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ABSTRACT

With the progress of communication technology and the popularity
of the smart phone, videos grow to be the largest medium. Since
videos can grab a customer’s attention quickly and leave a big
impression, video ads can gain more trust than traditional ads.
Thus advertisers start to pour more resources into making creative
video ads to built the connections with potential customers. Baidu,
as the leading Chinese search engine firm, receives billions of search
queries per day. In this paper, we introduce a technique used in
Baidu video advertising for feeding relevant video ads according
to the user’s query. Note that, retrieving relevant videos using the
text query is a cross-modal problem. Due to the modal gap, the
text-to-video search is more challenging than well exploited text-to-
text search and image-to-image search. To tackle this challenge, we
propose a Combo-Attention Network (CAN) and launch it in Baidu
video advertising. In the proposed CAN model, we represent a video
as a set of bounding boxes features and represent a sentence as a
set of words features, and formulate the sentence-to-video search
as a set-to-set matching problem. The proposed CAN is built upon
the proposed combo-attention module, which exploits cross-modal
attentions besides self attentions to effectively capture the relevance
between words and bounding boxes. To testify the effectiveness of
the proposed CAN offline, we built a Daily700K dataset collected
from HaoKan APP. The systematic experiments on Daily700K as
well as a public dataset, VATEX, demonstrate the effectiveness of
our CAN. After launching the proposed CAN in Baidu’s dynamic
video advertising (DVA), we achieve a 5.47% increase in Conversion
Rate (CVR) and a 11.69% increase in advertisement impression rate.
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1 INTRODUCTION

With the popularity of the smart phones, people can easily record
and edit videos. Meanwhile, with the advancement of (wireless)
communication technologies, users can receive and send short
videos in seconds, which fosters the explosive growth of short-
video APPs such as Snapchat, Vine, Tik Tok, and Kuaishou in United
States and China. Short-videos are seconds-long or minutes-long
videos, which are short but interesting and creative. Watching short
videos in leisure time has become a fashionable way for relaxation.
In 2019, DAU (daily active users) of several short-video APPs such
as Tik Tok and Kuaishou has surpassed 200 million, and everyday,
billions of new short videos are created and shared. The emergence
of the short video market motivates the advertisers to put more
efforts on making creative video ads for attracting attentions of
potential customers. Baidu, as the leading search engine company
in China, receives billions of search queries from the users. Feeding
potential interested video ads according to a user’s query is the
core task of Baidu video advertising.

In fact, the text-to-video search is a cross-modal search, which is
different from traditional text-to-text search used in current indus-
try search engines. It also differs from well exploited content-based
image/video search using image query. In the past a few years,
video understanding [5, 26, 28, 31] have achieved break-through
performance thanks to the convolutional neural network (CNN).
Meanwhile, in recent years, text understanding also achieves signif-
icant progress thanks to the attention mechanism [7, 29]. Despite
that significant improvement has been achieved in video under-
standing and text understanding by computer vision and natural
language processing community, how to learn or design an effective
text-to-video matching metric is still far from well addressed.

Traditionally, the text-to-video search is solved by the joint em-
bedding [12, 13]. Basically, it represents a text query as a holis-
tic feature vector and represents a reference video for retrieval
in the database as a global visual feature vector. Then the visual
feature vector of the video and the text query’s holistic feature
vector are further mapped into a joint semantic feature space. It
seeks to minimize the distances between the text query and its
relevant videos in the joint semantic feature space and meanwhile
enlarges the distances between the text query and its irrelevant
videos. In this scheme, both sentences and videos are represented
by global features, which are efficient for training and retrieval.
Nevertheless, the global representation is incapable of conduct-
ing local matching between a sentence and a video. For example,
given a sentence S = [wy, - - - , wy] containing n words and a video
YV =[fi,-- -, fin] containing m frames. In some scenarios, only the
i-th word w; is closely related with a small area in j-th frame f;
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whereas the other words and other frames are unrelated. In this case,
if we represent S as a global feature S and represent V as a holistic
vector V, the close relation between w; and f; will be distracted by
the irrelevance between other words and other frames.

To overcome the drawback, in this paper, we formulate the
sentence-to-short-video retrieval task as a set-to-set matching prob-
lem. To be specific, the sentence S is represented by a set of word-
level features W = {w;}I_, and the video V is represented by a
set of bounding boxes features 8 = {b; }j.:l. The bounding boxes
represent some candidate locations of objects, obtained by a pre-
trained object detector such as faster R-CNN [25]. The similarity
between S and V is obtained through set-to-set matching between
W and B based on the proposed combo-attention network (CAN):

sim(S, V) = CAN(‘W, B). 1)

We visualize the overview of the proposed method in Figure 1.

How to match hat with glasses

Query Sentence

similarity

words

Figure 1: The overview of the proposed method. A query sen-
tence is represented by a set of words features and a short
video is represented by a set of bounding boxes features. The
similarity between the query sentence and the short video is
obtained by the proposed CAN, which conducts a matching
between the set of bounding boxes and the set of words.

The proposed CAN is based on the proposed combo-attention
module visualized in Figure 2(b). It is inspired by the recent success
of transformer [29] in natural language processing. On one hand,
the combo-attention module utilizes the video’s bounding boxes
features to generate attentions for the sentence’s words features.
On the other hand, it generates attentions for the bounding boxes
features based on the words features. This cross-modal attention
mechanism provides the context of the video for modeling the
sentence and meanwhile gives the context of the sentence to model
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the video. In the training phase, the similarities are used to construct
the training loss for updating the weights of CAN. In the testing
phase, the query sentence and reference short videos are ranked
based on their similarities with the query sentence.

To evaluate the performance of the proposed CAN on short video
retrieval, we built a Daily700K dataset, which consists of 600, 000
short videos collected from HaoKan APP. The queries and videos
are paired through logs of user clicks. Our systematic experiments
conducted on Daily700K as well as a public dataset, VATEX [32],
demonstrate the effectiveness of the proposed CAN. Meanwhile,
CAN has been launched in Baidu dynamic video advertising (DVA).
After launch, it achieves a 5.47% increase in Conversion Rate (CVR)
and a 11.69% increase in advertisement impression rate.

In a nutshell, the contributions of this paper are four-fold:

e We formulate the sentence-to-short-video retrieval problem
as a set-to-set matching problem.

e We propose a combo-attention network (CAN) based on the
proposed combo-attention module.

o A new dataset, Daily700K, is built for evaluating the pro-
posed CAN on the text-to-video retrieval.

e The proposed CAN has been launched in Baidu dynamic
video advertising (DVA), achieving excellent performance.

2 RELATED WORK

We review the related work in three fields: sentence representation,
video representation and text-to-video retrieval.

2.1 Baidu Search Ads

Baidu Search Ads (a.k.a. “Phoenix Nest”) is the major revenue source
for the company. In the search industry, sponsored online advertis-
ing produces many billions of dollar revenues for online ad publish-
ers. The task of CTR (Click-Through Rate) prediction [4, 10, 11, 38]
plays a key role to determine the best ad spaces allocation. CTR
prediction takes input (such as query-ad relevance, ad features,
user portraits, etc.) to estimate the probability that a user clicks
on a given ad. Since 2013 [11], Baidu Search Ads has been using
ultra-high dimensional input data and ultra-large-scale deep neural
networks for training CTR models, using MPI-based architectures.

Since around 2017, Baidu Search Ads has been undergoing sev-
eral major upgrades by incorporating the rapid-growing technolo-
gies in near neighbor search, machine learning, and systems. For
example, [37, 38] reported new architectures for distributed GPU-
based parameter servers which have replaced the MPI-based sys-
tem for training CTR models. [11] described the widespread use
of approximate near neighbor search (ANNS) and maximum inner
product search (MIPS) [36, 39] to substantially improve the quality
of ads recalls in the early stage of the pipeline of Baidu’s ads system.

In recent years, Baidu’s short-form video recommendations [19]
and video-based search ads have achieved great progress. In this
paper, we introduce the technology for a representative project
which has significantly boosted Baidu’s video-based ads revenues.

2.2 Sentence Representation

Traditionally, a sentence’s representation is obtained through word-
level embedding followed by a recurrent neural network (RNN) [2].
Word-level embedding maintains the semantic consistency in the
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feature space whereas the RNN models the order of words in the
sequence. Nevertheless, the sequential nature of the recurrent neu-
ral network makes it memory-costly and time-consuming when
processing long sequences. To improve the efficiency, ByteNet [16]
proposes to replace RNN by a one-dimensional CNN, which models
the order of the sequence through convolution layers. It achieves
a comparable sentence classification precision but well support
parallelism and is efficient for training. QRNN [3] stacks a CNN
module and an RNN module, which possesses high training effi-
ciency thanks to the CNN module and meanwhile effectively mod-
els the temporal order through the RNN module. ConvS2S [14] is
also built upon a CNN and encodes the positions of words in the
sentence to explicitly model the order of words. It introduces an
attention module to provide the context information for a more
effective representation. Recently, Transformer [29] built on a stack
of self-attention blocks has significantly improved the performance
in many NLP tasks. BERT [7] further improves the Transformer
using a bi-directional structure and achieves a better performance.

2.3 Video Representation

To model the dynamics in the video, early works gain the video
representation by feeding a sequence of frame-level frames into an
RNN [8]. Nevertheless, the dynamics normally exist in local patches
and cannot be effectively modeled through the global frame features
fed into RNN. To overcome the challenge, two-stream CNN [26]
leverages optical flow as an addition stream to model the local
dynamics. However, extracting the optical flows is considerably
time consuming. In parallel, 3D-CNN [28] efficiently models the
local dynamics through convolution along the temporal dimension.
It has achieved excellent performance based on pre-training on
a large scale video dataset [5]. Since 3D-CNN only models the
local dynamics within neighboring a few frames, Non-local Neural
Network [30] further improves 3D-CNN by additionally adding
global context through the proposed non-local block. Interestingly,
the non-local block is very similar to self-attention block used in
Transformer [29]. Meanwhile, Wang et al. [31] extract the bounding
boxes features of a video and conduct the graph-convolution on the
bounding boxes features. In fact, the graph convolution layer used
in [31] is also similar to the self-attention block used in Transformer.

2.4 Text-to-vision Retrieval

Joint Embedding. A range of prior work [12, 13] have exploited
image-text joint embedding for text-to-image retrieval. To be spe-
cific, they map the images and natural languages into the same
semantic space. They keep a close distance between relevant im-
ages and sentences, and maintain a large distance between the
irrelevant images and sentences. Recently, with the emergence of
videos, the research community gradually pays more and more
attention to video-text joint embedding. Traditional video-text em-
bedding methods [23, 24, 33] normally rely on the frame-level fea-
tures. Nevertheless, frame-level features fail to encode the global
visual information, which might be important in some scenarios.
To obtain a global video-level representation, [22] simply conducts
average pooling over frame-level features, achieving better per-
formance than methods [23, 24, 33] based on frame-level features.
Nevertheless, average pooling cannot model the complex relations
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among the video frames, and average pooling also leads to sig-
nificantly information loss since is straightforwardly sums up the
activations of multiple frames. Note that, joint embedding optimizes
the cross-modal metric in the late stage where we have already
obtained the feature of a video/image and the feature of a sentence.

Early Fusion. To enhance the effectiveness of matching the video
feature and the text feature, some work [6, 21, 34] fuse the video
feature and the text feature in the early stage. To compute the repre-
sentation of a sentence, m-CNN [21] takes input the image feature
besides words’ features when conducting 1D convolution. On the
other side, to compute the representation of an image, BCN [6] uses
the sentence’s feature to modulate feature maps of the image. CT-
SAN [34] generates an attention map by fusing the LSTM feature of
the sentence and the image feature. They further use the attention
map and the image’s feature map to generate a vector, which is fed to
an LSTM to generate the sentence’s final feature. Recently, inspired
by the great progress achieved by BERT [7], some methods [20, 27]
extend the original BERT language model to a cross-modal model
to tackle the language-vision tasks. VideoBERT [27] utilizes the
clustering to convert to a frame’s visual feature into a visual word,
and thus converts a video into a visual sentence. It further concate-
nates the video sentence and the original language sentence as the
input of the original BERT model. Nevertheless, VideoBERT suffers
from distortion error from clustering, and it treats the vision and
text equally, ignoring the differences between these two modals.
VIiLBERT [20] further improves VideoBERT by designed a two-
stream architecture consists of a text stream and an image stream.
In each stream, they design a co-attention transformer layer which
takes both two modals as input to generate the attention. Similarly,
MCN [35] also uses the text feature to guide the attention when
generating the feature of the image. Nevertheless, both VILBERT
and MCN are designed for the image-text tasks, which can not be
directly used for video-text tasks.

3 METHOD

Given a short video V, we extract T frames through uniformly
sampling. For each frame f;, we detect K bounding boxes through
faster R-CNN [25], which serve as the potential locations of objects
in the frame. The visual feature of a bounding box is obtained by
sum-pooling over the bounding box’s region in a convolutional
feature map. On the text side, given a sentence S consisting of
M words, we obtain a sequence of features [wy,- -+, Wj,- -, W],
where w represents the feature of j-th word in the sentence S.

3.1 Basic Block

Our model is built on two basic blocks, self-attention (SA) block
and combo-attention (CA) block. We visualize architectures of two
blocks in Figure 2. As shown in the figure, the SA block is a standard
module in BERT. As for the proposed CA block, we give more details
here. Our CA block takes two types of feature X and Y as input. To
be specific, X is a matrix of Dy X Ny size where Ny is the number
of features in X and Dy is the feature dimension. Similarly, Y is
a matrix of Dy X Ny size where Ny, is the number of features in
Y and Dy is the feature dimension. The proposed CA block first
computes the value matrix V; and the key matrix K; based on Y,
and then compute the query matrix Q; based on X by
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Vi =fi(Y), Ky = g1(Y), Q1 = h1(X),

where V; € RNUXD“, Ke RNUXD", Qe RNXXD‘I, Dq = Dy and

@

fl(Y) = Wle’ g1 (Y) = ngY’ hl (X) = Wh1 X. (3)

We define the j-th column of the query matrix Q; as the query
vector q;. By computing the matrix-vector product between q;
and the key matrix K; followed by a softmax operation, the soft-
attention vector a; is obtained by

aj = softmax(Klq]T/1 |Dg).

Then the attended feature vector f; is obtained by a weighted sum-
mation over all columns of Vi and the weights are items in a;:

©

fj = Vla;-r.

®)

The attended feature matrix F; consists of all attended features:

Fy=[fy,--- £, fN]. (6)
F; goes through an add&norm layer and generates:
F; = norm(F;) + X, (7)

where norm(+) denotes the layer normalization [1]. Fy is further
used to compute the Vo, Ky and Q2, which further go through a self-
attention layer and another add&norm layer, and generate F,. Fi-
nally, Fy goes through a feed-forward layer and another add&norm
layer to generate the output of the block. Note that, for easiness of
illustration, the above formulation is based on the single head. In
implementation, we adopt a 8-head settings for all attention blocks.

EREDE o L

add & norm =

feed forward

— |

add & norm

add & norm

feed forward

le—

attention

[\ giQ

add & norm

attention
i

OO0 ERpER
Y X

add & norm

le—

attention

[l

ERpEN
X

(a) Self-Attention (b) Combo-Attention

Figure 2: The architecture of the self-attention (SA) module
and the combo-attention (CA) module.
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3.2 Architecture

Figure 3 visualizes the architecture of the proposed model. It can
be divided into two streams: the sentence stream and the video
stream. The input of the short video stream is a set of bounding
boxes features 8 = {by,- - ,bn}. The feature of a bounding box
b is a sum of its visual feature v and its spatio-temporal location
vector 1:

b=W,v+W ®)

where W, and W; are learnable projection matrices to make the
dimension of the bounding box visual feature identical to that
of the spatio-temporal location vector. The visual feature v is ob-
tained by sum-pooling the convolutional features within the de-
tected region. The spatio-temporal location vector is defined as
1 = %o, %1, o, Y1, t], where

XWO, leX—M;s o = f:z, ©)
and x is the x-axis coordinate of the upper-left corner, x; is the x-
axis coordinate of the lower-right corner, yo is the y-axis coordinate
of the upper-left corner, x; is the y-axis coordinate of the lower-
right corner, and t is the frame index, W is the frame width, H is the
frame height and L is the number of sampled frames from the short
video. The input of the sentence stream is a set of words features
W = {wy,---,wp}. The word feature w is a summation of the
word-embedding feature and the positional feature. To be specific,

_ LU
X0 = H,yl q

(10)
where w, is extracted through a word2vector model and w, is the
positional embedding of the word in the same manner as Trans-
former [29]. Horizontally, the architecture can be partitioned into
three parts: 1) the self-attention part, 2) the combo-attention part
and 3) the similarity-computation part.

W = We + Wp,

The self-attention part. In the video stream, the set of boxes
features go through a cascade of two SA layers and generate a
set of self-attended bounding boxes features B = [by,---,by].In
parallel, in the sentence stream, the words features also go through
a cascade of two SA layers and generate a set of self-attended words
features W = [Wi, -, War].

The combo-attention part. In the video stream, self-attended
bounding boxes features B = [61, S ,BN] are used for generat-
ing the query matrix Q for the first CA block of the video side.
The key matrix K and the value matrix V of the input of the
first CA of the video stream are obtained from the self-attended
words features W = [W1, -+, Wps]. The output of the first CA in
the video stream is the cross-attended bounding boxes features

B = [Bgl), e ,B](\})]. In parallel, in the sentence stream, the
self-attended words features W = [W1,- -+, Wpr] are used for gen-

erating the query matrix Q in the input of the first CA block in
the sentence stream. Meanwhile, the value matrix V as well as
the key matrix K in the input of the first CA of the sentence
stream is computed from the self-attended boxes features B =
{Bl, Sl I;N} The output of the first CA in the sentence stream
is the cross-attended words features W) = [v‘vil), cee ,v'vj(v})]. In
a similar manner, the second CA of the video stream generates
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box[(l-:‘s[| flc]el]ture: R . & g H H H H > seft-att =H H [I [I H
HHHHH > SA —= SA > CA —>| CA =HHHHH :simi:;rity

words features

Figure 3: The architecture of the proposed model. Vertically, it can be divided into two streams. The upper stream processes
the short video and the lower stream accounts for the sentence. Horizontally, it can be partitioned into three parts. The left
part conducts the self attention on each stream individually, the middle part incorporates the cross-modal attention between
two streams and the right part measures the similarity between the sentence and the short video.

B® = [l_)iz), e ,B}(\?)] and the second CA of the sentence stream
generates W(%) = [v‘vgz), . ,Wﬁ)].
The similarity-computation part. Soft attention layer (soft-att)
takes the cross-attended boxes features B(2) = [Biz), e ,B](\?)] as
well as cross-attended words features W2 = [v'vﬁz), cee ,W](VZI)] as
input, and computes a similarity matrix S by

s=B2) W, (11)

For each column of S, s;, we conduct a soft-max operation on it and
obtained a new vector:

$; = softmax(s;). (12)
Then a new similarity matrix is obtained through S=1[81,-,8ml
The output of soft attention layer is computed by
w =B®S, (13)
The final similarity score is computed by
L 2
s= Z(avi,v-vl? )y, (14)
i=1

where w; denotes the i-th column of W.

We summarize the pipeline of computing the relevance score
between a video V and a sentence S in Algorithm 1. In the training
phase, the similarities are further used for computing the loss. In
the testing phase, the relevance scores are used for ranking.

Training loss. Let us define s(i, j) as the similarity score of the
video V; and the sentence S;. We seek to maximize the similarities
between relevant sentence-video pairs and minimize the similar-
ities between irrelevant sentence-video pairs. We construct each
mini-batch by K ground-truth video-sentence pairs {(Vy, Sk)}kK:r
Meanwhile we set that each video Vi in the mini-batch is only
relevant with the sentence in its ground-truth sentence-video pair,
Sk, and irrelevant with other sentences. We define the loss £ as

K
£=2,
2

=1

| D= sthkek) sk Dy + Yl = sk k) + 50K,

j#k j#k
(15)
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Algorithm 1 The pipeline of the proposed CAN.

Input: The set of word features W = [w1, - -, wy] extracted
by Eq. (10) from a sentence S. The set of bounding box features
B = [by,---,bn] extracted by Eq. (8) from a video V.

Output: s(V,S), the relevance score of the pair (V.,S).

WO w30 g

: forie [1,2] do

W(l) — SAtext((W(i_l))

B(l) — SAvideo(B(iil))

: end for

. WO W@ BO B2

: forie[1,2] do

WO — CAyers (WD Bl-1)

B(l) — CAuideo(B(i71)> W(iil))

: e~nd for

. W SoftAtt(W? B®)) as Eq. (11)-(13)

L s(V.S) e IM (Wi, w'?)

: return s(V.S)

R A

[
w NN = O

where [x]+ = max(x,0), and « is the margin which is a predefined
constant. By default, we set @ = 0.2 in all experiments. Note that,
the item 3 j.x [« — s(k, k) +s(k, j)]+ in Eq. (15) targets to make the
similarity between Vi and Sy larger by a margin « than similarities
between Vi and other sentences in the mini-batch. In contrast,
the item 3, j¢ [a — s(k, k) + 5(j, k) ]+ seeks to make the similarity
between V. and S larger by a margin « than similarities between
Sk and other videos in the mini-batch. Note that, the loss function
used in Eq. (15) takes all the negative triplets beyond the margin a
into consideration, which is different from the hard negative mining
used in VSE++ [9]. Our experiments show that, by replacing the
loss function in Eq. (15) with the hard negative mining loss in
VSE++ [9], the performance drops. This might be due to that the
hard negative mining only counts from the hardest triplet, which
is prone to modal collapse.
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(c) plant succulents in pots

(d) women handbag recommend

Figure 4: Visualization of some pairs of short videos and query sentences from our Daily700K dataset. Note that, in our
Daily700K dataset, the texts are in Chinese. For the convenience of illustration, we translate the Chinese to English.

4 DEPLOYMENT

In this section, we introduce how the proposed CAN is deployed
in the video retrieval system. Due to that our video database is
large-scale, given a query text, limited by efficiency, it is unfeasible
to get the relevance score of the text query with every video in the
database through the proposed CAN. Therefore, we only deploy
the CAN in the re-ranking stage. As shown in Figure 5, given a text
query, we first conduct the title-based search. Benefited from the
indexing of the sentence features, this step can be conducted very
efficiently. Based on the ranking result of title-based retrieval, we
select top M most relevant videos. The CAN is used to re-rank the
selected M videos.

G o
“f'e'bashed B | re-ranking | NN
searc N | byCAN | N
uer — —
Video Database ] ]
] ]
— top-K videos
top-M videos

Figure 5: The deployment of CAN in the pipeline.

5 EXPERIMENTS

5.1 Datasets and Implementation Details

Since short-video APPs just emerge in recent years, we have not
found a publicly released short-video retrieval dataset satisfying our
demand. Therefore, we build a new dataset, Daily700K. It consists
of 70,000 pairs of short videos and query sentences, which are
mainly about daily lives. We use 695, 000 pairs for training data
and the rest 5,000 pairs for testing. Since the relevance between
a query and the short videos is relatively subjective to users, we
collect ground-truth pairs by selecting the query-video pairs with
high click rates, representing good ones for a large number of
users. In Figure 4, we visualize some pairs of short videos and
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query sentences. In addition to evaluating the proposed CAN on
our built Daily700K dataset, we also conduct experiments on a
public benchmark dataset, VATEX [32]. It has 25, 991 training videos
paired with 519, 820 captions and 3, 000 validation videos paired
with 60, 000 captions. The dataset provided both Chinese captions
and English Captions. We use the Chinese captions for experiments.

The bounding boxes are generated from Faster R-CNN [25] built
on ResNet-101 [15] pre-trained on Visual Genomes [17]. For each
detected region of the interest (ROI), i.e., the bounding box, its fea-
ture is obtained by sum-pooling the convolutional features within
the bounding box. The feature dimension is 2048. We use multi-
head attention in all self-attention modules and combo-attention
modules, and we set the number of head as 8. We evaluate the
performance of algorithms based on two metrics, sentence-to-video
(s2v) average recall@{1, 5, 10} and video-to-sentence (v2s) average
recall@{1, 5, 10}. We train the proposed CAN with ADAM opti-
mizer. The initial learning rate 1 x 10™% and decreases it to 1 x 107>
after 30 epochs. The whole training process finishes in 50 epochs.
All models are trained and deployed based on the PaddlePaddle
deep learning framework developed by Baidu.

5.2 Ablation Study

Global versus local. We compare our method with the method
based on global feature. To be specific, we compare ours with three
baselines: 1) the global video feature with local words features, 2)
the global sentence feature with local bounding boxes features and
3) the global sentence feature with the global video feature. The
global video feature is obtained by sum-pooling bounding boxes
features. The global sentence feature is obtained by sum-pooling
words features. We use 32 local bounding boxes features per video
and 10 local words features per sentence.

Table 1 shows the retrieval results of ours based on local features
and methods based on global features. As shown in the table, using
the global video feature and the global sentence features, it only
achieves a 12.8 recall@1 for sentence-to-video search and a 13.9
recall@1 for video-to-sentence search, which is considerably worse
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Table 1: Comparisons between global and local features.

s2v recall v2s recall
sentence | video | @1 | @5 | @10 | @1 | @5 | @10
global global 12.8 | 57.7 | 62.7 | 13.9 | 58.3 | 61.6
global local 13.9 | 60.5 | 64.0 | 16.1 | 58.8 | 70.5
local global 32.6 | 73.6 | 85.4 | 28.9 | 76.6 | 90.2
local local | 51.6 | 81.9 | 89.4 | 52.4 | 82.3 | 90.5

than ours based on local bounding boxes features and local words
features. Meanwhile, the recall@1 of sentence-to-video search when
using the global video feature and local words features is only 32.6
and the recall@1 of sentence-to-video search when using local
bounding boxes feature and the global sentence feature is only
13.9. Both of them are lower than our 51.6 recall@1 of sentence-to-
video search based on local bounding boxes features and text words
features. As for video-to-sentence search, using the global video
feature and local words features only achieves a 28.9 recall@1, and
using local bounding boxes feature and the global sentence feature
only achieves a 16.1 recall@1. Both of them are also worse than
ours. The inferior performance achieved by methods based on the
global sentence or video feature validate the effectiveness of using
local bounding boxes features and local words features.

Table 2: The influence of bounding boxes # per video. The
experiments are conducted on Daily700K dataset.

s2v recall v2s recall
#box | @1 | @5 | @10 | @1 | @5 | @10
4 44.4 | 80.6 | 89.0 | 45.5 | 81.7 | 90.2
8 47.5 | 81.6 | 89.2 | 48.3 | 82.2 | 90.3
16 49.1 | 81.7 | 89.4 | 50.1 | 82.3 | 90.3
32 51.6 | 81.9 | 89.4 | 52.4 | 82.3 | 90.5

Impact of the number of bounding boxes. We evaluate the im-
pact of the number of bounding boxes on the performance of the
proposed CAN. We set the number of bounding boxes per frame
as 10 and sample 20 frames per video, and thus the total bounding
boxes per video is 200. To improve the efficiency of training, we fur-
ther conduct k-medians clustering on 200 bounding boxes to select
a more compact set of bounding boxes. We vary the number of se-
lected bounding boxes among {4, 8, 16, 32}. We testify the influence
of the number of selected bounding boxes on the retrieval recall.
The experiments are conducted on Daily700K dataset. As shown
in Table 2, the retrieval recall consistently improves as the num-
ber of selected bounding boxes increases. For example, when the
number of selected bounding boxes per frame is 4, it only achieves
a 44.1 recall@1 for sentence-to-video search and a 45.5 recall@1
for video-to-sentence search. In contrast, using 32 bounding boxes,
it achieves a 51.6 recall@1 for sentence-to-video search and a 52.4
recall@1 for video-to-sentence search. Despite that the retrieval
recall might be improved with more selected bounding boxes, we
use only 32 boxes per video due to the limited computing resources.

Impact of the number of frames. For each video, we sample uni-
formly key frames from it for further processing. We vary the num-
ber of sampled frame among {2, 4, 8, 16, 32} to testify the influence

2480

KDD 20, August 23-27, 2020, Virtual Event, USA

Table 3: The influence of number of frames. The experi-
ments are conducted on VATEX dataset.

s2v recall v2s recall
#frame | @1 | @5 | @10 | @1 | @5 | @10
2 15.0 | 68.8 | 82.6 | 16.4 | 73.4 | 85.9
4 20.8 | 72.0 | 84.3 | 21.3 | 74.8 | 86.2
8 27.3 | 74.6 | 85.6 | 27.6 | 76.7 | 86.3
16 30.0 | 754 | 85.9 | 299 | 77.1 | 86.5
32 33.2 1759 | 8.9 | 33.2 | 77.1 | 86.5

of the number of selected key frames on the retrieval performance.
The experiments are conducted on VATEX dataset. As shown in
Table 3, the recall@1 generally improves as the number of sampled
key frames increases. For instance, using two frames per video, it
only achieves a 15.0 recall@1 for the sentence-to-video search and
a 16.4 recall@1 for the video-to-sentence search. In contrast, using
32 frames, we achieve a 33.2 recall@1 for sentence-to-video search
and a 33.2 recall@1 for video-to-sentence search.

Table 4: The influence of modules on the proposed CAN.

CA SA s2v recall v2s recall
text [ video | @1 | @5 | @10 | @1 | @5 | @10
v | v 1489809 | 883 |49.0 | 81.5 89.8
v’ v' | 49.2|81.2| 89.7 | 50.1 | 82.1 | 90.6
v | Vv 50.9 | 81.5 | 89.2 | 51.3 | 82.0 | 90.2
v | v | Vv 516|819 89.4 | 524823 9.5

Impact of the modules. We evaluate the influence of modules on
the performance of the proposed CA in the retrieval accuracy. To
be specific, we evaluate the performance of the proposed CAN by
removing the CA block, SA blocks on the text side and SA blocks
on the video side, respectively. The experiments are conducted
on Daily700K dataset. As shown in Table 4, after removing the
CA blocks, the performance becomes considerably worse, which
validates the effectiveness of combo-attention modules. Meanwhile,
by removing the text-side SA blocks, the considerably deteriorate
the performance of the proposed CAN. To be specific the sentence-
to-video recall@1 drops from 51.6 to 49.2. In contrast, the influence
of the video-side SA blocks is relatively limited. This is due to that
the features of bounding box are extracted from ResNet, which has
already possessed good discriminating capability.

Influence of the number of CA blocks. Recall from Figure 3 that,
we stacks two CA blocks in both video and sentence streams. We
investigate the influence of the number of CA blocks on the retrieval
performance. We vary the number of CA blocks among {0, 1, 2, 3}.
As shown in Table 5, on the Daily700K dataset, the retrieval recall
increases as the number of CA blocks increases. To be specific,
the sentence-to-video recall@1 increases from 48.9 to 53.3 as the
number of CA blocks increases from 0 to 3. In contrast, on VATEX
dataset, the best retrieval recall is achieved when the number of CA
blocks is 2. The worse performance using 3 CA blocks on VATEX
dataset might be due to over-fitting as VATEX is relatively small.
By default, we use 2 CA blocks on both datasets.
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Table 5: The influence of the number of CA blocks.

(a) Daily700K

s2v recall v2s recall
#CA| @1 | @5 | @10 | @1 | @5 | @10
0 48.9 | 80.9 | 88.3 | 49.0 | 81.5 | 89.8
1 50.9 | 81.6 | 89.4 | 51.3 | 81.9 | 90.0
2 51.6 | 81.9 | 89.4 | 52.4 | 82.3 | 90.5
3 533 | 845 | 919 | 54.1 | 8.2 | 92.7
(b) VATEX
s2v recall v2s recall
#CA | @l | @5 | @10 | @1 | @5 | @10
0 30.6 | 72.6 | 85.1 | 31.8 | 72.0 | 83.7
1 31.6 | 744 | 839 | 32.6 | 74.0 | 84.3
2 33.2 | 759 | 8.9 | 33.2 | 77.1 | 86.5
3 32.6 | 74.2 | 85.7 | 31.2 | 73.0 | 86.7

Influence of the number of heads. Since the SA blocks and CA
blocks all adopt a multi-head settings. We further evaluate the in-
fluence of the number of head on the performance of the proposed
CAN model. We conduct experiment on Daily700K dataset. In ex-
periments, we vary the number of heads among {1, 2,4, 8,16}. As
shown in Table 6, when the number of heads increases from 1 to
4, the performance of the proposed CAN becomes better. Mean-
while, the performance of SCAN is stable when the number of heads
changes among {4, 8, 16}. By default, we use 8 heads.

Table 6: The influence of the head number on our CAN. The
experiments are conducted on Daily700K dataset.

s2v recall v2s recall
head # | @1 @5 | @10 | @1 @5 | @10
1 50.5 | 81.0 | 88.6 | 51.4 | 81.4 | 89.1
2 50.9 | 80.9 | 88.9 | 51.7 | 81.4 | 89.2
4 51.4 | 81.8 | 89.5 | 52.2 | 82.3 | 90.1
8 51.6 | 81.9 | 89.4 | 52.4 | 82.3 | 90.5
16 51.1 | 81.8 | 89.6 | 51.5 | 82.2 | 90.1

5.3 Comparisons with Other Methods.

We compare the sentence-to-video retrieval performance of the pro-
posed method with two recent state-of-the-art methods, SCAN [18]
and VSE++ [9]. We use the codes provided by the authors of SCAN
and VSE++, respectively. We test their performance on our built
Daily700K as well as VATEX [31] dataset using identical features.
As shown in Table 7, our CAN consistently outperforms SCAN and
VSE++ on both datasets. To be specific, on Daily700K dataset, SCAN
only achieves a 48.5 recall@1 for the sentence-to-video retrieval
and 49.2 recall@1 for the video-to-sentence retrieval. Meanwhile,
VSE++ SCAN only achieves a 43.8 recall@1 for the sentence-to-
video retrieval and 45.5 recall@1 for the video-to-sentence retrieval.
In contrast, sentence-to-video recall@1 of our CAN is 51.6, and
video-to-sentence recall@1 of our CAN is 52.4.
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Table 7: Comparisons with state-of-the-art methods on
Daily700K and VATEX datasets.

(a) Daily700K

s2v recall v2s recall
method @1 @5 | @10 | @1 @5 | @10
VSE++ [9] | 43.8 | 78.5 | 88.0 | 45.5 | 79.5 | 88.6
SCAN [18] | 48.5 | 80.8 | 89.3 | 49.2 | 81.1 | 90.0
CAN (ours) | 51.6 | 81.9 | 89.4 | 52.4 | 82.3 | 90.5

(b) VATEX

s2v recall v2s recall
method @1 @5 | @10 | @1 @5 | @10
VSE++[9] | 29.4 | 71.4 | 81.5 | 31.4 | 70.8 | 82.3
SCAN [18] | 30.0 | 72.4 | 82.3 | 32.0 | 72.8 | 83.3
CAN (ours) | 33.2 | 759 | 85.9 | 33.2 | 77.1 | 86.5

5.4 Online Results

We evaluate the proposed CAN in Baidu dynamic video advertising
platform. Two online metrics are used to measure the performance:
impression rate (IR) and conversion rate (CVR) defined as follows:

(16)

We compare the IR and CVR of Baidu dynamic video advertising
platform before and after launching the proposed CAN. Note that,
before launching CAN, the video search is based on title-based
retrieval. As shown in Table 8, after launching the proposed CAN,
the IR achieves a 11.08% and CVR achieves a 5.47% increase.

# of impressions

revenue

CVR= ——.
# of cicks

# of queries

Table 8: Online results from Dec. 20th to Dec. 25th, 2019 in
Baidu dynamic video advertising platform.

IR CVR
11.08% | 5.47%

metric

improvement

6 CONCLUSION

In this paper, we present the combo-attention network (CAN)
launched in Baidu dynamic video adverting platform. CAN for-
mulates the sentence-to-video search into a matching problem
between a set of bounding boxes and a set of words. It exploits
the cross-modal attentions besides self attentions. To evaluate the
performance of CAN in short-video retrieval tasks, we built a video
dataset consisting of 700K short videos collected from Haokan APP
and label them based on users’ clicks. Experiments conducted on
our built Daily700K and the public VATEX datasets demonstrate the
effectiveness of the proposed method. Meanwhile, the online exper-
iments show the launch of CAN considerable boosts the revenue
of Baidu dynamic video adverting platform.
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