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Abstract

Unlabeled linear regression, or “linear regression
with an unknown permutation”, has attracted
increasing attentions due to its applications
in (e.g.,) linkage record and de-anonymization.
However, the computation of unlabeled linear re-
gression proves to be cumbersome and existing
algorithms typically require considerable time,
especially in the high dimensional regime. In this
paper, we propose a one-step estimator which
is optimal from both the computational and the
statistical aspects. From the computational per-
spective, our estimator exhibits the same order
of computational complexity as that of the ora-
cle case (which means the regression coefficients
are known in advance and only the permutation
needs recovery). From the statistical perspective,
when comparing with the necessary conditions
for permutation recovery, our requirement on the
signal-to-noise ratio (SNR) agrees up to merely
Ω (log log n) difference when the stable rank of
the regression coefficients B! is much less than
log n/ log log n. Numerical experiments are also
provided to corroborate the theoretical claims.

1. Introduction

This paper studies the problem of unlabeled linear regres-
sion, with the sensing relation being written as

Y = Π!XB! +W, (1)

where Π! ∈ Rn×n denotes the unknown permutation ma-
trix, X ∈ Rn×p represents the design (sensing) matrix,
B! ∈ Rp×m presents the matrix of regression coefficients,
W ∈ Rn×m is the additive noise, and Y ∈ Rn×m denotes
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the matrix of measurements. When the permutation matrix
Π! is known in advance, the model in Eq. (1) becomes the
standard linear regression problem.

The study on unlabeled linear regression can be traced
back to 1970s under the name “broken sample prob-
lem” (DeGroot et al., 1971; Goel, 1975; DeGroot and Goel,
1976; 1980; Chan and Loh, 2001; Bai and Hsing, 2005;
Slawski et al., 2019a). To the best of our knowledge, the
special term “unlabeled sensing” or “unlabeled linear re-
gression” initially appeared in Unnikrishnan et al. (2015),
which study the single observation model, i.e., m = 1,
under the noiseless setting, namely, W = 0 ∈ Rn. As-
suming the entries of X come from a continuous distri-
bution, Unnikrishnan et al. (2015) establish the necessary
condition n ≥ 2p for the correct recovery. For this set-
ting, similar results have also been discovered by Tsakiris
(2018); Dokmanic (2019) but with different approaches.

Since the work of Unnikrishnan et al. (2015), a vari-
ety of estimation algorithms for solving Eq. (1) have
been proposed and/or analyzed (Pananjady et al., 2017a;
Abid et al., 2017; Hsu et al., 2017; Pananjady et al.,
2017b; Slawski et al., 2019b; Slawski and Ben-David,
2019; Slawski et al., 2019a; Tsakiris and Peng, 2019;
Zhang et al., 2019a;b). Those estimation methods, how-
ever, typically come with high computational complexity.

For example, in Pananjady et al. (2017a), the authors
demonstrate that the maximum likelihood (ML) estima-
tor of Π! is NP-hard in general and no practical estima-
tor is proposed. In the follow-up work (Pananjady et al.,
2017b), instead of recovering Π!, the authors focus only
on obtaining the product Π!XB!. In Hsu et al. (2017);
Abid et al. (2017), they both consider the single observa-
tion case (m = 1) but with the theoretical analysis focusing
on |||B! − B̂|||F. In Tsakiris and Peng (2019), an abstract
view of unlabeled sensing is adopted and a branch-and-
bound algorithm is proposed. In Zhang et al. (2019a;b),
the authors consider the multiple observations setting (that
is, m > 1). They first give the statistical lower bound
for this scenario and prove that the requirement of SNR,
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which matches the order of the above bound, can drop dras-
tically for correct permutation recovery. A heuristic esti-
mator based on the alternating direction method of multi-

pliers (ADMM) is proposed but without the performance
guarantee. In Slawski and Ben-David (2019); Slawski et al.
(2019a;b), the authors place a parsimonious constraint on
the number of permuted rows and view the product (I −
Π!)XB! as the sparse outliers. Although their proposed
estimators are computable with the performance guarantee,
they require multiple rounds of iterations and typically only
allow a small proportion of rows being permuted.

Note that, in the context of permutation recovery, no pre-
vious studies considered model sparsity, i.e., B! is sparse,
until very recently (Zhang and Li, 2020). The model spar-
sity problem is a challenging and interesting research topic.

1.1. Practical applications

In the past decade or so, one has witnessed a renaissance
of the problem of unlabeled linear regression due to its
wide applications in, for example, data integration, privacy
protection, computer vision, sensor networks, robotics,
etc. (Unnikrishnan et al., 2015; Pananjady et al., 2017a;b;
Slawski and Ben-David, 2019; Slawski et al., 2019a). Here
we would like to elaborate on three of the most important
applications, namely linkage record, de-anonymization,
and header-free communication.

In linkage record application (Winkler, 1995), one is in-
terested in integrating multiple databases, where each
database contains different pieces of information about
the same identity, into one comprehensive database.
In this process, the biggest challenge is how to find
the matching across different databases. For de-
anonymization (Nazarov et al., 2018), the task is to iden-
tify the hidden labels, which aims to preserve privacy, with
public data. It can be seen as the inverse problem of pri-
vacy protection. One mathematical formulation is viewing
the correspondence between the hidden labels and the pub-
lic data as the unknown permutation matrix. For the ap-
plication in header-free communication (Pananjady et al.,
2017b), we have a sensor network where the sensor iden-
tity is omitted during communication to reduce the trans-
mission cost and latency. In this scenario, reconstruction
of the signal involves recovering the unknown correspon-
dence. The above three applications are merely selected
practical examples for using unlabelled linear regression.

1.2. Summary of contributions

Before describing the contributions of this paper, we first
define the notation signal-to-noise-ratio (SNR) as

SNR =
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F
/(mσ2). (2)

Our contributions can be elaborated from two aspects:

Firstly, we propose a simple one-step estimator for the
exact permutation recovery. In the previous works
such as Pananjady et al. (2017a); Slawski and Ben-David
(2019); Slawski et al. (2019a); Zhang et al. (2019a;b), the
computation and analysis of estimators are largely paral-
lel. In comparison, our estimator effectively exploits the
sensing matrix’s statistical properties in designing the esti-
mator. By assuming X to be a Gaussian matrix, we pro-
pose to obtain an approximation of cB! by the product
X"Y, where c is a non-negative scalar. Similar ideas have
been used previously in picking the initialization points for
the non-convex optimizations as in Candès et al. (2015);
Balakrishnan et al. (2017); Chi et al. (2019). A detailed dis-
cussion on the similarities and differences between our es-
timator and their work can be found in Section 2.

As the second aspect of the contribution, we prove our pro-
posed estimator achieves optimal performance in certain
regime. First we show our estimator gets the ground truth
Π! provided log(SNR) ! log n under the special case
m = 1, p = 1. This bound matches that of the statisti-
cal limit. Moreover, we consider the general setting when
m $ 1. Equipped with the leave-one-out trick (El Karoui,
2013; El Karoui et al., 2013; El Karoui, 2018; Chen et al.,
2019; Sur et al., 2019), we are able to reduce the SNR

requirement for correct Π! to log(SNR) ! log log n +
log n/ρ(B!), where ρ(·) denotes the stable rank and will
be explained later. Meanwhile the SNR should be at least
log(SNR) ! log n/ρ(B!) to avoid wrongly recovered Π.
When ρ(B!) % log n/ log log n, our estimator is optimal
and gives the same order, namely log n/ρ(B!), with the
difference only up to some multiplicative constants. Other-
wise, our estimator may experience some performance loss,
which is at most Ω(log logn). Numerical experiments are
provided to corroborate our claim as well.

1.3. Notations

Denote c, c
′

, ci as some positive constants, whose values
are not necessarily the same even for those with the same
notations. We denote a " b if there exists some positive
constants c0 > 0 such that a ≤ c0b. Similarly we define
a ! b provided a ≥ c0b for some positive constant c0. We
write a ' b when a " b and a ! b hold simultaneously.

For an arbitrary matrix X, we denote Xi,: as its i-th row,
X:,i as its i-th column, and Xij as its (i, j)-th element. The
Frobenius norm of X is defined as |||X|||F while the oper-
ator norm is denoted as |||X|||OP, whose definitions can be
found in Section 2.3 of Golub and Loan (2013) (P71). Its
stable rank ρ(X) is defined as the ratio |||X|||2F/|||X|||2OP (see
Section 2.1.15 in Tropp (2015)).

Consider a permutation matrix Π, we define the operator
π(·) that transforms index i to π(i) under Π. The Hamming
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distance dH(Π1,Π2) between permutation matrix Π1 and
Π2 is defined as dH (Π1,Π2) =

∑n
i=1 (π1(i) (= π2(i)).

Again, the SNR is defined as SNR =
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F
/(mσ2).

1.4. Outline

In Section 2, we present our one-step estimator and its de-
sign insight. Then we separately investigate its statistical
properties under the single observation model (m = 1) and
multiple observations model (m > 1). The corresponding
discussions are put in Section 3 and Section 4, respectively.
Simulation results are presented in Section 5 and the con-
clusions are drawn in Section 6.

2. Estimator Description

We begin this section with a formal description of the sens-
ing model, which reads

Y = Π!XB! +W, (3)

where Y ∈ Rn×m denotes the observation, Π! ∈ Rn×n

is the unknown permutation matrix such that
∑

i Π
!
i,j =

∑
j Π

!
i,j = 1, Π!

i,j ∈ {0, 1}, X ∈ Rn×p denotes the sens-

ing matrix with Xij
i.i.d∼ N (0, 1) follows the standard nor-

mal. B! ∈ Rp×m is the matrix of regression coefficients,
and W ∈ Rn×m represents the additive Gaussian noise
with each entry Wij follows a Gaussian distribution with

zero mean and σ2 variance, Wij
i.i.d∼ N (0,σ2).

In this paper, we propose a one-step estimator to estimate
(Π!,B!) from Y, as summarized in Algorithm 1.

Algorithm 1 The one-step estimator proposed in this paper.

Input: observation Y and sensing matrix X.
Output: pair (Π̂, B̂), which is written as

Π̂ = argmax
Π∈Pn

〈
Π,YY"XX"

〉
, (4)

B̂ = (X)† Π̂
"
Y, (5)

where X† = (X"X)−1X" is the pseudo-inverse of X
and Pn is the set of all possible permutation matrices.

In Algorithm 1, the optimization task argmax
Π∈Pn

〈Π, ·〉
can be solved as a linear assignment problem (Kuhn, 1955;
Bertsekas and Castañón, 1992), while Eq. (5) is simply
the traditional least-square estimator for the linear regres-
sion (Golub and Loan, 2013). Compared with the previ-
ous estimators as in Pananjady et al. (2017a); Slawski et al.
(2019a); Zhang et al. (2019a;b), our estimator in Eq. (4)
and Eq. (5) demonstrates advantages from both the com-
putational and statistical perspectives.

2.1. Computational aspects

Firstly, we can see that the computational complexity of our
estimator in Eq. (4) and Eq. (5) would be Ω(n3 + np2m),

where Ω(n3) is for computing Π̂ and Ω(np2m) for B̂.

We consider two types of oracle estimators as the baselines.
The first oracle case assumes B! is known in advance. The
optimal estimator to recover Π! would then become

Π̂ = argmax
Π∈Pn

〈
Π,YB!"X"

〉
, (6)

whose computational complexity is Ω(n3). Comparing
with our estimator in Eq. (4), we notice that we only sac-
rifice one matrix multiplication, i.e., replacing B! by the
product X"Y. Since the computational bottleneck lies
in solving the linear assignment problem (Kuhn, 1955;
Bertsekas and Castañón, 1992), one additional matrix mul-
tiplication does not change the computational complexity,
which is also of order Ω(n3).

For the second type of oracle estimator, we consider Π! is
known. In this case, the sensing relation in Eq. (3) reduces
to the classical multivariate linear regression, where the
least square estimator has Ω(np2m) computational com-
plexity in order to estimate B!.

With the relation Ω(n3 + np2m) " Ω(n3) ∨ Ω(np2m),
we conclude that our estimator is computationally optimal
since it has the same order as the oracle estimators.

2.2. Statistical limits

In Zhang et al. (2019a;b), it is shown that no estimator can
recover the permutation matrix Π! with high probability if
the SNR satisfies

log (SNR) "
log n

ρ(B!)
. (7)

In this paper, we show that our estimator in Eq. (4) and
Eq. (5) will generate the correct permutation matrix Π! un-
der certain regimes, with the SNR order satisfying

log (SNR) !
log n

ρ(B!)
+ log log n,

which matches the lower bound in Eq. (7) with the differ-
ence up to Ω (log log n). Provided that ρ(B!) % log n

log log n ,
we conclude Eq. (4) coincides with the statistical limits up
to some multiplicative constants. The formal statement of
theoretical result is presented as Theorem 2.

Furthermore, our estimator does not involve the noise vari-
ance σ2, hence it is immune to the inaccurate estimation of
σ2. For a more comprehensive understanding, we compare
our estimator with the previous results in Table 1. The de-
tailed discussions are presented in Section 3 and Section 4.
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Table 1. Comparison of 4 estimators: the ML estimator (Pananjady et al., 2017a; Zhang et al., 2019a;b), the ADMM estima-

tor (Zhang et al., 2019a;b), the two-stage estimator (Slawski et al., 2019a), and ours. A question mark indicates the corresponding entry

is uncertain, and an asterisk means that it is only correct under certain regime. h denotes the number of permuted rows (h = dH(I,Π
!)).

Statistical Optimal Computational Cost Permuted Rows

m = 1 m $ 1 m = 1 m $ 1 m = 1 m $ 1

ML Estimator YES YES (*) Ω(1) (*) ! n! h " n h " n
log n

ADMM Estimator ? NO $ Ω(1) $ Ω(1) ? ?

Two-Stage Estimator ? YES (*) ? $ Ω(1) h " n
log(n/h) h " n

log(n/h)

Our Estimator YES (*) YES (*) Ω(1) Ω(1) h " n h " n

2.3. Insights in designing our estimator

Before delving into analyzing the statistical properties of
our proposed estimator in Algorithm 1, we would like to
elaborate on some of the insights. First, we consider the
maximum likelihood (ML) estimator, which is written as

(Π̂, B̂) = argmin
Π,B |||Y −ΠXB|||F. (8)

Note that the major difficulty of solving the ML estimator
lies in the intervention of Π and B. Provided either val-
ues of Π!,B! is known, the ML estimator then becomes
convex and can be easily solved. As it is not possible to
directly access the true values of Π and B, we resort to
using approximate values instead. A similar idea is also
adopted in Slawski et al. (2019a). Our estimator differs
from Slawski et al. (2019a) in that they obtain the approx-
imation of B! via a group-Lasso-alike estimator while we
instead propose to use X"Y.

In retrospect, the underlying logic for using X"Y is ac-
tually not too surprising. First we notice the ML estima-
tor in Eq. (8) is insensitive to the length |||B|||F since the
same Π will be returned once B/|||B|||F is fixed. Then
we follow the same procedure as the initialization meth-
ods in Candès et al. (2015); Balakrishnan et al. (2017);
Chi et al. (2019) and assume that the product X"Y is close
to its expectation, which is a scaled value of B!. Combing
the above reasonings together yields our approximation.

Finally, to conclude this section, we would also like to em-
phasize that our approximation scheme is different from
what is used in Candès et al. (2015); Balakrishnan et al.
(2017); Chi et al. (2019): (i) their approximation method
is only used for initialization while ours is to obtain the
final result; (ii) their goal is to minimize the distance∣∣∣∣∣∣B−B!

∣∣∣∣∣∣
F
, which requires to estimate the length of B!,

while our estimator does not need this value as we have
explained. Thus, our proposed estimator avoids estimating
the noise variance and the procedure is inherently robust.

3. Single Observation Model (m = 1)

This section considers the single observation model,
namely m = 1. We will separately discuss the estimator’s
performance under the cases where p = 1 and p > 1.

3.1. A warm-up example: m = p = 1

First we consider the warm-up example when m = p =
1. To distinguish this case with the multiple observations
model, i.e., m > 1, we rewrite the sensing relation as

y = Π!Xβ +w, (9)

where X ∈ Rn reduces to a vector while β ∈ R is a scalar.
Then we show the estimator has the following property,

Theorem 1 Provided that the Hamming distance h =
dH(I,Π

!) ≤ n
4 , n ≥ 2p, if SNR satisfies

log(SNR) ≥ c0 log(n),

then the estimator in Eq. (4) recovers the correct permu-

tation matrix, i.e., Π̂ = Π!, with probability exceeding

1 − c1n−1 when n is sufficiently large, where c0, c1 are

some positive constants.

According to Theorem 2 in Pananjady et al. (2017a), which
is restated as Theorem 5, correct recovery of permutation
matrix Π! requires log(SNR) ! log n at least. As our es-
timator matches the statistical limits with the difference up
to some multiplicative constants, we conclude its tightness.

The proof of Theorem 1 is deferred to the supplementary
material. Here we give an intuitive explanation. First we
consider the noiseless case, where w = 0 and SNR is in-
finite. We can expand the inner product

〈
Π,YY"XX"

〉
,

after some algebra, as
〈
Π,yy"XX"

〉
= β2〈X,Π!X〉〈ΠX,Π!X〉,
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Given that the term β2〈X,Π!X〉 concentrates around its
expectation β2EX〈X,Π!X〉 = (n − h)β2 > 0 with
high probability, we conclude that the maximum is reached
when Π = argmax〈ΠX,Π!X〉, namely, Π = Π! since

|||Π!X|||2F = |||ΠX|||F|||Π
!X|||F ≥ 〈ΠX,Π!X〉 (Cauchy-

Schwarz inequality).

For the noisy case, we can interpret the observation y as
some perturbed version of the product Π!Xβ. Specifically,
we define Ti(Π), (1 ≤ i ≤ 3) as

T1(Π) = 〈w,Π"X〉〈X,w〉;
T2(Π) = 〈w,X〉〈Π!X,Π"X〉+ 〈w,Π"X〉〈Π!X,X〉;
T3(Π) = 〈Π!X,ΠX〉〈Π!X,X〉,

where T1(Π) and T2(Π) correspond to the perturbation in-
curred by the noise w. Then we have

〈Π!,yy"XX"〉 −
〈
Π,yy"XX"

〉

= T1(Π!)− T1(Π) + β
[
T2
(
Π!
)
− T2(Π)

]

+ β2
[
T3
(
Π!
)
− T3(Π)

]
.

The gist is to prove the perturbation is significantly small,

namely, T3(Π!)− T3(Π) is large while
∣∣∣Ti(Π!)− Ti(Π)

∣∣∣,
(1 ≤ i ≤ 2) is small. We can show

〈Π!,yy"XX"〉 −
〈
Π,yy"XX"

〉

!
c0β2

n19
− c1βσn

2
√

log n− c2σ
2n2 log n,

holds with high probability. Provided log(SNR) ! log n,
we can show that

〈Π!,yy"XX"〉 >
〈
Π,yy"XX"

〉
,

which completes the proof.

3.2. General case: m = 1, p > 1

For this scenario, we first consider the case where the di-
rection of B! is known, i.e., e = B!/

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
. Construct

an orthonormal matrix Q ∈ Rp×p with the Gram-Schmidt
process (Golub and Loan, 2013) whose first column is e.
We can then rewrite Eq. (3) as

Y = Π! (XQ):,1
∣∣∣∣∣∣B!

∣∣∣∣∣∣
F
+W.

Due to the rotation invariance of Gaussian distribution, we
have (XQ):,1 ∼ N (0, In×n) and restore it to the warm-
up example in Eq. (9), where β is replaced by the length
|||B!|||F. Hence we can obtain the correct permutation matrix

Π! once log(SNR) ! log n, as illustrated in Theorem 1.

Apart from the above case (i.e., when e is known), our esti-
mator cannot ensure correct recovery of permutation even

0 20 40 60 80 100
0

2000

4000
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8000

10000

12000

14000

Figure 1. Error
∥∥π̂ − π!

∥∥
2

across iterations when n = 1000, p =

2, m = 1, β = [1000 1000]!, and σ = 0.

under the noiseless case. A numerical example is given in
Figure 1 for an illustration.

In this experiment, we use the results (Π̂, B̂) returned by
Eq. (4) and Eq. (5) as the initialization point. From Fig-
ure 1, we can see the error is approximately 13000. Then
we try to refine the results with alternative minimization
with the iterative equations being written as

Π̂
(t+1)

= argmax
Π

〈
Π,YB̂(t)"X"

〉
;

B̂(t+1) = X†Π̂
(t+1)"

Y,

where B̂(t), Π̂
(t)

are the values in the t-th iteration. With
iterative refinement, the error reduces to below 2000 within
20 iterations. This experiment suggests that our estimator
returns a Π which is far from the ground truth Π!.

The underlying reason is due to the low stable rank ρ(B!),
which is 1 when m = 1. In the next section, we will show
that the ground truth Π! can be obtained much easier once
ρ(B!) exceeds certain threshold.

3.3. Prior research on the m = 1 case

In Pananjady et al. (2017a), the ML estimator is inves-
tigated, which is only computable for the special case
m = p = 1 and NP-hard for the rest cases. Their es-
timator gets the same SNR requirement as ours, namely
log(SNR) ! log n. However, in theory their estimator can
obtain the ground truth Π! when p > 1. While our estima-
tor will fail with high probability, as shown in Figure 1.

To handle the computational issue of the ML estimator,
Hsu et al. (2017) propose an algorithm with polynomial-
complexity to obtain an approximated solution. In addition,
they focus on the recovery of B! rather than Π!. Their SNR
requirement is SNR ≥ cmin (1, p/ log log n), which has a
gap compared with the bound in Pananjady et al. (2017a).
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Slawski and Ben-David (2019) choose to put a sparse con-
straint on h, the number of permuted rows, to tackle the
high computational complexity. Then a computable estima-
tor is proposed, which works in both the p = 1 and p > 1
case. The similar idea has also been applied to the m > 1
case as in Slawski et al. (2019a;b).

We would also like to mention the work of Abid et al.
(2017), where a consistent estimator is proposed based on
the method-of-moments. Their analysis only considers the
m = p = 1 case and focuses on the deviation |||B̂−B!|||F.

4. Multiple Observations Model

Previous section has studied the single observation model,
i.e., m = 1. This section focuses on our main contributions
for the multiple observations model, namely m $ 1. First,
we state our main theoretical result as the next Theorem.

Theorem 2 Given that n ! p4(log n)6(log p)4, ρ(B!) !
18/c0, h = dH(I,Π

!) ≤ n
4 , if SNR satisfies

log(SNR) !
log n

ρ (B!)
+ log log n, (10)

then we have P(Π̂ (= Π!) ≤ c0e
−((logn)4∧(logn)2ρ(B!)) +

c1ne−c2m + c3ne−c4n + c5e−p + c6p−2, when n is suffi-

ciently large, where ci’s are some positive constants.

Once Π! is estimated, this problem in Eq. (3) reduces to the
traditional linear regression. We omit the discussion on the
error |||B̂−B!|||F, since it is well-studied in this scenario.

Remark 3 The requirement n $ p4 in Theorem 2 corre-

sponds to the most stringent case, which can be relaxed

with more specific constraints on h and ρ(B!). Perhaps

the most interesting case is when h = O(1), a fixed positive

constant. In this case, when ρ(B!) ! 18/c0, we only need

n ! p2(log p)4/3(log n)2, which can be further reduced

to n ! p3/2(log p)(log n)3/2 when ρ(B!) → ∞. On the

other hand, even when h ' n, as long as ρ(B!) → ∞, we

can relax n to be of the order n ! p2(log p)2(log n)3.

Remark 4 Numerical experiments suggest correct recov-

ery can still be obtained when n ' p, we believe the re-

quirement n $ p3/2 is an artifact of our analysis, which

can be improved to n ' p with more advanced analytical

tools. Currently, there is still a gap of Ω(
√
p).

The rigorous proof of Theorem 2 is provided in the supple-
mentary material, including supporting lemmas. Here, we
would like to explain the main technical challenges in the
proof, which lies in the proof that

〈
Π!,YY"XX"

〉
≥
〈
Π,YY"XX"

〉
, ∀ Π,

holds with high probability given Eq. (10). A direct analy-
sis appears difficult, as it involves the fourth order of Gaus-
sian random variables, especially for the product of random
matrices. Meanwhile, bypassing the higher order by con-
sidering a relaxed event risks resulting in a loose bound for
SNR. How to balance these two issues constitutes the main
challenge. In the following context, we give an outline of
the proof and refer the interested readers to the supplemen-
tary material for the technical details.

We define B̃ and B∗ respectively as

B̃ = (n− h)−1
X"Π!XB!,

B∗ = B̃+ (n− h)−1
X"W.

Firstly we relax the wrong recovery {Π̂ (= Π!} to event E ,

i.e. {Π̂ (= Π!} ⊆ E , which reads as

E #
{∥∥Yi,: −Xπ!(i),:B

∗
∥∥2
2
≥ ‖Yi,: −Xj,:B

∗‖22, ∃ i, j
}
.

The physical meaning of E is that we may reduce the resid-
ual |||Y −Π!XB∗|||F by changing π!(i) to j. With this re-
laxation, we reduce the computation of the fourth order to
that of the third order. The same relaxation method has also
been adopted in Collier and Dalalyan (2016); Slawski et al.
(2019a); Zhang et al. (2019a;b).

Secondly, we upper-bound the probability P(E) under the
SNR assumption in Eq. (10). We should emphasize that
Theorem 2 is not proved by defining B∗ = (n−h)−1X"Y
and invoking Theorem 2 as in Slawski et al. (2019a), which
requires the SNR to satisfy

log(SNR) ! log p+
log n

ρ(B!)
+ log log n,

for the correct permutation recovery. With the above bound,
we will fail to prove the benefits brought by high ρ(B!) as
shown in Eq. (10), since we still need log(SNR) ! log n
for the ground truth Π! if log p ' log n. Instead, we trans-
form the task to proving the following relations hold with
high probability, namely,

∥∥∥Xi,:

(
B̃−B!

)∥∥∥
2
"

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
;

∥∥Xi,:X
"W

∥∥
2
"

√
m(log n)σ(n+ p). (11)

In particular, we would like to mention the technique used
in bounding

∥∥Xi,:X
"W

∥∥
2
. First we review the widely-

used bounding procedure, which proceeds as

∥∥Xi,:X
"W

∥∥
2
≤ ‖Xi,:‖2|||X|||OP|||W|||OP

1©
"
√
p log n

(√
n+

√
p
)
σ
(√

n+
√
m
)

2©
"
√
log n(n3/2)σ +

√
mn log nσ,
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where in 1© we use the fact ‖Xi,:‖2 "
√
p log n, |||X|||OP "√

n+
√
p, |||W|||OP " σ(

√
n+

√
m) hold with high proba-

bility, and in 2© we use n $ p. Comparing with our results
in Eq. (11), this bound experience inflations when m % n
and will lift the SNR requirement to log(SNR) ! log n,
which hides the role of ρ(B!) compared with our current
result in Theorem 2.

To handle such problem, we adopt the “leave-one-out trick”
as in El Karoui (2013); El Karoui et al. (2013); El Karoui
(2018); Chen et al. (2019); Sur et al. (2019) and we refer in-
terested readers to the supplementary material for the tech-
nical details.

4.1. Tightness of the bound

We compare Eq. (10) for the correct permutation recov-
ery with the statistical limit in Theorem 1 in Zhang et al.
(2019a), which is also listed as Theorem 6 in this paper.
For the convenience of comparison, we consider the spe-
cial case where the stable rank ρ(B!) equals to the rank of
B! (i.e., B!’s signal strength is uniformly spread over all
eigenvalues). Theorem 6 suggests that wrong permutation
matrix Π̂ is expected with high probability if

ρ(B!) log (SNR) " ρ(B!) log (1 + SNR) " log n,

which holds true regardless of the estimator form. Mean-
while, our estimator recovers Π! correctly provided
Eq. (10) holds. When ρ(B!) " logn

log logn , to put more clear,
logn
ρ(B!) is the dominant term, our bound is tight and matches

the statistical limits with the difference up to some multi-
plicative constants. Provided that ρ(B!) $ logn

log logn , we
have log log n be the dominant term and our estimator ex-
periences a loss of at most Ω (log log n).

4.2. Benefits from multiple observations

We investigate the benefits from the high ρ(B!) by con-
trasting Theorem 2 with Theorem 1. First, correct permu-
tation matrix Π! can be obtained for all p. Hence we can
enjoy its computational benefits without worrying the cor-
rectness problem. Second, the SNR requirement has been
reduced significantly. Under the single observation model,
accurate reconstruction of Π! requires SNR to be the or-
der of Ω(nc); while this requirement has been decreased to

Ω(log n)∨Ω(nc/ρ(B!)) when more observations are drawn,
where c is some positive constant.

Our simulations in Section 5 confirm the benefits from mul-
tiple observations as shown in the left panels of Figure 2
and Figure 3. In summary, diversity, i.e., large ρ(B!), can
help both in the computational and statistical perspectives.

5. Simulations

This section presents the numerical results. Since our esti-
mator cannot guarantee the correct permutation matrix Π!

under the single observation model, our simulations focus
on the multiple observations model, i.e., m > 1.

5.1. Experiment setting

We closely follow the experiment setting in Zhang et al.
(2019b). We set the i-th column B

!
:,i (1 ≤ i ≤ min(m, p))

to be the i-th canonical basis, which has 1 on the i-th entry
and 0 elsewhere. One benefit of this setting is that the stable
rank ρ(B!) is easy to compute, i.e., min(m, p). Then we
can use m (m ≤ p) as a shortcut to denote the stable rank
ρ(B!). We report experiments for n = 500 and n = 1000,
in Figure 2 and Figure 3, respectively.

For each n, we choose p ∈ {0.1n, 0.2n} and h ∈
{n/10, n/4}. That is, when n = 500, we have p ∈
{50, 100} and h ∈ {50, 125}; and when n = 1000, we
have p ∈ {100, 200} and h ∈ {100, 250}.

For each chosen set of parameters (n, p,m, h) and SNR

value, we simulate the data 1000 times and report the suc-
cess rate of exact recovery of Π! using our proposed esti-
mator in Algorithm 1. For each (n, p,m, h), we choose the
grid of SNR values to ensure that we are able to report the
full curve of success rate of recovery from 0% to 100%.

Note that, if m is too small (i.e., the stable rank ρ(B!) is
too small), then the success rate may not reach 100%. In
the plots, the smallest m values (e.g., m = 15 or m = 20)
are selected to ensure a 100% success rate can be reached.

In the left panels of Figure 2 and Figure 3, we plot
the success rate with respect to SNR. However, in the
right panels, we plot the success rate with respect to

log det
(
I+ B

!"
B

!

σ2

)
/ log n, for the convenience of com-

paring with the experiments in Zhang et al. (2019b).

According to the statistical lower bounds as in Theorem 1
in Zhang et al. (2019a) (also listed as Theorem 6), the cor-
rect recovery of Π! at least requires

log det

(
I+

B!"B!

σ2

)
! log n. (12)

Therefore, Zhang et al. (2019b) report the experimental re-

sults by using the ratio log det
(
I+ B

!"
B

!

σ2

)
/ log n as the

x-axis in their plots. Of course, Zhang et al. (2019b) also
report the success rate of recovery with respect to SNR.

In summary, readers can directly compare our experimental
results with those in Zhang et al. (2019b).
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Figure 2. The simulated success rate of recovery P(Π̂ = Π
!),

with n = 500, p ∈ {50, 100}, h ∈ {50, 125}, with respect to

SNR (left panels) and
log det(I+B

!"
B

!/σ2)
logn (right panels).

5.2. Simulation results

The simulation results are reported in Figure 2 and Figure 3
for n = 500 and n = 1000, respectively. The simulations
well match our theoretical results, in particular, Theorem 2.

Recall that, in our setting, the stable ρ(B!) is the same as
m. As shown in the plots, the required SNR values increase
with increasing m, in order to ensure success of recovery.
When m is too small (e.g., m < 15), Algorithm 1 cannot
reach a 100% success rate in the reasonable range of SNR
values we have experimented with.

These plots also demonstrate that the permutation recovery
problem becomes increasingly more challenging when the
number of permuted rows h becomes larger or when the
dimension p gets larger (for fixed n).
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Figure 3. The simulated success rate of recovery P(Π̂ = Π
!),

with n = 1000, p ∈ {100, 200}, h ∈ {100, 250}, with respect to

SNR (left panels) and
log det(I+B

!"
B

!/σ2)
logn (right panels).

6. Conclusion

This paper has studied the well-known challenging prob-
lem of “unlabelled linear regression”. Unlike classical lin-
ear regression, in this problem setting, a fraction of the
rows of the observation matrix are permuted. The goal is to
recover not only the regression coefficients but also the per-
mutation matrix. In recent years, this problem has attracted
increasingly more attentions because it arises in many im-
portant applications including data integration, privacy pro-
tection, computer vision, sensor networks, robotics, etc.

In this paper, we propose a (perhaps surprisingly) simple
one-step estimator for unlabelled linear regression. Our the-
oretical analysis reveals that the proposed estimator is opti-
mal from both the computational aspect and the statistical
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perspective, by comparing our solution with the oracle esti-
mators. Simulations confirm that the proposed estimator is
efficient and accurate, as predicted by theoretical analysis.

One major limitation of the propose estimator is that it re-
quires the matrix of regression coefficients to have a min-
imum “stable rank” ρ(B!), which makes the estimator ap-
plicable mainly in the multiple observations settings (i.e.,
m $ 1). In the single observation setting (i.e., m = 1), our
estimator still works well for the special case when m = 1
and p = 1. We leave it for future research to modify the
estimator so that it will work for more general settings.
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Appendix: Lower bounds in prior literature

For the convenience of comparison, we collect some pre-
vious results concerning the statistical lower bound for the
correct recovery of Π!. Note that Theorem 6 gives almost
the same order of Theorem 5 when we set m = 1. Hence,
we can view Theorem 5 as a special case of Theorem 6.

Theorem 5 (Theorem 2 in Pananjady et al. (2017a))
For any estimator Π̂, we have the error probabil-

ity P(Π̂ (= Π!) exceed 1 − c0e−c1nδ provided that

2 + log(1 + SNR) ≤ (2− δ) log n, 0 < δ < 2.

Theorem 6 (Theorem 1 in Zhang et al. (2019a)) For

any estimator Π̂, we have the error probability P(Π̂ (= Π!)
exceed 1/2, provided that

1

2
log det

(
I+

B!"B!

σ2

)
+

log (|H|)
2n

<
H(Π!)− 1

n
,

(13)
where H and H(Π!) denote the support and the entropy of

the random permutation matrix Π!, respectively.
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A. Notations

We begin the appendix with a restatement of the notations. Denote c, c
′

, ci as some universal positive constants. Notice
that their values may not necessarily the same even for those with same notations. We denote a ! b if there exists some
positive constant c0 > 0 such that a ≤ c0b. Similarly we define a " b provided a ≥ c0b for some positive constant c0. We
write a # b when a ! b and a " b hold simultaneously.

For an arbitrary matrix X, we denote Xi,: as the i-th row, X:,i as its i-th column, and Xij as the (i, j)-th element. The
Frobenius norm of X is defined as |||X|||F while the operator norm is denoted as |||X|||OP, whose definition can be found

in Section 2.3 of Golub and Loan (2013) (P71). Its stable rank ρ(X) is defined as the ratio |||X|||2F/|||X|||2OP (Section 2.1.15
in Tropp (2015)). The inner product 〈A,C〉 is defined as

∑
ij AijCij .

Associate with each permutation matrix Π, we define the operator π(·) that transforms index i to π(i). The Hamming
distance dH(Π1,Π2) between permutation matrix Π1 and Π2 is defined as dH (Π1,Π2) =

∑n
i=1 (π1(i) &= π2(i)).

Additionally, we denote E as the complement of the event E and the signal-to-noise-ratio (SNR) as SNR =
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F
/(mσ2).

B. Problem Restatement

To begin with, we recall the problem formulation, which reads as

Y = Π!XB! +W,

where Y ∈ Rn×m represents the observation, Π ∈ Rn×n denotes the unknown permutation matrix, X ∈ Rn×p is the

sensing matrix (design matrix) with Xij
i.i.d∼ N (0, 1) being a standard normal random variable (RV), B! ∈ Rp×m is the

matrix of regression coefficients, and W ∈ Rn×m is the additive Gaussian noise matrix such that Wij
i.i.d∼ N (0,σ2).

Our goal is to reconstruct the pair (Π̂, B̂) from the observation Y and sensing matrix (design matrix) X. The proposed
one-step estimator can be written as

Π̂ = argmax
Π∈Pn

〈
Π,YY#XX#

〉
,

B̂ = (X)† Π̂
#
Y,

where X† = (X#X)−1X# denotes the pseudo-inverse of X. In the following, we will separately investigate its properties
under the single observation model (m = 1) and multiple observations model (m > 1). The formal statement is packaged
in Theorem 1 and Theorem 2.

C. Appendix for Section 3

This section focuses on the special case where p = 1,m = 1. Consider X ∈ Rn to be a Gaussian distributed RV such that
X ∼ N (0, In×n), and permutation matrix Π! which satisfies dH(I,Π

!) = h ≤ n/4.

C.1. Notations

First we define the following events Ei, (1 ≤ i ≤ 5), which reads

E1 #
{〈

X,Π!X
〉
≥ c0n

}
,

E2 #
{
‖X‖2 ≤ 2

√
n
}

E3(Π) #
{
W#XX#

(
Π! −Π

)
W ! σ2n2 log n

}
,

E4(Π) #
{∣∣∣∣〈W,X〉

〈
Π!X,

(
Π! −Π

)#
X

〉
+

〈
W,

(
Π! −Π

)#
X

〉〈
Π!X,X

〉∣∣∣∣ ! σn2
√

log n

}

E5(Π; $) #
{
‖X−ΠX‖22 ≥ 12$

5en20
, dH (I,Π) = $

}
,

where Π is an arbitrary permutation matrix, and c0 > 0 is some positive constant.
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C.2. Outline of proof

We will prove that ground truth permutation matrix Π! will be returned with high probability under the assumptions in
Theorem 1. The formal statement is shown in Theorem 1. Before we delve into the proof details, we give a roadmap of the
proof, which is

• Step I: Under the events E1
⋂

Π
(E3(Π)

⋂
E4(Π)

⋂
E5(Π; $)), we have

〈
Π!,yy#XX#

〉
−
〈
Π,yy#XX#

〉
"

c0β2

n19
− c1βσn

2
√

log n− c2σ
2n2 log n.

Notice that under assumptions in Theorem 1, we conclude that
〈
Π!,yy#XX#

〉
>
〈
Π,yy#XX#

〉
, ∀ Π, which

suggests that Π! will always be returned by our estimator in Eq. (3).

• Step II: We upper-bound the probability P(Π̂ &= Π!) by P
(
E1
⋃

Π

(
E3(Π)

⋃
E4(Π)

⋃
E5(Π; $)

))
and complete the

proof by showing it is at most cn−1.

Having illustrated the proof strategy, we turn to the proof details. The main proof is attached in Section C.3 while the
supporting lemmas bounding P(Ei), (1 ≤ i ≤ 5), are put in Section C.4.

C.3. Proof of Theorem 1

Proof 1 For an arbitrary permutation matrix Π, we can expand the term
〈
Π,yy#XX#

〉
as

〈
Π,yy#XX#

〉
= T1(Π) + βT2(Π) + β2T3(Π),

where Ti(Π), (1 ≤ i ≤ 3), are defined as

T1(Π) =
〈
W,Π#X

〉
〈X,W〉 ;

T2(Π) = 〈W,X〉
〈
Π!X,Π#X

〉
+
〈
W,Π#X

〉〈
Π!X,X

〉
;

T3(Π) =
〈
Π!X,ΠX

〉〈
Π!X,X

〉
.

Step I: We rewrite the difference
〈
Π!,yy#XX#

〉
−
〈
Π,yy#XX#

〉
as

〈
Π!,yy#XX#

〉
−
〈
Π,yy#XX#

〉

= T1(Π!)− T1(Π) + β
(
T2
(
Π!
)
− T2(Π)

)
+ β2

(
T3
(
Π!
)
− T3(Π)

)

1©
=

β2

2

〈
Π!X,X

〉∥∥∥X−Π!#ΠX
∥∥∥
2

2
+ β

(
T2
(
Π!
)
− T2(Π)

)
+ T1(Π!)− T1(Π)

2©
≥ β2

2
c0n

24

5en20
− β

∣∣∣T2
(
Π!
)
− T2(Π)

∣∣∣−
∣∣∣T1(Π!)− T1(Π)

∣∣∣

3©
"

c0β2

n19
− c1βσn

2
√

log n− c2σ
2n2 log n

4©
> 0,

where in 1© we rewrite ‖X‖22 −
〈
Π!X,ΠX

〉
as

‖X‖22 −
〈
Π!X,ΠX

〉
=

1

2

(
‖X‖22 +

∥∥∥Π!#ΠX
∥∥∥
2

2
− 2

〈
Π!X,ΠX

〉)
=

1

2

∥∥∥X−Π!#ΠX
∥∥∥
2

2
,

in 2© we condition on event E1, E5(Π; $) and have ‖X−ΠX‖22 ≥ 12"
5en20 ≥ 24

5en20 , in 3© we condition on E3(Π), E4(Π),
and in 4© we use the assumption log(SNR) " log n in Theorem 1.
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Step II: The error probability P

(
Π̂ &= Π!

)
is hence be upper-bounded as

P

(
Π̂ &= Π!

)
≤ P

(

E1

⋃

Π

(
E3(Π)

⋃
E4(Π)

⋃
E5(Π; $)

))

5©
≤ P

(
⋃

Π

(
E3(Π)

⋃
E4(Π)

⋃
E5(Π)

)⋂
E1
⋂

E2

)

+ P
(
E1

)
+ P

(
E2

)

6©
≤

∑

Π! %=Π

P

(
E3(Π)

⋂
E1
⋂

E2
)
+
∑

Π! %=Π

P

(
E4(Π)

⋂
E1
⋂

E2
)

+
∑

"≥2

P

(
E5(Π; $)

⋂
E1
⋂

E2
)
+ 8n−1 + 2e−c0n

7©
≤ 2n−n + 3

∑

"≥2

(
n

$

)
$!n−2" + 8n−1 + 2e−c0n

8©
! c0n

−n + n−1 + 3
∑

"≥2

n"n−2" ! c0n
−1 +

3

n(n− 1)
! n−1,

where in 5© we use the union bound, in 6© we complete the proof with Lemma 1 and the fact P
(
E2

)
≤ e−0.8n, in 7© we

invoke Lemma 2, Lemma 3, Lemma 4, and in 8© we use n!/(n− $)! ≤ n" and complete the proof.

C.4. Supporting Lemmas for Theorem 1

This subsection collects the supporting lemmas for the proof of Theorem 1.

Lemma 1 We have P
(
E1

)
≤ 8n−1 + e−0.238n when n is sufficiently large.

Proof 2 Different from the proof in Lemma 9, we consider the case where X ∈ Rn is a vector and would lower-bound〈
X,Π!X

〉
. W.l.o.g, we assume the first h entries are permuted and expand the inner product

〈
X,Π!X

〉
as

〈
X,Π!X

〉
=

h∑

i=1

XiXπ(i) +
n∑

i=h+1

X2
i .

With union bound, we can upper bound P

(〈
X,Π!X

〉
≤ c0n

)
as

P

(〈
X,Π!X

〉
≤ c0n

) 1©
≤ P

(
n∑

i=h+1

X2
i ≤ 1

4
(n− h)

)

︸ ︷︷ ︸
ζ1

+P

(
h∑

i=1

XiXπ(i) ≤ −4
√
2 +

√
35√

2

√
n log n

)

︸ ︷︷ ︸
ζ2

,

where c0 > 0 is some positive constant, in 1© we use the fact

n− h

4
− 4

√
2 +

√
35√

2

√
n log n

(h≤n
4 )

≥ 3n

16
− 4

√
2 +

√
35√

2

√
n log n ≥ c0n,

when n is large. We finish the proof by separately upper-bounding ζ1 ≤ e−0.2386n and ζ2 ≤ 8n−1. The detailed computa-

tion comes as follows.

Phase I: For ζ1, we can view
∑n

i=h+1 X
2
i as a χ2-RV with (n− h) freedom and have

ζ1
2©
≤ exp

(
n− h

2

(
log

1

4
− 1

4
+ 1

))
3©
≤ e−0.2386n,
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where in 2© we use Lemma 11, and 3© is because h ≤ n/4.

Phase II: To bound ζ2, we divide the index set {j : j &= π(j)} into 3 disjoint sets Ii, 1 ≤ i ≤ 3, as in Lemma 8

in Pananjady et al. (2017a) (restated as Lemma 13). This division has two properties: (i) indices j and π(j) lies in

different sets; (ii) the cardinality hi of each Ii satisfies -h/5. ≤ hi ≤ h/3. Then we obtain

ζ2 ≤ P

(
h∑

i=1

XiXπ(i) ≤ −4
√
2 +

√
35√

2

√
n log n, |Xi| ≤ 2

√
log n, ∀ i

)

+ P

(
|Xi| ≥ 2

√
log n, ∃ i

)

4©
≤

3∑

i=1

P




∑

j∈Ii

XjXπ(j) ≤ −4
√
2 +

√
35

3
√
2

√
n log n, |Xi| ≤ 2

√
log n, ∀ i





︸ ︷︷ ︸
ζ2,i

+nP

(
|Xi| ≥ 2

√
log n

)

︸ ︷︷ ︸
≤2n−2

,

where in 4© we use the union bound for
∑h

i=1 XiXπ(i) and the tail bounds for Gaussian distributed Xi.

Then we define Zi =
∑

j∈Ii
XjXπ(j) and bound ζ2,i via the Bernstein inequality (Theorem 2.8.4 in Vershynin (2018)).

First, we verify that E
(
XjXπ(j)

)
= (EXj)

(
EXπ(j)

)
= 0. Meanwhile we compute σ2 =

∑
j∈Ii

E
(
XjXπ(j)

)2
= hi.

According to the Bernstein inequality, we have

∣∣∣∣∣∣

∑

j∈Ii

XjXπ(j)

∣∣∣∣∣∣
≥ 4

3
(log n)2 +

√
16

9
(log n)4 + 2(log n)hi,

holds with probability 2n−1. Meanwhile, we can upper bound as

4

3
(log n)2 +

√
16

9
(log n)4 + 2(log n)hi ≤

4

3
(log n)2 +

√
16

9
(log n)4 +

n log n

6

5©
≤ 4

√
2 +

√
35

3
√
2

√
n log n,

where 5© is because n ≥ log3(n) for n ≥ 95. Hence, we conclude that ζ2,i ≤ 2n−1 and complete the proof by combining

the bound for ζ1 and ζ2.

Lemma 2 We have P
(
E3(Π)

⋂
E2
)
≤ n−2n.

Proof 3 For the conciseness of notation, we define Ξ as Ξ # XX#
(
Π! −Π

)
. Due to the independence of the X and

W, we can condition on X and bound P(E3(Π)
⋂

E2) as

P

(
E3(Π)

⋂
E2
) 1©

≤ P
(
W#ΞW ≥ EW#ΞW + cσ2n2 log n

)

2©
≤ exp

(

−
(
c0n4 log2 n

|||Ξ|||2F
∧ c1n2 log n

‖Ξ‖2

))
3©
≤ n−2n,

where in 1© we condition on E2 and use the fact

EW#ΞW + cσ2n2 log n ! σ2‖X‖22 + cσ2n2 log n ! σ2n2 log n,

in 2© we use Hanson-Wright inequality (Theorem 6.2.1 in Vershynin (2018)), and in 3© we condition on E2 and use

‖Ξ‖2 ! ‖X‖22 ! n.

Lemma 3 We have P
(
E4(Π)

⋂
E2
)
≤ n−2n.

Proof 4 Due to the independence between W and X, we would like to condition on X and bound P(E4(Π)
⋂

E2) as

P

(
E4(Π)

⋂
E2
)

≤ exp

(
−4cσ2n4 log n

2σ2
Π

)
,
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where σ2
Π

is defined as

σ2
Π = σ2

∣∣∣∣

∣∣∣∣

∣∣∣∣

〈
Π!X,

(
Π! −Π

)#
X

〉
X+

〈
Π!X,X

〉(
Π! −Π

)
X

∣∣∣∣

∣∣∣∣

∣∣∣∣
2

F

,

Notice under E2, we have σ2
Π

! σ2
(
4‖X‖32

)2
= cσ2n3, and complete the proof by showing

exp

(
−4cσ2n4 log n

2σ2
Π

)
≤ exp

(
−4cσ2n4 log n

2cσ2n3

)
= n−2n.

Lemma 4 We have P
(
E5(Π); $

)
≤ 3n−2".

Proof 5 Adopting a similar approach as in proving Lemma 1, we can decompose the index sets {j : j &= π(j)} into 3
disjoint sets Ii (1 ≤ i ≤ 3) such that: (1) j and π(j) do not lie within the same index set Ii; and (2) the cardinality $i of

Ii satisfies -$/5. ≤ $i ≤ $/3. Then we can bound P (E5(Π; $)) as

P

(∥∥∥X−Π!X
∥∥∥
2

2
≤ 12$

5en20

)
1©
=

3∑

i=1

P




∑

j∈Ii

(
Xj −Xπ(j)

)2 ≤ 4$

5en20





2©
≤

3∑

i=1

exp

(
$i
2

(
log

2l

5en20$i
− 2l

5en20$i
+ 1

))
3©
≤ 3n−2".

where 1© is due to the decomposition Ii, 1 ≤ i ≤ 3, 2© is because
∑(

Xj −Xπ(j)

)2
/2 is a χ2 RV with freedom $i and

Lemma 11, and 3© is due to -$/5. ≤ $i ≤ $/3 and hence

$i
2

(
log

2l

5en20$i
− 2l

5en20$i
+ 1

)
≤ $i

2

(
log

2l

5$i
− 20 log n

)
≤ −10$i log n ≤ −2$ log n.

D. Appendix for Section 4

This section provides theoretical analysis for the multiple observations model, i.e., m > 1. We will show that our estimator
in Eq. (3) gives correct permutation matrix Π! once

log(SNR) "
log n

ρ(B!)
+ log log n.

The formal statement is packaged in Theorem 2.

D.1. Notations

Before our discussion, first we define B̃ and B∗ respectively as

B̃ = (n− h)−1
X#Π!XB!,

B∗ = (n− h)−1
X#Y = B̃+ (n− h)−1

X#W,

where h is denoted as the Hamming distance between identity matrix I and the ground truth permutation matrix Π!, i.e.,
h = dH(I,Π

!). Similar as in Section C, we define events Ei, (6 ≤ i ≤ 9) as

E6 #
{
‖Xi,:‖2 ≤ 2

√
p log n, ∀i

}
;

E7 #
{∥∥Xi,:

(
B∗ −B!

)∥∥
2
! c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ c1

√
m(log n)σ

(
1 +

p

n

)
, ∀ i

}
;

E8 #
{〈

Wi,:,
(
Xj,: −Xπ!(i),:

)
B∗
〉

≥ ∆, ∃ i, j
}
;

E9 #
{∥∥(Xπ!(i),: −Xj,:

)
B!
∥∥2
2
+ 2

〈(
Xπ!(i),: −Xj,:

)
B!,Xj,:

(
B! −B∗

)〉
−
∥∥Xπ!(i),:

(
B! −B∗

)∥∥2
2
≤ ∆, ∃ i, j

}
,

where ∆ is defined as

∆ = 16
√
2c0σ

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ 16c1

√
2m(log n)σ2

(
1 +

p

n

)
+ 4

√
2c2(log n)σ

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
.
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D.2. Outline of proof

In front of the rigorous proof in Section D.3, we first illustrate our proof strategy as

• Step I: We relax the wrong recovery
{
Π̂ &= Π!

}
to event E , i.e.

{
Π̂ &= Π!

}
⊆ E , which reads as

E #
{∥∥Yi,: −Xπ!(i),:B

∗
∥∥2
2
≥ ‖Yi,: −Xj,:B

∗‖22, ∃ i, j
}
. (14)

The physical meaning of E is that we may reduce the residual |||Y −Π!XB∗|||F by changing π!(i) to j. Same
relaxation has been previously used in Collier and Dalalyan (2016); Slawski et al. (2019a); Zhang et al. (2019a;b).

• Step II: The core in this step lies in how to lower bound P(E7). First we decompose E into E8
⋃
E9 with some simple

algebraic manipulations. Under the SNR assumption in Eq. (7), we show both P(E8) and P(E9) are approximately
P(E7), as in Lemma 5 and Lemma 6, respectively.

To show P(E7) is with low probability, in another words, P(E7) is highly likely, we prove the following relations hold
with high probability under E6,

∥∥∥Xi,:

(
B̃−B!

)∥∥∥
2
!

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
;

∥∥Xi,:X
#W

∥∥
2
!

√
m(log n)σ(n+ p),

whose proof are in Lemma 9 and Lemma 10, respectively, and hence finish the proof by

∥∥Xi,:

(
B∗ −B!

)∥∥
2
≤
∥∥∥Xi,:

(
B̃−B!

)∥∥∥
2
+

1

n− h

∥∥Xi,:X
#W

∥∥
2
.

In particular, we would like to mention the technique used in bounding
∥∥Xi,:X

#W
∥∥
2
. First we review the widely-

used bounding procedure, which proceeds as

∥∥Xi,:X
#W

∥∥
2
≤ ‖Xi,:‖2‖X‖2‖W‖2

1©
!
√

p log n
(√

n+
√
p
)
σ
(√

n+
√
m
) 2©
#
√

log n(n3/2)σ +
√
mn log nσ,

where in 1© we use the fact ‖Xi,:‖2 !
√
p log n, ‖X‖2 !

√
n +

√
p, ‖W‖2 ! σ(

√
n +

√
m) hold with high

probability, and in 2© we use p # n. Comparing with our results in Lemma 10, this bound experience inflations when
m 2 n and will lift the SNR requirement to log(SNR) " log n, which hides the role of ρ(B!) compared with our
current result in Theorem 2. To handle such problem, we adopt the leave-one-out trick as in El Karoui (2013; 2018);
Chen et al. (2019); Sur et al. (2019) and refer to Lemma 10 for the technical details.

Having illustrated our proof strategies, we leave the detailed calculation to Section D.3.

D.3. Proof of Theorem 2

Proof 6 We restate the definition of event E as

E #
{∥∥Yi,: −Xπ!(i),:B

∗
∥∥2
2
≥ ‖Yi,: −Xj,:B

∗‖22, ∃ i, j
}
.

Step I: First we verify that

Π̂ = argmin
Π

|||Y −ΠXB∗|||F

returns the same permutation matrix Π̂ as that by Eq. (3). Hence, correct recovery of the ground truth permutation matrix

Π! suggests that

∣∣∣
∣∣∣
∣∣∣Y −Π!XB∗

∣∣∣
∣∣∣
∣∣∣
F
< |||Y −ΠXB∗|||F, ∀ Π &= Π!.



Optimal Estimator for Unlabeled Linear Regression

Then we finish the proof by showing that E ⊆
{
Π̂ = Π!

}
. Assuming the claim is not true, which means we have matrix

Π such that
∣∣∣
∣∣∣
∣∣∣Y −Π!XB∗

∣∣∣
∣∣∣
∣∣∣
2

F
≥ |||Y −ΠXB∗|||2F,

conditional on event E . Meanwhile we have

∣∣∣
∣∣∣
∣∣∣Y −Π!XB∗

∣∣∣
∣∣∣
∣∣∣
2

F
=

n∑

i=1

∥∥Yi,: −Xπ!(i),:B
∗
∥∥2
2

1©
<

n∑

i=1

∥∥Yi,: −Xπ(i),:B
∗
∥∥2
2
= |||Y −ΠXB∗|||2F,

which leads to contradiction, where in 1© we use the definition of E .

Step II: We verify that
∥∥Yi,: −Xπ!(i),:B

∗
∥∥2
2
≥ ‖Yi,: −Xj,:B

∗‖22 is equivalent to

2
〈
Wi,:,

(
Xj,: −Xπ!(i),:

)
B∗
〉
≥
∥∥(Xπ!(i),: −Xj,:

)
B!
∥∥2
2
+
∥∥Xj,:

(
B! −B∗

)∥∥2
2

+ 2
〈(
Xπ!(i),: −Xj,:

)
B!,Xj,:

(
B! −B∗

)〉
−
∥∥Xπ!(i),:

(
B! −B∗

)∥∥2
2
,

which suggests that P (E) ≤ P (E8) + P (E9) and completes the proof with Lemma 5 and Lemma 6.

Lemma 5 We have P (E8) ≤ c0e
−((log n)4∧(logn)2ρ(B!)) + c1n−1 + c2ne−c3n + c4ne−c0m + 2e−p + 6p−2.

Proof 7 For the conciseness of notation, we define ∆1 and ∆2 as

∆1 = 4c0
p(log n)3/2(log p)√

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ 4c1

√
m(log n)σ

(
1 +

p

n

)
;

∆2 = c2(log n)
∣∣∣∣∣∣B!

∣∣∣∣∣∣
F
.

Then we can bound P (E8) as

P (E8)
1©
≤ P

(∥∥(Xj,: −Xπ!(i),:

)
B∗
∥∥
2
≥ ∆1 +∆2, ∃ i, j

)
+ exp

(

− ∆2

2σ2 (∆1 +∆2)
2

)

2©
≤ P

(∥∥(Xj,: −Xπ!(i),:

) (
B∗ −B!

)∥∥
2
≥ ∆1, ∃ i, j

)

︸ ︷︷ ︸
ζ1

+ P

(∥∥(Xj,: −Xπ!(i),:

)
B!
∥∥
2
≥ ∆2, ∃ i, j

)

︸ ︷︷ ︸
ζ2

+n−8, (15)

where in 1© we use the independence between W and X and condition on X, in 2© we use the relation ∆ =

4
√
2σ (∆1 +∆2). Then we will prove that ζ1 ≤ P(E7) and ζ2 # e−((logn)4∧(logn)2ρ(B!)).

Phase I: bounding ζ1 Conditional on E7, we have
∥∥(Xj,: −Xπ!(i),:

) (
B∗ −B!

)∥∥
2
≤
∥∥Xj,:

(
B∗ −B!

)∥∥
2
+
∥∥Xπ!(i),:

(
B∗ −B!

)∥∥
2

3©
≤ 2c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ 2c1

√
m(log n)σ

(
1 +

p

n

)
<

∆1

2
,

and obtain ζ1 = 0, where 3© is due to the definition of E7. Then we conclude that ζ1 ≤ P(E7).

Phase II: bounding ζ2 For ζ2, we upper-bound it as

ζ2
4©
≤

∑

π!(i),j

P

(
Z ≥ c2(log n)

2
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F

) 5©
≤ n2

P

(
|Z − EZ| ≥ c3(log n)

2
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F

)

6©
≤ n2 exp

(

−
(
(log n)4

∣∣∣∣∣∣B!
∣∣∣∣∣∣4

F

|||B!B!#|||2F
∧

(log n)2
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F

|||B!B!#|||OP

))

= n2e−((logn)4∧(logn)2ρ(B!))

# e−((log n)4∧(logn)2ρ(B!)), (16)
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where in 4© we define Z #
∥∥(Xj,: −Xπ!(i),:

)
B!
∥∥2
2
, in 5© we have EZ = 4

∣∣∣∣∣∣B!
∣∣∣∣∣∣2

F
and use

c2(log n)2
∣∣∣∣∣∣B!

∣∣∣∣∣∣2
F
≥
(
4 + c3(log n)2

) ∣∣∣∣∣∣B!
∣∣∣∣∣∣2

F
when n is sufficiently large, and in 6© we use the Hanson-Wright inequality

(Theorem 6.2.1 in Vershynin (2018)). Combining Eq. (15), Eq. (16) and Lemma 8 together, we complete the proof.

Lemma 6 Consider the same setting of Theorem 2. Provided the SNR satisfies

log(SNR) "
6 log n

ρ (B!)
+ log log n,

we have P (E9) ≤ 2e−p + ne−c1m + c2p−2 + c3ne−c4n, when n is sufficiently large, where ci > 0, 0 ≤ i ≤ 4 are some

positive constants.

Proof 8 We upper bound P (E9) as

P (E9) ≤ P

(∥∥∥
(
Xπ!(i),: −Xj,:

)
B

"
∥∥∥
2

2
− 2
∥∥∥
(
Xπ!(i),: −Xj,:

)
B

"
∥∥∥
2

∥∥∥Xj,:

(
B

" −B
∗
)∥∥∥

2
−
∥∥∥Xπ!(i),:

(
B

" −B
∗
)∥∥∥

2

2
≤ ∆, ∃ i, j

)

≤ P

(∥∥∥
(
Xπ!(i),: −Xj,:

)
B

"
∥∥∥
2
≤ δ, ∃ i, j

)

︸ ︷︷ ︸
! ζ1

+P

(∥∥Xπ!(i),:

(
B

" −B
∗
)∥∥2

2

δ2
+

2
∥∥Xπ!(i),:

(
B

" −B
∗
)∥∥

2

δ
+

∆
δ2

≥ 1, ∃ i, j

)

︸ ︷︷ ︸
! ζ2

.

Setting δ as
∣∣∣∣∣∣B!

∣∣∣∣∣∣
F
n
− 3

cρ(B!) , we would like to show ζ1 ! n−1 and ζ2 ≤ P(E7) under the assumptions in Lemma 6.

Phase I: bounding ζ1 We set δ as
∣∣∣∣∣∣B!

∣∣∣∣∣∣
F
n
− 3

cρ(B!) , and can upper bound ζ1 as

ζ1 ≤
n∑

i=1

∑

j %=π!(i)

P

(∥∥(Xπ!(i),: −Xj,:

)
B!
∥∥
2
≤ δ
) 1©
≤

n∑

i=1

∑

j %=π!(i)

n−3 ! n−1, (17)

where 1© comes from the small ball probability as in Lemma 2.6 in Latala et al. (2007), which is also stated as Lemma 12.

Phase II: bounding ζ2 Then we prove that ζ2 can be arbitrarily small under the SNR requirement in Eq. (7). Conditional

on event E7, we have
∥∥Xπ!(i),:

(
B! −B∗

)∥∥2
2

δ2
≤

2c20
p2(logn)3(log p)2

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣2

F
+ 2c21m(log n)2σ2 (1 + p/n)2

|||B!|||2Fn
− 6

cρ(B!)

2©
≤ 2c20p

2(log n)3(log p)2

n1−6/(cρ(B!))
︸ ︷︷ ︸

η1

+8c21
(log n)2n

6
cρ(B!)

SNR︸ ︷︷ ︸
η2

, (18)

in 2© we use the fact p ≤ n. Since we have n ≥ p4(log n)6(log p)4 and ρ(B!) ≥ 18/c, we conclude η1 → 0 as n goes to

infinity. Meanwhile, because of the assumptions in Eq. (7), we have η2 to be a small positive constants.

Additionally, we can expand ∆/δ2 as

∆

δ2
!

n
6

cρ(B!)σ

|||B!|||2F

(
c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+ c1

√
m(log n)σ

(
1 +

p

n

)
+ c2(log n)

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

)

! c0
p(log n)3/2(log p)√

mn
× n

6
cρ(B!)

√
SNR

+ c1
log n√

m
× n

6
cρ(B!)

√
SNR

+ c2
log n√

m
× n

6
cρ(B!)

SNR
. (19)

Following similar procedures as above, we can prove ∆/δ2 to be a small positive constant given Eq. (7). Combing Eq. (18)

and Eq. (19) together, we conclude

η1 + η2 + 2
√
η1 + η2 +

∆

δ2
< 1,

which suggests that ζ2 equals zero conditional on events E7. Therefore, we obtain

ζ2 ≤ P
(
E7

) 3©
≤ 2e−p + 6p−2 + ne−c0m + c0n

−1 + c1ne
−c2n

4©
! 2e−p + ne−c0m + c0p

−2 + c1ne
−c2n

and completes the proof together with Eq. (17), where 3© is due to Lemma 8, and 4© is because of n " p2.
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D.4. Supporting Lemmas for Theorem 2

Lemma 7 For arbitrary row Xi,:, we have

‖Xi,:‖2 ≤ 2
√

p log n,

with probability exceeding 1− n−p.

Proof 9 Notice that ‖Xi,:‖22 is a χ2-RV with freedom p, we have

P

(
‖Xi,:‖22 ≥ 4p log n

)
≤ exp

(p
2
(log(4p log n)− 4 log n+ 1)

) 1©
≤ exp (−p log n) = n−p,

where in 1© we use 2 log n ≥ log (4 log n) + 1, when n ≥ 4.

Lemma 8 We have P (E7) ≥ 1− 2e−p − 6p−2 − ne−c0m − c0n−1 − c1ne−c2n.

Proof 10 Invoking Lemma 10, we have

P
(∥∥Xi,:X

#W
∥∥
2
≤ c0

√
m(log n)σ (n+ p) , ∀ i

)

= 1− P
(∥∥Xi,:X

#W
∥∥
2
> c0

√
m(log n)σ (n+ p) , ∃ i

)

≥ 1−
∑

i

P
(∥∥Xi,:X

#W
∥∥
2
> c0

√
m(log n)σ (n+ p)

)

≥ 1− n1−p − ne−c0m − n−1 − c1ne
−c2n. (20)

Then we conclude

∥∥Xi,:

(
B∗ −B!

)∥∥
2
≤
∥∥∥Xi,:

(
B̃−B!

)∥∥∥
2
+

1

n− h

∥∥Xi,:X
#W

∥∥
2

≤ ‖Xi,:‖2
∣∣∣
∣∣∣
∣∣∣B̃−B!

∣∣∣
∣∣∣
∣∣∣
F
+

1

n− h

∥∥Xi,:X
#W

∥∥
2

1©
≤ c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+

c1
√
m(log n)σ (n+ p)

n− h

2©
≤ c0

p(log n)3/2(log p)√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
+

4

3
c1
√
m(log n)σ

(
1 +

p

n

)
,

where in 1© we condition on Lemma 9 and Eq. (20), and in 2© we use the fact h ≤ n/4.

Lemma 9 Provided that n " p2, h ≤ n/4, we have

∣∣∣
∣∣∣
∣∣∣B̃−B!

∣∣∣
∣∣∣
∣∣∣
F
≤
√

p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

(
4
√
6 + (log n)(log p)

)
,

with probability at least 1− 2e−p − 6p−2 when n, p are sufficiently large.

Proof 11 We assume that the first h rows of X are permuted w.l.o.g. First, we expand X#Π!X as

X#Π!X =
h∑

i=1

X#
π(i),:Xi,: +

n∑

i=h+1

X#
i,:Xi,:,
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and obtain

P

(∥∥∥B! − B̃
∥∥∥
2
≥
√

p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

(
4
√
6 + (log n)(log p)

))

≤ P



 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

h∑

i=1

X#
π(i),:Xi,:B

!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

+
1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
X#

i,:Xi,: − I
)
B!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

≥
√

p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

(
4
√
6 + (log n)(log p)

)




1©
≤ P

(
1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

h∑

i=1

X#
π(i),:Xi,:B

!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

≥
(log n)(log p)

√
p

√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F

)

︸ ︷︷ ︸
ζ1

+ P



 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
X#

i,:Xi,: − I
)
B!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

≥ 4

√
6p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F





︸ ︷︷ ︸
ζ2

,

where 1© is because of the union bound. Then we separately bound ζ1 and ζ2.

Phase I: Bounding ζ1 According to Lemma 8 in Pananjady et al. (2017a) (restated as Lemma 13), we can decompose

the set {j : π(j) &= j} into three disjoint sets Ii, 1 ≤ i ≤ 3, such that j and π(j) does not lie in the same set. And the

cardinality of set Ii is hi satisfies -h/5. ≤ hi ≤ h/3. Adopting the union bound, we can upper-bound ζ1 as

ζ1 ≤
3∑

i=1

P



 1

n− h

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

j∈Ii

X#
π(j),:Xj,:B

!

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
F

≥
(log n)(log p)

√
p

3
√
n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F





≤
3∑

i=1

P



 1

n− h

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

j∈Ii

X#
π(j),:Xj,:

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
F

≥
(log n)(log p)

√
p

3
√
n



 .

Defining Zi as Zi =
∑

j∈Ii
X#

π(j),:Xj,:, we would bound the above probability by invoking the matrix Bernstein inequality

(cf. Thm 7.3.1 in Tropp (2015)). First, we have

E

(
X#

π(j),:Xj,:

)
=
(
EXπ(j),:

)#
(EXj,:) = 0,

due to the independence between Xπ(j),: and Xj,:. Then we upper bound
∥∥∥X#

π(j),:Xj,:

∥∥∥
2

as

∥∥∥X#
π(j),:Xj,:

∥∥∥
2

2©
=
∣∣∣
∣∣∣
∣∣∣X#

π(j),:Xj,:

∣∣∣
∣∣∣
∣∣∣
F

3©
=
∥∥Xπ(j),:

∥∥
2
‖Xj,:‖2

4©
≤ 4p log n,

where 2© is because X#
π(j),:Xj,: is rank-1, 3© is due to the fact

∣∣∣∣∣∣uv#
∣∣∣∣∣∣2

F
= Tr

(
uv#vu#

)
= ‖u‖22‖v‖

2
2 for arbitrary

vector u,v ∈ Rp, and 4© is because of Lemma 7.

In the end, we compute E
(
ZiZ

#
i

)
and E

(
Z#

i Zi

)
as

E
(
Z#

i Zi

)
= E




∑

j1,j2∈Ii

X#
π(j1),:

Xj1,:X
#
j2,:Xπ(j2),:



 5©
= E




∑

j∈Ii

X#
π(j),:Xj,:X

#
j,:Xπ(j),:





6©
= E




∑

j∈Ii

X#
π(j),:E

(
Xj,:X

#
j,:

)
Xπ(j),:



 = p




∑

j∈Ii

EX#
π(j),:Xπ(j),:



 = phiIp×p = E
(
ZZ#

)
,

where 5© and 6© is because of the fact such that j and π(j) are not within the set Ii simultaneously. To sum up, we invoke

the matrix Bernstein inequality (cf. Thm 7.3.1 in Tropp (2015)) and have

1

n− h

∥∥∥∥∥∥

∑

j∈I

X#
π(j),:Xj,:

∥∥∥∥∥∥
2

≤ 1

3

(
4p(log n)(log p)

n− h
+

p
√
16(log n)2(log p)2 + 6hi log p/p

n− h

)
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holds with probability 1− 2p−2.

Exploiting the fact such that h ≤ n/4, hi ≤ h/3, and p !
√
n, we obtain

p
√
16(log n)2(log p)2 + 6hi log p/p

n− h
≤ 4p

3n

√
16(log n)2(log p)2 +

n

2p
(log n)(log p)

7©
≤

4
√
p

3
√
n
× (log n)(log p),

in 7© we n " p2 ≥ 32p and hence

1

n− h

∥∥∥∥∥∥

∑

j∈I

X#
π(j),:Xj,:

∥∥∥∥∥∥
2

≤ (log n)(log p)

(
16p

9n
+

4
√
p

9
√
n

)
8©
≤
√

p

n
(log n)(log p),

holds with probability exceeding 1− 6p−2, where in 8© we use n ≥ 256p/25.

Phase II: Bounding ζ2 We upper bound ζ2 as

ζ2 ≤ P



 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
X#

i,:Xi,: − I
)
B!

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

≥ 4

√
6p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F





≤ P



 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
X#

i,:Xi,: − I
)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
OP

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F
≥ 4

√
6p

n

∣∣∣∣∣∣B!
∣∣∣∣∣∣

F



 9©
≤ 2e−p.

where 9© is because of (n− h)−1 ∥∥∑n
i=h+1

(
Xi,:X

#
i,: − I

)∥∥
2
≤ 6

√
2p/(n− h) with probability 2e−p in Example 6.1

in Wainwright (2019) (also listed as Lemma 14) and h ≤ n/4.

The proof is completed via combing the results in Phase I and Phase II.

Lemma 10 For an arbitrary index i, we have

P
(∥∥Xi,:X

#W
∥∥
2
≥ c0

√
m(log n)σ (n+ p)

)
≤ n−p + e−c0m + n−2 + c1e

−c2n.

Proof 12 For the conciseness of notation, we define δ as c0
√
m(log n)σ (n+ p). In addition, we assume that i = 1 w.l.o.g

and prove this lemma with the leave-one-out trick, which is previously used in El Karoui (2013); El Karoui et al. (2013);

El Karoui (2018); Chen et al. (2019); Sur et al. (2019). First we define a perturbed matrix X̃ such that X̃j,: = Xj,:,

2 ≤ j ≤ n, while X̃1,: ∈ R1×p is a independent identically distributed Gaussian vector as X1,:, namely, N (0, I).

Then we can upper-bound the probability as

P
(∥∥X1,:X

#W
∥∥
2
≥ δ
)
≤ P

(∥∥∥X1,:X̃
#W

∥∥∥
2
+

∥∥∥∥X1,:

(
X− X̃

)#
W

∥∥∥∥
2

≥ δ

)

≤ P

(∥∥∥∥X1,:

(
X− X̃

)#
W

∥∥∥∥
2

≥ 4p (log n)
√
mσ

)

︸ ︷︷ ︸
ζ1

+P

(∥∥∥Xi,:X̃
#W

∥∥∥
2
≥ δ − 4p (log n)

√
mσ
)

︸ ︷︷ ︸
ζ2

.

Phase I: bounding ζ1 To bound ζ1, easily we can verify the following relation

∥∥∥∥X1,:

(
X− X̃

)#
W

∥∥∥∥
2

≤ ‖X1,:‖2

∣∣∣∣

∣∣∣∣

∣∣∣∣
(
X− X̃

)#
W

∣∣∣∣

∣∣∣∣

∣∣∣∣
F

1©
= ‖X1,:‖2

∥∥∥X1,: − X̃1,:

∥∥∥
2
‖W1,:‖2

2©
≤ 4p (log n)

√
mσ.

with probability exceeding 1−n−p−e−c0m, where 1© is because only the first row of X− X̃ is nonzero, and 2© conditions

on E6 and ‖W1,:‖2 ≤ 2
√
mσ holds with probability at least 1− e−c0m.

Phase II: bounding ζ2 Since δ − 4p(log n)
√
mσ " n(log n)

√
mσ, we can upper-bound ζ2 as

ζ2 ≤ P

(∥∥∥Xi,:X̃
#W

∥∥∥
2
≥ c1n(log n)

√
mσ
)
.
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Due to the construction of X̃, we have X1,: to be independent of X̃. Hence, we condition on X̃#W and obtain

ζ2 ≤ P

(∥∥∥Xi,:X̃
#W

∥∥∥
2
≥ c1n(log n)

√
mσ,

∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
F
< 8n

√
mσ
)
+ P

(∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
F
≥ 8n

√
mσ
)

≤ E
X̃#W

(∥∥∥Xi,:X̃
#W

∥∥∥
2
≥ c2(log n)

∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
F

)

︸ ︷︷ ︸
ζ2,1

+ P

(∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
F
≥ 8n

√
mσ
)

︸ ︷︷ ︸
ζ2,2

.

For ζ2,1, we define Z =
∥∥∥Xi,:X̃

#W
∥∥∥
2

2
and have

ζ2,1 ≤ E
X̃#W

(
|Z − EZ| ≥ c3(log n)

2
∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
2

F

)

3©
≤ E

X̃#W
exp



−




(log n)4

∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
4

F∣∣∣
∣∣∣
∣∣∣X̃#WW#X̃

∣∣∣
∣∣∣
∣∣∣
2

F

∧
(log n)2

∣∣∣
∣∣∣
∣∣∣X̃#W

∣∣∣
∣∣∣
∣∣∣
2

F∣∣∣
∣∣∣
∣∣∣X̃#WW#X̃

∣∣∣
∣∣∣
∣∣∣
OP








4©
≤ n−2,

where 3© is because of the Hanson-Wright inequality (Theorem 6.2.1 in Vershynin (2018)), and 4© is due to the stable rank

ρ(X̃#W) ≥ 1. Meanwhile we upper-bound ζ2,2 as

P

(∥∥∥X̃#W
∥∥∥
2
≥ 8n

√
mσ
)
≤ P

(∣∣∣
∣∣∣
∣∣∣X̃
∣∣∣
∣∣∣
∣∣∣
OP
|||W|||F ≥ 8n

√
mσ
)

5©
≤ P

(∣∣∣
∣∣∣
∣∣∣X̃
∣∣∣
∣∣∣
∣∣∣
OP

≥ 2
(√

n+
√
p
))

+ P

(

|||W|||F ≥ 8n
√
mσ

2
(√

n+
√
p
) ,
∣∣∣
∣∣∣
∣∣∣X̃
∣∣∣
∣∣∣
∣∣∣
OP

≤ 2
(√

n+
√
p
)
)

6©
≤ P

(∣∣∣
∣∣∣
∣∣∣X̃
∣∣∣
∣∣∣
∣∣∣
OP

≥ 2
(√

n+
√
p
))

+ P

(
|||W|||F ≥

√
2nmσ

) 7©
≤ e−c0n + e−0.8nm,

where 5© is because of the union bound, in 6© we use p ≤ n, and in 7© we use |||X|||OP ≥ 2
(√

n+
√
p
)

with probability

less than e−c0n (Chandrasekaran et al., 2012) and the fact |||W|||2F/σ2 is a χ2-RV with nm freedom, and Lemma 11.

E. Useful Facts

This section lists some useful facts for the sake of self-containing.

Lemma 11 For a χ2-RV Z with $ freedom, we have

P (Z ≤ t) ≤ exp

(
$

2

(
log

t

$
− t

$
+ 1

))
, t < $;

P (Z ≥ t) ≤ exp

(
$

2

(
log

t

$
− t

$
+ 1

))
, t > $.

Lemma 12 (Small ball probability, Lemma 2.6 in Latala et al. (2007)) Given an arbitrary fixed vector y ∈ Rn, we

have

P (‖y −Ag‖2 ≤ α|||A|||F) ≤ exp (κ log(α),(A)) , ∀ α ∈ (0,α0) ,

where g is a Gaussian RV following N (0, In×n), A ∈ Rn×n is a non-zero matrix, and α0 ∈ (0, 1) and κ > 0 are some

universal constants.

Lemma 13 (Lemma 8 in Pananjady et al. (2017a)) Consider an arbitrary permutation map π with Hamming distance k
from the identity map, i.e., dH (π, I) = k. We define the index set {i : i &= π(i)} and can decompose it into 3 independent

sets Ij (1 ≤ j ≤ 3), i.e., i and π(i) are in different sets Ij for arbitrary i ∈ {i : i &= π(i)}, such that the cardinality of

each set satisfies |Ij | ≥ -k/3. ≥ k/5.

Lemma 14 (Example 6.1 in Wainwright (2019)) Let G ∈ Rn1×n2 be generated with iid standard normal random vari-

ables, we have |||G|||OP ≤ 4
√
n2/n1, hold with probability exceeding 1− 2e−n2/2.
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