1)‖+ εt,

where in the last inequality we have used supw ‖∇2F (w)−∇2F1(w)‖ ≤ γ. This proves the
first inequality. The second inequality follows readily from the strong convexity of F such
that µ‖w̃(t) − w∗‖ ≤ ‖∇F (w̃(t))−∇F (w∗)‖ = ‖∇F (w̃(t))‖.

Now we are in the position to prove the main result in Theorem 8.
Proof [of Theorem 8] Part (a): We first prove the convergence of the objective value se-

quence. Based on (A.1), the smoothness of F1 and the condition εt ≤ ρ(µ+γ)
2(L+γ)+ρ(µ+γ)‖∇F (w(t−1))‖

we can show that

εt ≥‖rt‖
≥‖∇F (w(t−1))‖ − ‖∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1))‖

≥
(

2(L+ γ)

ρ(µ+ γ)
+ 1

)
εt − (L+ γ)‖w̃(t) − w(t−1)‖,
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which then implies

εt ≤
ρ(γ + µ)

2
‖w̃(t) − w(t−1)‖. (A.3)

Since F (w) is L-smooth and F1(w) is µ-strongly convex, from the first part of Lemma 6 we
know that the global line search is feasible at each step of iteration and thus

F (w(t))

≤F (w(t−1))− ηtρ〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉
+ ηtεt‖w̃(t) − w(t−1)‖

ζ1
≤F (w(t−1))− ηtρ(γ + µ)‖w̃(t) − w(t−1)‖2 +

ηtρ(γ + µ)

2
‖w̃(t) − w(t−1)‖2

=F (w(t−1))− ηtρ(γ + µ)

2
‖w̃(t) − w(t−1)‖2,

where in “ζ1” we have used the bound (A.3). From Lemma 29 we know that ‖w̃(t) −
w(t−1)‖ 6= 0 unless w̃(t) admits a global minimizer of F . Then based on the above inequality
the sequence {F (w(t))} is decreasing. Since F (w(t)) ≥ F (w∗) > −∞, it must hold that
{F (w(t))} converges. Also from the above inequality we have

ηtρ(γ + µ)‖w̃(t) − w(t−1)‖2 ≤ 2(F (w(t−1))− F (w(t))),

which implies ‖w̃(t) − w(t−1)‖ → 0 as t→∞.
Proof of part(b): Since F (w) has ν-smooth, we have

F (w(t))

≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>∇2F (w(t−1))(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

ζ1
≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉

+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1)) +

ν

6
‖w(t) − w(t−1)‖3

ζ2
≤F (w(t−1))− ηtρ〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+ ηtεt‖w̃(t) − w(t−1)‖
ζ3
≤F (w(t−1))− ηtρ(γ + µ)‖w̃(t) − w(t−1)‖2 +

ηtρ(γ + µ)

2
‖w̃(t) − w(t−1)‖2

=F (w(t−1))− ηtρ(γ + µ)

2
‖w̃(t) − w(t−1)‖2,

where “ζ1” follows from ‖∇2F1(w(t−1)) − ∇2F (w(t−1))‖ ≤ γ such that ∇2F1(w(t−1)) −
∇2F (w(t−1))+γI � 0, in “ζ2” we have used the second part of Lemma 6, and “ζ3” is due to
the bound (A.3). Based on an identical argument to that of part(a) we can show that the se-
quence {F (w(t))} converges and ‖w̃(t)−w(t−1)‖ → 0 as t→∞. This completes the proof.
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B.3 Proof of Theorem 13

This appendix subsection is devoted to providing a detailed proof of Theorem 13 as restated
in below.

Theorem 13 (Non-asymptotic convergence of DANE-LS) Assume that F and F1

are µ-strongly-convex, L-smooth and have ν-LH. Assume that supw ‖∇2F1(w)−∇2F (w)‖ ≤
γ. Suppose that ρ ∈ (0, 1/3] and

εt ≤ min

{
(γ + µ)2,

‖∇F (w(t−1))‖2

L2
,

ρ(µ+ γ)

2(L+ γ) + ρ(µ+ γ)
‖∇F (w(t−1))‖

}
.

Let τ =
⌈
µ+2γ

2µ log (4κ)
⌉

. Then there exists a time stamp t0, which is invariant to ε, such

that Algorithm 1 will output solution w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ t0 + 4τ log

(
γ + µ

4(6ν + 1)
√
κτ

(
1

ε

))
rounds of iterations.

To prove the theorem, we first need to prove the following restated Lemma 10.

Lemma 10 (Acceptability of unit length for line search) Assume that the conditions
in Theorem 8 hold. Then for any fixed ρ ∈ (0, 1/3], the unit length ηt = 1 guarantees the
sufficient descent condition (5) provided that t is sufficiently large.

Proof Since F (w) has ν-LH, it holds that

F (w(t))

≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>∇2F (w(t−1))(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉

+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1)) +

ν

6
‖w(t) − w(t−1)‖3,

where in the last inequality we have used the assumption ‖∇2F1(w(t−1))−∇2F (w(t−1))‖ ≤ γ.
Based on the above inequality, it suffices to prove

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

≤− 1

3
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ εt‖w̃(t) − w(t−1)‖.
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To this end, by mimicking the arguments in the proof of Lemma 6 we can show that

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

≤−
(
ηt −

η2
t

2

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+

(
νη2

t

4
+
νη3

t

6

)
‖w̃(t) − w(t−1)‖3 + ηtεt‖w̃(t) − w(t−1)‖

ζ1
≤−

(
ηt −

η2
t

2

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+
1

µ+ γ

(
νη2

t

4
+
νη3

t

6

)
‖w̃(t) − w(t−1)‖〈∇F1(w̃(t))−∇F1(w(t−1))

+ γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ ηtεt‖w̃(t) − w(t−1)‖(
−
(
ηt −

η2
t

2

)
+

5ν‖w̃(t) − w(t−1)‖
12(γ + µ)

)
〈∇F1(w̃(t))−∇F1(w(t−1))

+ γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ ηtεt‖w̃(t) − w(t−1)‖,

where “ζ1” is due to 〈∇F1(w̃(t)) − ∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉 ≥ (µ +
γ)‖w̃(t) − w(t−1)‖2 and in the last inequality we have used the fact ηt ≤ 1. When t is
sufficiently large, from Theorem 8 we know that ‖w̃(t) −w(t−1)‖ will be sufficiently close to

zero so that 5ν‖w̃(t)−w(t−1)‖
12(γ+µ) ≤ 1

6 . Then we consider ηt = 1 in the above inequality so that

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

≤− 1

3
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ εt‖w̃(t) − w(t−1)‖,

which implies that unit length is acceptable for any ρ ∈ (0, 1/3].

We also need the following restated Lemma 11 which establishes the local convergence
rate of Algorithm 1 when ηt ≡ 1, i.e., the unit length is always accepted by the backtracking
line search.

Lemma 11 (Local convergence rate of DANE-LS) Assume that F and F1 are L-smooth,
µ-strongly-convex and have ν-LH. Assume that supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ. Let τ =⌈
µ+2γ

2µ log (4κ)
⌉

. Suppose that εt ≤ min
{

(γ + µ)2, ‖∇F (w(t−1))‖2
L2

}
and max0≤i≤τ−1 ‖w(i) −

w∗‖ ≤ (γ+µ)
4(6ν+1)

√
κτ

. Then for any ε > 0, Algorithm 1 with ηt ≡ 1 will attain estimation error

‖w(t) − w∗‖ ≤ ε after

t ≥ 4τ log

(
γ + µ

4(6ν + 1)
√
κτνε

)
rounds of iterations.
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Proof Since ηt ≡ 1, we always have w(t) = w̃(t). In view of the first-order optimality
condition ∇F (w∗) = 0 we can derive

∇P (t−1)(w(t))

=∇F1(w(t))−∇F1(w(t−1)) +∇F (w(t−1)) + γ(w(t) − w(t−1))

=∇F1(w(t))−∇F1(w∗) +∇F1(w∗)−∇F1(w(t−1)) +∇F (w(t−1))−∇F (w∗) + γ(w(t) − w(t−1))

=∆F1(w(t), w∗) +∇2F1(w∗)(w(t) − w∗)−∆F1(w(t−1), w∗)−∇2F1(w∗)(w(t−1) − w∗)
+ ∆F (w(t−1), w∗) +∇2F (w∗)(w(t−1) − w∗) + γ(w(t) − w(t−1))

=∆F1(w(t), w∗) + (∇2F1(w∗) + γI)(w(t) − w∗)−∆F1(w(t−1), w∗)− (∇2F1(w∗) + γI)(w(t−1) − w∗)
+ ∆F (w(t−1), w∗) +∇2F (w∗)(w(t−1) − w∗).

Multiplying (∇2F1(w∗)+γI)−1 on both sides of the above with proper rearrangement yields

w(t) − w∗

=
(
I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)

+ (∇2F1(w∗) + γI)−1
(

∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w(t), w∗) +∇P (t−1)(w(t))
)
.

Let H∗ = ∇2F (w∗) and H∗1 = ∇2F1(w∗). Similar to the previous analysis, we work on the
three term recurrence in matrix form

u(t) = Au(t−1) + r(t−1) (A.4)

where u(t) := w(t) − w∗, A := I − (H∗1 + γI)−1H∗ and

r(t−1) := (H∗1 +γI)−1
(

∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w(t), w∗) +∇P (t−1)(w(t))
)
.

We next bound ‖r(t−1)‖ with respect to ‖u(t−1)‖ and the local optimization precision εt.

‖r(t−1)‖ ≤
∥∥(H∗1 + γI)−1

∥∥∥∥∥∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w(t), w∗)
∥∥∥

+
∥∥(H∗1 + γI)−1

∥∥ ‖∇P (t−1)(w(t))‖

≤ ν

2(γ + µ)
‖w(t) − w∗‖2 +

ν

γ + µ
‖w(t−1) − w∗‖2 +

εt
γ + µ

,

(A.5)

where we have used H∗1 = ∇2F1(w∗) � µI and the Lipschitz Hessian assumption such that
‖∆F1(w(t), w∗)‖ ≤ ν

2‖w
(t)−w∗‖2, ‖∆F1(w(t−1), w∗)‖ ≤ ν

2‖w
(t−1)−w∗‖2 and ‖∆F (w(t−1), w∗)‖ ≤

ν
2‖w

(t−1) − w∗‖2, and also by assumption ‖∇P (t−1)(w(t))‖ ≤ εt. In the following step we

bound ‖w(t)−w∗‖ with respect to ‖w(t−1)−w∗‖. Since F̃ (w) is µ-strongly-convex, P (t−1)(w)
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is naturally (γ + µ)-strongly-convex. Therefore

‖w(t) − w∗‖

≤ 1

γ + µ
‖∇P (t−1)(w(t))−∇P (t−1)(w∗)‖

ζ1
≤ 1

γ + µ
‖∇P (t−1)(w∗)‖+

εt
γ + µ

=
1

γ + µ
‖∇F (w(t−1))−∇F1(w(t−1)) + γ(w∗ − w(t−1)) +∇F1(w∗)‖+

εt
γ + µ

=
1

γ + µ

∥∥∥(∇F (w(t−1))−∇F1(w(t−1))
)
− (∇F (w∗)−∇F1(w∗)) + γ(w∗ − w(t−1))

∥∥∥
+

εt
γ + µ

≤ 2γ

γ + µ
‖w(t−1) − w∗‖+

εt
γ + µ

≤ 2‖w(t−1) − w∗‖+
εt

γ + µ
,

(A.6)

where “ζ1” follows from the sub-optimality of w(t) = w̃(t) with respect to P (t−1) and the
last inequality is implied by the assumption ‖∇2F (w) − ∇2F1(w)‖ ≤ γ for all w over a
bonded domain of interest. By combining (A.5) and (A.6), and using the basic inequality
(a+ b)2 ≤ 2a2 + 2b2 we arrive at

‖r(t−1)‖ ≤ 4ν

γ + µ
‖w(t−1) − w∗‖2 +

νε2
t

(γ + µ)3
+

ν

γ + µ
‖w(t−1) − w∗‖2 +

εt
γ + µ

ζ1
≤ 5ν

γ + µ
‖u(t−1)‖2 +

(ν + 1)εt
γ + µ

ζ2
≤ 6ν + 1

γ + µ
‖u(t−1)‖2,

where in the inequality “ζ1” we have used the assumption on εt which implies εt ≤ (γ+µ)2,

and “ζ2” follows from εt ≤ ‖∇F (w(t−1))‖2
L2 ≤ ‖w(t−1)−w∗‖2 = ‖u(t−1)‖2. Since ‖H∗1−H∗‖ ≤ γ

and H∗ � µI, by applying Lemma 24 we obtain that

‖At‖ =‖(I − (H∗1 + γI)−1H∗)t‖

=

∥∥∥∥((H∗)−1/2(I − (H∗)1/2(H∗1 + γI)−1(H∗)1/2)(H∗)1/2
)t∥∥∥∥

=
∥∥∥(H∗)−1/2(I − (H∗)1/2(H∗1 + γI)−1(H∗)1/2)t(H∗)1/2

∥∥∥
≤

√
L

µ
‖I − (H∗)1/2(H∗1 + γI)−1(H∗)1/2‖t ≤

√
L

µ

(
1− µ

µ+ 2γ

)t
.

(A.7)

In the following argument, to simplify notation, we abbreviate

c =

√
L

µ
, ϑ =

6ν + 1

γ + µ
, ρ = 1− µ

µ+ 2γ

such that
‖At‖ ≤ cρt, ‖r(t)‖ ≤ ϑ‖u(t)‖2.

Let us consider the following defined integer

τ =

⌈
µ+ 2γ

2µ
log

(
4L

µ

)⌉
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such that ‖Aτ‖ ≤ 1
2 . We now prove by induction that for any integer k ≥ 0,

max
0≤i≤τ−1

‖u(kτ+i)‖ ≤ 1

4cτϑ

(
3

4

)k
.

The assumption max0≤i≤τ−1 ‖w(i) − w∗‖ ≤ 1
4cτϑ guarantees that the bound is valid for the

base case k = 0, i.e., max0≤i≤τ−1 ‖u(i)‖ ≤ 1
4cτϑ . Now assume that the desired bound holds

for some k ≥ 0. By recursively applying (A.4) we can show that

‖u((k+1)τ)‖

=

∥∥∥∥∥Aτu(kτ) +
τ−1∑
i=0

Air(kτ+τ−1−i)

∥∥∥∥∥
≤‖Aτ‖‖u(kτ)‖+

τ−1∑
i=0

‖Ai‖‖r(kτ+τ−1−i)‖

ζ1
≤1

2
‖u(kτ)‖+ ϑc

τ−1∑
i=0

‖u(kτ+τ−1−i)‖2

ζ2
≤1

2

(
3

4

)k 1

4cτϑ
+

1

4τ

τ−1∑
i=0

‖ukτ+i‖

ζ3
≤1

2

(
3

4

)k 1

4cτϑ
+

1

4

(
3

4

)k 1

4cτϑ
=

(
3

4

)k+1 1

4cτϑ
,

where “ζ1” is due to (A.7) which implies ‖Ai‖ ≤ c for all i ≥ 1 and it also has used
‖r(t)‖ ≤ ϑ‖u(t)‖2, “ζ2” and “ζ3” are based on the induction step and ‖ukτ+i‖ ≤ 1

4cτϑ for all

0 ≤ i ≤ τ − 1. By using the same argument as the above, we can show that ‖u((k+1)τ+i)‖ ≤
1

4cτϑ

(
3
4

)k+1
for all 0 ≤ i ≤ τ − 1. This proves that max0≤i≤τ−1 ‖u(kτ+i)‖ ≤ 1

4cτϑ

(
3
4

)k
holds

for all k ≥ 0. Specially for i = 0 we have

‖w(kτ) − w∗‖ = ‖ukτ‖ ≤ 1

4cτϑ

(
3

4

)k
.

Therefore, we need t ≥ 4τ log
(

1
4cτϑε

)
to guarantee the estimation bound ‖w(t) − w∗‖ ≤ ε.

This completes the proof.

We are now ready to prove the main theorem.
Proof [of Theorem 13] Under the given conditions, from Theorem 8 and Lemma 10 we
know that for any prefixed ρ ∈ (0, 1/3], there exists a sufficiently large t0 such that for all
t ≥ t0, the unit length ηt = 1 is acceptable while the following bound holds:

‖w̃(t) − w(t−1)‖ ≤ 6µ

13γ + µ

(
γ + µ

4(6ν + 1)
√
κτ

)
. (A.8)

Since εt ≤ ρ(µ+γ)
2(L+γ)+ρ(µ+γ)‖∇F (w(t−1))‖, the bound in (A.3) holds such that

εt ≤
ρ(γ + µ)

2
‖w̃(t) − w(t−1)‖ ≤ γ + µ

6
‖w̃(t) − w(t−1)‖,
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where we have used ρ ≤ 1/3. Then based on Lemma 29 and (A.8), the following holds for
all t ≥ t0,

‖w(t) − w∗‖ =‖w̃(t) − w∗‖ ≤ 2γ

µ
‖w̃(t) − w(t−1)‖+

εt
µ

≤
(

2γ

µ
+
γ + µ

6µ

)
‖w̃(t) − w(t−1)‖ ≤ γ + µ

4(6ν + 1)
√
κτ
.

Since εt ≤ min
{

(γ + µ)2, ‖∇F (w(t−1))‖2
L2

}
, by invoking Lemma 11 we obtain ‖w(t0+t1)−w∗‖ ≤

ε after

t1 ≥ 4τ log

(
γ + µ

4(6ν + 1)
√
κτ

(
1

ε

))
,

where τ =
⌈
µ+2γ

2µ log (4κ)
⌉
. This concludes the proof.

Appendix C. Proofs for Section 3

We collect in this appendix section the technical proofs of the results in Section 3, including
Theorems 15, Theorem 18, Theorem 13 and their corollaries.

C.1 Proof of Theorem 15

We now prove Theorem 15 which is following restated.

Theorem 15 (Convergence rate of DANE-HB for quadratic function) Assume that
the loss function is quadratic. Let H and H1 be the Hessian matrices of the global objective

F and local objective F1, respectively. Assume that µI � H � LI. Set β =
(

1−
√

µ
µ+2γ

)2

and εt =
√

2(µ+γ)‖∇F (w(0))‖
2L(t+1)2

(
1− 1

2

√
µ

µ+2γ

)t+1
. Given precision ε > 0, if ‖H1 − H‖ ≤ γ,

then Algorithm 2 will output w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ 2

√
µ+ 2γ

µ
log

(
2
√

2c‖w(0) − w∗‖
ε

)

rounds of iterations, where c is a constant relying on
√
µ/(µ+ 2γ).

Proof [of Theorem 15] Since the objective is quadratic, for any w(t−1) the optimal solution
w∗ = arg minw F (w) can always be expressed as

w∗ = w(t−1) −H−1∇F (w(t−1)). (A.9)

Since H
(t)
1 ≡ H1 holds in the quadratic case, based the gradient equation of P (t−1) at w̃(t)

we have

w̃(t) = w(t−1) − (H1 + γI)−1∇F (w(t−1)) + (H1 + γI)−1∇P (t−1)(w̃(t)).
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Then from the definition of w(t) = w̃(t) + β(w(t−1) − w(t−2)) we have

w(t) = w(t−1) − η(H1 + γI)−1∇F (w(t−1)) + β(w(t−1) − w(t−2)) + r(t−1), (A.10)

where the residual term r(t−1) is given by

r(t−1) = (H1 + γI)−1∇P (t−1)(w̃(t)).

Plugging (A.9) into (A.10) yields

w(t) − w∗ = ((1 + β)I − (H1 + γI)−1H)(w(t−1) − w∗)− β(w(t−2) − w∗) + r(t−1).

Now let us study the three term recurrence in matrix form[
w(t) − w∗
w(t−1) − w∗

]
=

[
(1 + β)I − (H1 + γI)−1H −βI

I 0

] [
w(t−1) − w∗
w(t−2) − w∗

]
+ r(t−1)

=

[
(1 + β)I − (H1 + γI)−1H −βI

I 0

]t [
w(0) − w∗
w(−1) − w∗

]
+

t−1∑
τ=0

[
(1 + β)I − (H1 + γI)−1H −βI

I 0

]τ
r(t−1−τ).

Let us abbreviate

u(t) :=

[
w(t) − w∗
w(t−1) − w∗

]
, A :=

[
(1 + β)I − (H1 + γI)−1H −βI

I 0

]
.

It follows from the preceding recursion form and the bastic fact ‖Tx‖ ≤ ‖T‖‖x‖ that

‖u(t)‖ ≤ ‖At‖‖u(0)‖+
t−1∑
τ=0

‖Aτ‖‖r(t−1−τ)‖. (A.11)

Let us now temporarily assume that ρ(A) < 1 and consider δ = 1−ρ(A)
2 . From Lemma 26

we know that there exists a constant c = c(δ) such that for all t ≥ 0:

‖At‖ ≤ c(ρ(A) + δ)t = c

(
1 + ρ(A)

2

)t
. (A.12)

Next we show that ρ(A) < 1 is indeed the case under the conditions of the theorem. Since
‖H1 − H‖ ≤ γ and H � µI, by invoking Lemma 24 we obtain that (H1 + γI)−1H is
diagonalizable and

µ

µ+ 2γ
≤ λmin((H1 + γI)−1H) ≤ λmax((H1 + γI)−1H) ≤ 1.

Given the setting of β =
(

1−
√

µ
µ+2γ

)2
, it is known from Lemma 25 (with η = 1) that

ρ(A) ≤ 1−
√

µ

µ+ 2γ
.
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Notice that ‖r(t)‖ ≤ εt
µ+γ holds for all t which follows immediately from ‖∇P (t−1)(w̃(t))‖ ≤ εt

and H1 � µI. Then combining the above bound with (A.11) and (A.12) yields

‖w(t) − w∗‖

≤‖u(t)‖ ≤ c
(

1− 1

2

√
µ

µ+ 2γ

)t
‖u(0)‖+

c

µ+ γ

t−1∑
τ=0

εt−1−τ

(
1− 1

2

√
µ

µ+ 2γ

)τ
ζ1
≤
√

2c

(
1− 1

2

√
µ

µ+ 2γ

)t
‖w(0) − w∗‖+

c
√

2

2

t−1∑
τ=0

1

(t− τ)2

(
1− 1

2

√
µ

µ+ 2γ

)t
‖w(0) − w∗‖

≤2
√

2c

(
1− 1

2

√
µ

µ+ 2γ

)t
‖w(0) − w∗‖,

where in the inequality “ζ1” we have used w(0) = w(−1) and the condition

εt ≤
√

2(µ+ γ)‖∇F (w(0))‖
2L(t+ 1)2

(
1− 1

2

√
µ

µ+ 2γ

)t+1

≤
√

2(µ+ γ)‖w(0) − w∗‖
2(t+ 1)2

(
1− 1

2

√
µ

µ+ 2γ

)t+1

,

and in the last inequality we have used
∑t−1

τ=0
1

(t−τ)2
≤ 1 +

∫∞
1

1
x2
dx ≤ 2. Since 1− a ≤ e−a,

it follows directly from the preceding bound that ‖w(t) − w∗‖ ≤ ε is valid when

t ≥ 2

√
µ+ 2γ

µ
log

(
2
√

2c‖w(0) − w∗‖
ε

)
.

This concludes the proof.

C.2 Proof of Theorem 18

We now prove the following restated Theorem 18 about the local convergence rate of DANE-
HB when applied to strongly convex loss functions with Lipschitz Continuous Hessian.

Theorem 18 (Local convergence rate of DANE-HB) Assume that F and F1 are L-
smooth, µ-strongly-convex and has ν-LH. Assume that supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ.

Choose β =
(

1−
√
µ/(µ+ 2γ)

)2
. Let τ =

⌈
2
√

(µ+ 2γ)/µ log(2c)
⌉

in which c is a constant

dependent on
√
µ/(µ+ 2γ). Assume that εt ≤ min

{
(γ + µ)2, ‖∇F (w(t−1))‖2/L2

}
. Given

precision ε > 0, if max−1≤i≤τ−1 ‖w(i) − w∗‖ ≤ γ+µ

4(6ν+1)
√

2cτ
, then Algorithm 2 will output

w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ 4τ log

(
γ + µ

4(6ν + 1)cτ

(
1

ε

))
rounds of iterations.
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Proof [of Theorem 18] The proof mimics that of Lemma 11 with proper adaptation to the
heave-ball momentum formulation. For the sake of completeness, here we provide the full
details of proof. Since ∇F (w∗) = 0, we can show that

∇P (t−1)(w̃(t))

=∇F1(w̃(t))−∇F1(w(t−1)) +∇F (w(t−1)) + γ(w̃(t) − w(t−1))

=∇F1(w̃(t))−∇F1(w∗) +∇F1(w∗)−∇F1(w(t−1)) +∇F (w(t−1))−∇F (w∗) + γ(w̃(t) − w(t−1))

=∆F1(w̃(t), w∗) +∇2F1(w∗)(w̃(t) − w∗)−∆F1(w(t−1), w∗)−∇2F1(w∗)(w(t−1) − w∗)
+ ∆F (w(t−1), w∗) +∇2F (w∗)(w(t−1) − w∗) + γ(w̃(t) − w(t−1))

=∆F1(w̃(t), w∗) + (∇2F1(w∗) + γI)(w̃(t) − w∗)−∆F1(w(t−1), w∗)

− (∇2F1(w∗) + γI)(w(t−1) − w∗) + ∆F (w(t−1), w∗) +∇2F (w∗)(w(t−1) − w∗).

Multiplying (∇2F1(w∗)+γI)−1 on both sides of the above followed by proper rearrangement
yields

w̃(t) − w∗

=
(
I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)

+ (∇2F1(w∗) + γI)−1
(
∇P (t−1)(w̃(t))−∆F1(w̃(t), w∗) + ∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)

)
=
(
I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)

+ (∇2F1(w∗) + γI)−1
(

∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w̃(t), w∗) +∇P (t−1)(w̃(t))
)
.

Recall the update w(t) = w̃(t) + β(w(t−1) − w(t−2)). It follows that

w(t) − w∗

=
(
(1 + β)I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)− β(w(t−2) − w∗)

+ (∇2F1(w∗) + γI)−1
(

∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w̃(t), w∗) +∇P (t−1)(w̃(t))
)
.

Let H∗ = ∇2F (w∗) and H∗1 = ∇2F1(w∗). Similar to the previous analysis, we work on the
three term recurrence in matrix form

u(t) = Au(t−1) + r(t−1) (A.13)

where u(t) :=

[
w(t) − w∗
w(t−1) − w∗

]
, A :=

[
(1 + β)I − (H∗1 + γI)−1H∗ −βI

I 0

]
and

r(t−1) :=

[
(H∗1 + γI)−1

(
∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w̃(t), w∗) +∇P (t−1)(w̃(t))

)
0

]
.

Provided that εt ≤ min
{

(γ + µ)2, ‖∇F (w(t−1))‖2/L2
}

, using about the same arguments as

those in the proof of Lemma 11, we can bound ‖r(t−1)‖ with respect to ‖u(t−1)‖ as

‖r(t−1)‖ ≤ 6ν + 1

γ + µ
‖u(t−1)‖2.
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Since ‖H∗1 −H∗‖ ≤ γ and H∗ � µI, by applying Lemma 24 we obtain that (H∗1 + γI)−1H∗

is diagonalizable and

µ

µ+ 2γ
≤ λmin

(
(H∗1 + γI)−1H∗

)
≤ λmax

(
(H∗1 + γI)−1H∗

)
≤ 1.

Given β =
(

1−
√

µ
µ+2γ

)2
, it is true in view of Lemma 25 (with η = 1) that

ρ(A) ≤ 1−
√

µ

µ+ 2γ
.

Let δ = 1−ρ(A)
2 . From Lemma 26 we know that there exists a constant c = c(δ) such that

for all t ≥ 0:

‖At‖ ≤ c(ρ(A) + δ)t = c

(
1 + ρ(A)

2

)t
≤ c

(
1− 1

2

√
µ

µ+ 2γ

)t
. (A.14)

Without loss of generality we assume c ≥ 1. To simplify notation, we abbreviate ϑ = 6ν+1
γ+µ

in the following argument. Let us consider the following defined integer

τ =

⌈
2

√
µ+ 2γ

µ
log(2c)

⌉
,

which ensures ‖Aτ‖ ≤ 1
2 . We now prove by induction that for any integer k ≥ 0,

max
0≤i≤τ−1

‖u(kτ+i)‖ ≤ 1

4cτϑ

(
3

4

)k
.

The assumption max−1≤i≤τ−1 ‖w(i) − w∗‖ ≤ 1
4
√

2cτϑ
guarantees that the bound is valid for

the base case k = 0, i.e., max0≤i≤τ−1 ‖u(i)‖ ≤ 1
4cτϑ . Now assume that the above bound is

valid for some k ≥ 0. Then based on the recursive form (A.13) we can derive

‖u((k+1)τ)‖

=

∥∥∥∥∥Aτu(kτ) +

τ−1∑
i=0

Air(kτ+τ−1−i)

∥∥∥∥∥
≤‖Aτ‖‖u(kτ)‖+

τ−1∑
i=0

‖Ai‖‖r(kτ+τ−1−i)‖

ζ1
≤1

2
‖u(kτ)‖+ ϑc

τ−1∑
i=0

‖u(kτ+τ−1−i)‖2

ζ2
≤1

2

(
3

4

)k 1

4cτϑ
+

1

4τ

τ−1∑
i=0

‖ukτ+i‖

ζ3
≤1

2

(
3

4

)k 1

4cτϑ
+

1

4

(
3

4

)k 1

4cτϑ
=

(
3

4

)k+1 1

4cτϑ
,
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where “ζ1” is due to (A.14) which implies ‖Ai‖ ≤ c for all i ≥ 1 and it also has used
‖r(t)‖ ≤ ϑ‖u(t)‖2, “ζ2” and “ζ3” are based on the induction step and ‖ukτ+i‖ ≤ 1

4cτϑ for all

0 ≤ i ≤ τ − 1. Similarly, we can show that ‖u((k+1)τ+i)‖ ≤ 1
4cτϑ

(
3
4

)k+1
for all 0 ≤ i ≤ τ − 1.

This proves that max0≤i≤τ−1 ‖u(kτ+i)‖ ≤ 1
4cτϑ

(
3
4

)k
holds for all k ≥ 0. Particularly, we

obtain

‖w(kτ) − w∗‖ ≤ ‖ukτ‖ ≤ 1

4cτϑ

(
3

4

)k
.

Therefore, to reach ‖w(t)−w∗‖ ≤ ε we need t ≥ 4τ log
(

1
4cτϑε

)
. This completes the proof.

C.3 Proof of Theorem 20

In this subsection, we prove Theorem 20 as restated below.

Theorem 20 (Convergence of D2ANE) Assume that the univariate functions li are `-
smooth and σ-strongly convex. Assume without loss of generality that ‖xi‖ ≤ 1. Let

H = `
NXX

> + µI and H1 = `
nX1X

>
1 + µI. Choose β =

(
1−

√
µ

µ+2γ

)2
and εt =

σ
2` exp

{
−σ(t−1)

2`

}
. If ‖H1 − H‖ ≤ γ, then Algorithm 3 will output solution w(t) with sub-

optimality F (w(t))− F (w∗) ≤ ε after

t ≥ 2`

σ
log

(
max

{
1, F (w(0))− F (w∗)

}
ε

)

rounds of outer-loop iterations and

O
(
`

σ

√
γ

µ
log2

(
1

ε

))

rounds of inner-loop iterations of DANE-HB.

Proof We first analyze the outer-loop iteration complexity. As defined in Algorithm 3, at
each time instance t the quadratic subproblem is optimized to certain εt-sub-optimality, i.e.,

Q(t−1)(w(t)) ≤ min
w
Q(t−1)(w) + εt.

The value of εt will be specified shortly in the analysis to follow. Let us abbreviate
li(w

>xi) = l(w>xi, yi) with li being a univariate function. For any η ∈ [0, 1], the smoothness
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of li and the sub-optimality of w(t) imply

F (w(t))

=F̃ (w(t)) +
µ

2
‖w(t)‖2 =

1

N

N∑
i=1

li(x
>
i w

(t)) +
µ

2
‖w(t)‖2

≤ 1

N

N∑
i=1

{
li(x

>
i w

(t−1)) + l′i(x
>
i w

(t−1))x>i (w(t) − w(t−1))

+
`

2
(w(t) − w(t−1))>xix

>
i (w(t) − w(t−1))

}
+
µ

2
‖w(t)‖2

=F̃ (w(t−1)) + 〈∇F̃ (w(t−1)), w(t) − w(t−1)〉+
`

2N
(w(t) − w(t−1))>XX>(w(t) − w(t−1))

+
µ

2
‖w(t)‖2

=Q(t−1)(w(t)) ≤ Q(t−1)((1− η)w(t−1) + ηw∗) + εt

=F (w(t−1)) + η〈∇F (w(t−1)), w∗ − w(t−1)〉

+
η2`

2
(w∗ − w(t−1))>

(
XX>

N
+
µ

`
I

)
(w∗ − w(t−1)) + εt.

On the other side, from the strong-convexity of li(·) we can show that

F (w∗)

=
1

N

N∑
i=1

li(x
>
i w
∗) +

µ

2
‖w∗‖2

≥ 1

N

N∑
i=1

{
fi(x

>
i w

(t−1)) + f ′i(x
>
i w

(t−1))x>i (w∗ − w(t−1))> +
σ

2
(w∗ − w(t−1))>xix

>
i (w∗ − w(t−1))

}
+
µ

2
‖w(t−1)‖2 + µ〈w(t−1), w∗ − w(t−1)〉+

µ

2
‖w∗ − w(t−1)‖2

=F (w(t−1)) + 〈∇F (w(t−1)), w∗ − w(t−1)〉+
σ

2
(w∗ − w(t−1))>

(
XX>

N
+
µ

σ
I

)
(w∗ − w(t−1))

≥F (w(t−1)) + 〈∇F (w(t−1)), w∗ − w(t−1)〉+
σ

2
(w∗ − w(t−1))>

(
XX>

N
+
µ

`
I

)
(w∗ − w(t−1)),

where in the last inequality we have used the basic fact ` ≥ σ. By setting η = σ/` ∈ (0, 1]
and combining the above two inequalities we arrive at

F (w(t))− F (w∗) ≤
(

1− σ

`

)
(F (w(t−1))− F (w∗)) + εt.

Since li is `-smooth and ‖xi‖ ≤ 1, we can verify that F is (` + µ)-smooth. In view of the
condition

εt =
σ

2`
exp

{
−σ(t− 1)

2`

}
, (A.15)
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it can be straightforwardly shown by induction that

F (w(t))− F (w∗) ≤ exp

{
−σt

2`

}
max

{
1, F (w(0))− F (w∗)

}
.

Then for any desired precision ε > 0, the sub-optimality F (w(t))−F (w∗) ≤ ε holds provided
that

t ≥ T =
2`

σ
log

(
max

{
1, F (w(0))− F (w∗)

}
ε

)
.

To prove the inner-loop iteration complexity, from Theorem 15 and (A.15) we know that the
condition Q(t−1)(w(t)) ≤ minwQ

(t−1)(w) + εt is valid when the inner loop is sufficiently exe-

cuted with O
(√

γ
µ log

(
1
εt

))
rounds of iterations. Therefore, the overall inner-loop iteration

complexity to attain F (w(t))− F (w∗) ≤ ε is dominated by

O

(
T∑
t=1

{√
γ

µ

(
log

(
`

σ

)
+ (t− 1)

σ

`

)})

=O
(√

γ

µ

(
T log

(
`

σ

)
+ T 2σ

`

))
≤ O

(
`

σ

√
γ

µ
log2

(
1

ε

))
.

This proves the desired bound.

Appendix D. Proof of Auxiliary Lemmas

D.1 Proof of Lemma 24

Proof As both A+ γI and B are symmetric and positive definite, we know that the eigen-
values of (A+γI)−1B are positive real numbers and identical to those of (A+γI)−1/2B(A+
γI)−1/2. Consider the following eigenvalue decomposition of (A+ γI)−1/2B(A+ γI)−1/2:

(A+ γI)−1/2B(A+ γI)−1/2 = Q>ΛQ,

where Q>Q = I and Λ is a diagonal matrix with eigenvalues as diagonal entries. Then

(A+ γI)−1B = (A+ γI)−1/2Q>ΛQ(A+ γI)1/2,

which is a diagonal eigenvalue decomposition, and hence (A+ γI)−1B is diagonalizable.
To prove the eigenvalue bounds of (A + γI)−1B, it suffices to prove the same bounds

for (A + γI)−1/2B(A + γI)−1/2. Since ‖A − B‖ ≤ γ, we have B � A + γI which implies
(A+γI)−1/2B(A+γI)−1/2 � I and hence λmax((A+γI)−1/2B(A+γI)−1/2) ≤ 1. Moreover,
since B � µI, it holds that 2γ

µ B − γI � γI � A− B. Then we obtain (A+ γI)−1/2B(A+

γI)−1/2 � µ
µ+2γ I which implies λmin((A + γI)−1/2B(A + γI)−1/2) ≥ µ

µ+2γ . Therefore it
must hold

‖I − (A+ γI)−1/2B(A+ γI)−1/2‖ ≤ 1− µ

µ+ 2γ
=

2γ

µ+ 2γ
.

Similarly, we can show that µ
µ+2γ I � B1/2(A + γI)−1B1/2 � I, and thus ‖I − B1/2(A +

γI)−1B1/2‖ ≤ 2γ
µ+2γ .
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D.2 Proof of Lemma 25

Proof Let 0 < µ ≤ λ1 ≤ λ2 ≤ · · · ≤ λd ≤ L be the eigenvalues of A and Λ be a diagonal
matrix whose diagonal entries are {λi} in a non-decreasing order. Since A is diagonalizable,
it can be verified that the eigenvalues of the following two 2d× 2d matrices coincide:

T1 =

[
(1 + β)I − ηA −βI

I 0

]
, T2 =

[
(1 + β)I − ηΛ −βI

I 0

]
.

It is possible to permute the matrix T2 to a block diagonal matrix with 2 × 2 blocks of
the form [

1 + β − ηλi −β
1 0

]
.

Therefore we have

ρ

([
(1 + β)I − ηA −βI

I 0

])
=ρ

([
(1 + β)I − ηΛ −βI

I 0

])
= max

i∈[d]
ρ

([
1 + β − ηλi −β

1 0

])
.

For each i ∈ [d], the eigenvalues of the 2× 2 block matrices are given by the roots of

λ2 − (1 + β − ηλi)λ+ β = 0.

Given that β ≥ |1 −
√
ηλi|2, the roots of the above equation are imaginary and both have

magnitude
√
β. Since β = max{|1 −√ηµ|2, |1 −

√
ηL|2}, the magnitude of each root is at

most max{|1−√ηµ|, |1−
√
ηL|}. This proves the desired spectral radius bound.

Appendix E. Computational Complexity of DANE-HB and D2ANE

In addition to the communication complexity analysis, here we further provide a computa-
tional complexity analysis for DANE-HB in order to gain better understanding of its overall
computational efficiency. We first restrict our attention to the quadratic setting in which
the global convergence of DANE-HB is guaranteed. At each communication round t, the
master machine needs to solve the local subproblem w̃(t) ≈ arg minw P

(t−1)(w) to certain
desired precision. Inspired by Federated SVRG (Konečnỳ et al., 2016) which essentially
applies SVRG (Johnson and Zhang, 2013) to the local optimization of InexactDane , we
specify that the local minimization of DANE-HB is solved by SVRG. Clearly such a speci-
fication of DANE-HB only needs to access the first-order information of the loss functions.
Following Johnson and Zhang (2013); Zhang and Xiao (2017), we employ the incremental
first-order oracle (IFO) complexity as the computational complexity metric for solving the
finite-sum minimization problem (1).

Definition 30 An IFO takes an index i ∈ [N ] and a point (xi, yi) ∈ {xj , yj}Nj=1, and
returns the pair (f(w;xi, yi),∇f(w;xi, yi)).
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As a consequence of Corollary 16, the following result summaries the computational
complexity of DANE-HB for quadratic problems.

Corollary 31 (Computational complexity of DANE-HB for quadratic objective)
Assume the conditions in Corollary 16 hold and the local subproblems are solved by SVRG.
Then for sufficiently small δ > 0, with probability at least 1 − δ over the random samples
drawn to construct F1, the IFO complexity of DANE-HB for attaining estimation error
‖w(t) − w∗‖ ≤ ε is bounded in expectation (w.r.t. stochastic gradient estimation) by

O
(√

κ
(
n3/4 + n1/4

)
log1/4

(p
δ

)
log2

(
1

ε

)
+
√
κn3/4 log1/4

(p
δ

)
log

(
1

ε

))
,

Proof Recollect that γ = L

√
32 log(p/δ)

n in Corollary 16. From Corollary 16 we know that

with probability at least 1− δ over the random choice of F1, ‖w(t) − w∗‖ ≤ ε after

T = O
( √

κ

n1/4
log1/4

(p
δ

)
log

(
1

ε

))
rounds of outer-loop communication. In each round of outer-loop communication, each
worker machine needs to compute the local batch gradient over n samples, and thus the
outer-loop full gradient computation can be done in parallel with IFO complexity

O
(√

κn3/4 log1/4
(p
δ

)
log

(
1

ε

))
.

It is standard to know that the IFO complexity of the inner-loop SVRG computation can
be bounded in expectation by

O
((

n+
L+ γ

γ + µ

)
log

(
1

εt

))
≤ O

((
n+

√
n

log(p/δ)

)
log

(
1

ε

))
≤ O

((
n+
√
n
)

log

(
1

ε

))
,

where we have used log (1/εt) ≤ O (log (1/ε)) for all t ≤ T and log(p/δ) ≥ 1 for sufficiently
small tail bound δ. Combing the above inner-loop and outer-loop IFO bounds yields the
following overall expectation (w.r.t. SVRG) computation complexity bound

O
(√

κ
(
n3/4 + n1/4

)
log1/4

(p
δ

)
log2

(
1

ε

)
+
√
κn3/4 log1/4

(p
δ

)
log

(
1

ε

))
,

which holds with probability at least 1− δ over the randomness of F1.

For an instance, let us consider the conventional regularized learning problems in which
the condition number κ scales as large as O(

√
N) = O(

√
mn). In this case, the above result

implies that with high probability over the random construction of F1, the expected IFO
complexity bound of DANE-HB with local SVRG optimization is dominated by

O
((

m1/4n+m1/4n1/2
)

log2

(
1

ε

)
+m1/4n log

(
1

ε

))
.
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For comparison, the expected IFO complexity bound of the classic single-machine SVRG is
given by

O
((
mn+

√
mn
)

log

(
1

ε

))
.

Since the sample size mn dominates the condition number
√
mn in this example, up to

logarithm factors, DANE-HB is roughly ×m3/4 cheaper than SVRG in computational cost
for quadratic problems, which also matches the corresponding result of MP-DANE (Wang
et al., 2017b).

Analogously, by combining Corollary 22 and Corollary 31 we can establish the following
result on the overall IFO complexity bound of D2ANE for linear models.

Corollary 32 (Computation complexity of D2ANE) Assume the conditions in Corol-
lary 22 hold and the local subproblems are solved by SVRG. Then for sufficiently small δ > 0,
with probability at least 1−δ over the random samples drawn to construct F1, the IFO com-
plexity of D2ANE for attaining sub-optimality F (w(t))−F (w∗) ≤ ε is bounded in expectation
(w.r.t. stochastic gradient estimation) by

O
(
`
√
κ

σ

(
n3/4 + n1/4

)
log1/4

(p
δ

)
log3

(
1

ε

)
+
`
√
κ

σ
n3/4 log1/4

(p
δ

)
log2

(
1

ε

))
.

When the condition number scales as κ = O(
√
N) = O(

√
mn) in regularized statistical

learning problems, Corollary 32 shows that with high probability over the random con-
struction of F1, the expected IFO complexity of D2ANE implemented with SVRG (for local
optimization) is upper bounded by

O
(
`

σ

(
m1/4n+m1/4n1/2

)
log3

(
1

ε

)
+
`

σ
m1/4n log2

(
1

ε

))
.

This above bound indicates that up to logarithm factors, D2ANE is roughly ×m3/4 cheaper
than SVRG in computational cost for strongly convex optimization with linear models.
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