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Abstract
We consider a basic problem in statistical learning: estimating properties of multiple discrete dis-
tributions. Denoting by ∆k the standard simplex over [k] := {0, 1, . . . , k}, a property of d distribu-
tions is a mapping from ∆d

k to R. These properties include well-known distribution characteristics
such as Shannon entropy and support size (d = 1), and many important divergence measures be-
tween distributions (d = 2). The primary problem being considered is to learn the property value
of an unknown d-tuple of distributions from its sample. The study of such problems dates back to
the works of Good (1953); Carlton (1969); Efron and Thisted (1976); Thisted and Efron (1987),
and has been pushed forward steadily during the past decades. Surprisingly, before our work, the
general landscape of this fundamental learning problem was insufficiently understood, and nearly
all the existing results are for the special case d ≤ 2.

Our first main result provides a near-linear-time computable algorithm that, given independent
samples from any collection of distributions and for a broad class of multi-distribution properties,
learns the property as well as the empirical plug-in estimator that uses samples with logarithmic-
factor larger sizes. As a corollary of this, for any ε > 0 and fixed d ∈ Z+, a d-distribution property
over [k] that is Lipschitz and additively separable can be learned to an accuracy of ε using a sample
of sizeO(k/(ε3

√
log k)), with high probability. Our second result addresses a closely related prob-

lem – tolerant independence testing: One receives samples from the unknown joint and marginal
distributions, and attempts to infer the `1 distance between the joint distribution and the product
distribution of the marginals. We show that this testing problem also admits a sample complexity
sub-linear in the alphabet sizes, demonstrating the broad applicability of our approach.

Keywords: Probability Distribution; Property/Functional Estimation; Maximum Likelihood

1. Introduction

Properties of distributions play a fundamental role in statistics, information theory, and machine
learning (Good, 1953; Chow and Liu, 1968; McNeil, 1973; Efron and Thisted, 1976; Chao, 1984;
Thisted and Efron, 1987; Chao and Lee, 1992; Haas et al., 1995; Mainen and Sejnowski, 1995; van
Steveninck et al., 1997; Kroes et al., 1999; Batu et al., 2000, 2001; Gerstner and Kistler, 2002; Mao
and Lindsay, 2007; Ionita-Laza et al., 2009; Ron, 2010; Colwell et al., 2012; Cover and Thomas,
2012; Quinn et al., 2013; Chao and Chiu, 2014; Bresler, 2015). Notable examples include the Shan-
non entropy and support size of a single distribution, and KL divergence and `1 distance between
a pair. Modern data science applications, ranging from inferring the number of unseen species in a
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MULTI-DISTRIBUTION PROPERTY ESTIMATION

population (Good, 1953; Chao, 1984; Smith and van Belle, 1984; Chao, 2004) to constructing tree-
structured models for graphs and images (Chow and Liu, 1968; Quinn et al., 2013; Bresler, 2015),
often call for estimation of such properties of unknown distributions.

The study of distribution property estimation dates back several decades to the works of Good
(1953); Carlton (1969); Efron and Thisted (1976) and has steadily grown over the years (Paninski,
2003, 2004; Li and Zhang, 2011; Valiant and Valiant, 2011a,b; Jiao et al., 2015; Acharya et al., 2016;
Orlitsky et al., 2016; Valiant and Valiant, 2016; Wu and Yang, 2016; Acharya et al., 2017; Hao et al.,
2018; Hao and Orlitsky, 2019a,b,c, 2020). A widely used estimation scheme is to plug the empirical
distributions into the property. For example, if one wants to infer an unknown distribution’s entropy,
compute the entropy of its sample empirical distribution. Standard results from statistics (Van der
Vaart, 2000) show that this plug-in approach is essentially optimal when the sample size is enormous
compared with the underlying alphabet. Nevertheless, modern learning applications often concern
high-dimensional data, and usually, the problem’s dimension is comparable to or even much larger
than the data size. The desire to go beyond the classical large-sample analysis and design algorithms
that perform well in such data-sparse regimes has led to the recent advances in the field. For several
properties, including the four mentioned above, optimal estimators that are more efficient than the
empirical ones have been discovered (Valiant and Valiant, 2011a; Jiao et al., 2015; Orlitsky et al.,
2016; Acharya et al., 2016; Wu and Yang, 2016; Acharya et al., 2017; Jiao et al., 2018; Hao et al.,
2018; Wu and Yang, 2019; Hao and Orlitsky, 2019a,b,c).

Despite years of research, nearly all existing works focus on cases involving only one or two dis-
tributions, and it is often nontrivial to extend their techniques and analysis to the multi-distribution
case (see Section 5). However, as shown by our discussion in Section 2, a variety of real-world
learning applications require estimating properties of multiple distributions. This gap between the-
ory and practice has become the primary motivation for the present work.

We study the fundamental problem of estimating a general multi-distribution property of un-
known discrete distributions from independent samples. Our aim is to emulate the performance of
the empirical estimator having access to samples of larger sizes. We show that for a broad class
of properties, regardless of the underlying alphabet sizes and for every distribution tuple, it is al-
ways possible to amplify the sample sizes by logarithmic factors. As an implication of this result,
for many important properties considered in the paper, our approach yields the first estimator whose
sample complexity is sub-linear in the possibly unknown alphabet sizes. Equally importantly, nearly
all the proposed algorithms are near-linear-time computable. These advances enable us to have the
first glimpse of the general landscape of distribution property estimation in high dimensions.

Paper outline Section 2 provides six important properties arising in applications and covered by
our approach. Section 3 presents major theorems and corollaries, addressing both the classical em-
pirical estimator and our sub-linear sample-complexity estimator. In Section 4, we discuss our main
technique and its connection to the prior work (Hao et al., 2018), show our theoretical contributions,
and provide the outline of proofs and explicit form of our algorithm. Section 5 reviews major prior
results, makes comparisons, and illustrates why the corresponding methods do not easily adapt to
our setting. For an outline of the technical part of the paper – the appendices, see Appendix A.

2. Six Examples of Multi-Distribution Properties

Notation Let k be an alphabet size, and denote by ∆k the collection of distributions over alphabet
[k] := {1, . . . , k}. Let d ∈ Z+ be a dimension parameter. Let p := (p1, . . . , pd) be a d-tuple of
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distributions in ∆k, and for each j ∈ [k], denote by p(j) := (p1(j), . . . , pd(j)) the vector of the
probabilities associated with j. A d-dimensional multi-distribution property over the alphabet [k] is
a mapping (functional) f : ∆d

k → R. Below, we present six examples arising in vital applications.

DISTRIBUTION MIXTURE TESTING

There has been an extensive study on testing properties of distributions over large domains in the
past decades. For example, given sample access to an unknown distribution over [k], a sequence
of research works (Batu et al., 2000, 2001; Paninski, 2008; Goldreich and Ron, 2011; Chan et al.,
2014; Acharya et al., 2015; Diakonikolas and Kane, 2016; Hao and Orlitsky, 2019b) address the
problem of testing whether the distribution is uniform or ε far from it in `1 distance. For another
example, one can relax the requirement of exactness in the previous example and ask whether the
distribution is at most ε/2 or at least ε far from the uniform (Valiant and Valiant, 2011a,b; Jiao
et al., 2018; Hao et al., 2018; Hao and Orlitsky, 2019a,b,c). While the former problem is known as
“uniformity testing”, the latter is often referred to as “tolerant uniformity testing” (Canonne, 2015).

Recently, the work of Aliakbarpour et al. (2019) takes a different perspective of the problem
to consider a setting that involves three distributions, and asks if one can distinguish between the
case where one distribution is the mixture of the other two, and that where it is ε-far from any such
mixtures. In particular, they show that for several scenarios considered in the paper, a sample size
that is sub-linear in k is sufficient. Following the previous discussions, we can consider a “tolerant”
version of this problem. Specifically, we aim to estimate the quantity

M(p) := min
α∈[0,1]

|p1 − αp2 − (1− α)p3|

to the desired accuracy ε. This setting can accommodate more than three distributions. Concretely,
keep the same notation and set p to be a d-distribution tuple in ∆d

k. The property generalizes to

M(p) := min
α∈∆d−1

|p1 −
d−1∑
i=1

α(i) · pi+1|.

DISTRIBUTION DIVERGENCES

Distribution divergences quantify the similarity between related data sources in numerous learning
applications, such as classification, testing, and Bayesian inference (Batu et al., 2000, 2001; Ron,
2010; Cover and Thomas, 2012; Blei et al., 2017). As these quantities reflect the fundamental limits
of inference, it is worth obtaining accurate estimates of their values under various settings. Several
recent works in property estimation (Valiant and Valiant, 2011a; Han et al., 2016; Acharya, 2018;
Bu et al., 2018; Jiao et al., 2018; Charikar et al., 2019) consider designing min-max estimators
that have the best worst-case guarantees for some f -divergences, including the `1 distance and KL-
divergence, when both distributions are unknown. Utilizing the theory developed in this paper, we
address another two essential divergences that are under-explored.

`q distance with q ≥ 1 The first divergence measure we consider is the well-known `q distance.
Note that in particular, this covers the `1 distance, the single instance also belonging to the class of
f -divergences. Formally, the `q distance between any two distributions p1 and p2 is

`q(p1, p2) :=
∑
j∈[k]

|p1(j)− p2(j)|q.
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Under the distributional setting, it is classical to employ (near-) unbiased estimators for integer q.
Concurrently, there is a rich literature of work on approximating the `q distance, e.g., for q ≤ 2
(Indyk, 2006; Li, 2007; Li and Hastie, 2007; Li, 2008) and for q = 4, 6, 8, ... (Li et al., 2010).

Triangular discrimination The second divergence measure is triangular discrimination (Topsøe,
2000; Lu and Li, 2015), defined for two distributions p1 and p2 as

Γ(p1, p2) :=
∑
j∈[k]

(p1(j)− p2(j))2

p1(j) + p2(j)
.

The triangular discrimination is equivalent to the well-known harmonic mean divergence (T., 2006),
and is analogous to the Chi-squared divergence yet does not become infinity at zero probabilities.
Interestingly, in the literature, the triangular discrimination is often called the “Chi-squared dis-
tance” (Li et al., 2008; Wang et al., 2009; Vedaldi and Zisserman, 2012; Li et al., 2013).

INTERSECTION KERNEL AND SUMS OF MINS

As illustrated above, the `q divergence is a generalization of the commonly used `1 distance. Below,
we consider a different generalization that applies to cases involving multiple distributions. To begin
with, note that the `1 distance between two distributions p1 and p2 satisfies∑
j∈[k]

|p1(j)− p2(j)| =
∑
j∈[k]

(p1(j) + p2(j)−2 min{p1(j), p2(j)}) = 2−2
∑
j∈[k]

min{p1(j), p2(j)}.

The last part on the right-hand side corresponds to the intersection kernel,

KI(p1, p2) :=
∑
j∈[k]

min{p1(j), p2(j)}.

which is popular in computer vision applications (Maji et al., 2008; Szeliski, 2010; Barla et al., 2003;
Boughorbel et al., 2005) and its generalized version applies to generic classification tasks (Li, 2016).
From the above equation, we see thatKI over ∆2

k measures the similarity between distributions and
is equivalent to the `1 distance. Analogously, for any d-tuple of distributions p ∈ ∆d

k, we can define
the intersection kernel of p as

KI(p) :=
∑
j∈[k]

min
i∈[d]

pi(j).

The value of KI(p) is at most 1, achieved iff pi’s are identical, and is at least 0, attained iff the
distributions’ support sets have no intersection.

COMMON SUPPORT COVERAGE OF MULTIPLE POPULATIONS

Given a sampling parameter m, the m-sample support coverage of any discrete distribution p0 is

Sm(p0) :=
∑

j (1− (1− p0(j))m) ,

the expected number of distinct symbols that will appear in a sample from p0 of size m. Studied
in Orlitsky et al. (2016); Acharya et al. (2017); Hao et al. (2018); Hao and Orlitsky (2019a,b,c),
the task of estimating Sm is equivalent to the well-known unseen species problem – a classical task
in ecology concerning the prediction of the number of species in an ecosystem not appeared in the
observed sample (Good, 1953; Chao, 1984, 2004; Smith and van Belle, 1984). In this work, we
introduce and study a natural generalization – common support coverage:
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Sm(p) :=
∑
j

d∏
i=1

(1− (1− pi(j))m) ,

the expected number of distinct symbols that appear at least once in all samples.
We motivate the study of this quantity with the following example. Imagine an ecologist who has

access to butterfly samples from four islands that are geographically close to each other. A natural
experiment is to compare the attributes of the same butterfly species on different islands, which
intuitively shows how the habitats affect the species. To perform such a comparison, it is necessary
to observe or capture at least one instance, a butterfly in this case, of the species from every island.
Hence, with a size-m sample from each island, the expected number of such comparisons that can
be made is exactly Sm(p). In other words, the common support coverage reflects how many useful
data points (tuples) the ecologist expects to have after a certain amount of work.

HIGH-DIMENSIONAL INDEPENDENCE TESTING

Besides testing mixtures of distributions, a frequently encountered inference task in data analysis is
testing the independence of random variables (Batu et al., 2001; Alon et al., 2007; Rubinfeld and
Xie, 2010; Levi et al., 2013; Canonne, 2015; Diakonikolas and Kane, 2016). The formulation we
consider here again falls into the category of tolerance testing, and our aim is to distinguish between
the case where the joint distribution is close to the product of marginals in the `1 distance, and the
case where the distance is relatively large.

Unlike the properties mentioned above, in practice, the marginals are often over alphabets of
different sizes. Hence, it is desired to design algorithms that accommodate such scenarios. Formally,
given sample access to a (joint) distribution p̃ over [k] := [k1]×. . .×[kd] and a d-tuple of (marginal)
distributions p ∈ ∆k := ∆k1 × . . .×∆kd , we aim to estimate

`1
(
p̃, p×

)
:=
∑
j∈[k]

∣∣p̃(j)− p×(j)
∣∣ :=

∑
j∈[k]

∣∣∣∣∣p̃(j)−
d∏
i=1

pi(ji)

∣∣∣∣∣ ,
the `1 distance between the joint and the product of the marginals, to a desired accuracy ε. Note that
this property is not additive since each pi(j) appears

∏
i′ 6=i ki′ times on the right-hand side, while

for an additive property the number of appearance should be one.

3. Main Results

Definitions Let k be an alphabet size, and denote by ∆k the collection of distributions over
[k] := {1, . . . , k}. Let d ∈ Z+ be a dimension parameter. Let p := (p1, . . . , pd) be a d-tuple
of distributions in ∆k, and for each j ∈ [k], denote by p(j) := (p1(j), . . . , pd(j)) the vector of the
corresponding probabilities. A d-dimensional multi-distribution property over the alphabet [k] is a
mapping (functional) f : ∆d

k → R. A property f is additive (additively separable) if there exists a
function sequence {fj : Rd → R}kj=1 satisfying

f(p) =
∑

jfj(p(j)).

Let n := (n1, . . . , nd) be a sequence of sampling parameters. Draw a sample Xni
i ∼ pi for each

i ∈ [d], and denote Xn := (Xn1
1 , . . . , Xnd

d ), which we refer to as a sample from p and write
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Xn ∼ p. For each j ∈ [k], denote by Ni,j the number of times symbol j appearing in Xni
i .

Correspondingly, we denote by p̂i the empirical distribution that assigns each symbol j ∈ [k] a
probability p̂i(j) := Ni,j/ni, and write p̂ := (p̂1, . . . , p̂d) as the empirical distribution of Xn.
While p is unknown, we can infer the value of f(p) by an estimator f̂ mapping each sample from p
to a real value. For example, the commonly used empirical estimator f̂E estimates f(p) by

f̂E(Xn) := f (p̂) .

As illustrated above, we aim to emulate the performance of the empirical estimator with an estimator
that uses samples of smaller sizes. Equivalently, let a := (a1, . . . , ad) be an amplification vector,
where ai > 1, ∀i ∈ [d]. For m := a ∗ n = (a1n1, . . . , adnd) and Y m ∼ p, we want to derive an
estimator f̂ such that f̂(Xn) is close to f̂E(Y m) under certain interpretations.

Assumptions The first problem we address is estimating an additive multi-distribution property f .
Throughout the paper, we denote by CD the collection of continuous real functions over some
domain D, and make the following two assumptions on f = (fj)

k
j=1:

1. [Lipschitzness] ∀j ∈ [k], function fj ∈ C [0, 1]d is 1-Lipschitz regarding each of its inputs.

2. [Regularity] ∀j ∈ [k], we have fj(p(j)) = 0 if pi(j) = 0 for any i ∈ [d].

While being Lipschitz is, perhaps the simplest and most natural assumption one could make about
function smoothness, the following lemma shows that we can express any multivariate real function
as a sum of functions satisfying the regularity condition.

Lemma 1 For any multivariate function g : Rd → R,

g̃
(

(xi)
d
i=1

)
:=

d∑
j=0

∑
1≤t1<...<tj≤d

(−1)j · g
(

(xi)
d
i=1|xts=0,∀s∈[j]

)
is a function satisfying g̃

(
(xi)

d
i=1

)
= 0 if xi = 0 for any i ∈ [d].

Theorems and corollaries Below, we present the major theorems and their corollaries. In terms
of the coverage of statistical models, these results work for all additive multi-distribution prop-
erties that satisfy the regularity and Lipschitz conditions, and specific properties including those
presented in the last section. In terms of the reach of methods, we study both the empirical estima-
tor that achieves sample complexities linear in the alphabet size by our reasoning, and a new class
of estimators (Section 4) that achieve sub-linear sample complexities. It is worth mentioning that
for nearly all the problems considered here, sub-linear sample-complexity bounds are not known
before our work, even for the three-distribution cases. Equally importantly, with the exception of
Corollary 3, all proposed algorithms are near-linear-time computable in the sample sizes.

For the sake of clarity, we assume that the sample sizes ni’s are equal unless otherwise specified,
and defer the generalization of these results to the case where ni’s are different to the appendices.
In this equal-sample-size regime, we slightly abuse the notation and use n to denote both the vector
n := (n1, . . . , nd) and each ni. Whether n is a vector or a scalar will be clear from the context.
Analogously, we assume that ai’s, the amplification factors, (resp. mi’s, the amplified sample sizes,)
are equal and write a (resp. m) for both the vector and each ai (resp. mi). Note that m = a · n
holds under both the vector and scalar interpretation.

In the following, we denote: the property of interest by f , which is additive and satisfies the
Lipschitz and regularity conditions unless otherwise specified; our estimator by f̂ , which has an
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explicit form (Section 4) and is near-linear-time computable; the empirical estimator of f by f̂E ,
which computes the sample empirical distribution and evaluates the property at this distribution.

Our first theorem and its corollary characterize the performance of our new estimator f̂ . Specif-
ically, the theorem shows that our estimator amplifies the size of the data by a nontrivial factor of
O(
√

log n) comparing to the empirical estimator, for every distribution tuple p ∈ ∆d
k. The corollary

following it presents a weaker result under the classical sample-complexity formulation.

Theorem 1 For any a ≥ 2.5, τ ≥ 1, and p ∈ ∆d
k, if 2 log d

τ ≤ 6a ≤
√

logn
τd ,

Pr
Xn∼p

(∣∣∣∣f̂(Xn)− E
Ym∼p

[
f̂E(Y m)

]∣∣∣∣ ≥ 4d√
τ

)
= Õ

(
1

n1/6

)
.

Note that τ can be any real value that satisfies the constraints. In particular, we can set τ to be an
increasing function of n, then the estimation error 4d/

√
τ will decrease as n increases. The proof

of this theorem appears in Appendix J and follows by the results in earlier sections (see Section 4
for an outline). The next result is a corollary of Theorem 1 and Lemma 3 in Appendix E.

Corollary 1 For any ε > 0, sufficiently large k, and p ∈ ∆d
k, if n = Ω

(
kd7/2√
log kε3

)
,

Pr
Xn∼p

(∣∣∣f̂(Xn)− f(p)
∣∣∣ ≥ ε) = Õ

(
1

n1/6

)
.

To demonstrate the power of the results, we claim that four of the properties presented in Section 2,
`q distance, triangular discrimination, intersection kernel, and generalized support coverage, all
satisfy the regularity and Lipschitz conditions after simple modifications. Hence, both Theorem 1
and Corollary 1 hold for these properties. See Appendix C for details and proofs.

Our second theorem characterizes the performance of the empirical estimators under only the
Lipschitz assumption. In the large-alphabet regime, our result has the optimal dependence (up to
constant factors) on all the parameters without any additional conditions.

Theorem 2 Let f be an additive property satisfying the Lipschitz assumption. For any real ε > 0,
δ ∈ (0, 1/2), and p ∈ ∆d

k, if n ≥ 4(kd2 + d log(1/δ))/ε2,

Pr
(∣∣∣f̂E(Xn)− f(p)

∣∣∣ ≥ ε) ≤ δ.
The proof of this theorem appears in Appendix E. To see optimality, let uk denote the uniform distri-
bution over [k], and consider the special case where p = (uk, . . . , uk) and f(q) :=

∑
i `1(qi, uk) =∑

i

∑
j |qi(j)−1/k| (Hence, the property value f(p) = 0, but the empirical estimator has no knowl-

edge of this). By construction, the property f is additive and satisfies the Lipschitz assumption. Let
ûk denote the empirical distribution of Y n ∼ uk. Because of symmetry in our choice of p, the
probability of |f̂E(Xn) − f(p)| ≤ ε is equal to that of |`1(ûk, p)| ≤ ε′ := ε/d. It is a standard
result that the latter requires a sample of size Ω(k/ε′2), establishing the desired optimality. This also
shows that the empirical estimator cannot achieve the sub-linear sample complexity in Theorem 1.
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High-dimensional independence testing As illustrated in the introduction, the `1 distance be-
tween the joint distribution and the product of marginals is not additive. Yet utilizing the structure
of the property, we can still apply our learning approach to this fundamental task. The next two
theorems characterize the performance of the empirical estimator and our estimator, showing that
the problem again admits a sub-linear sample complexity bound.

More formally, given independent samples Y ñ ∼ p̃ ∈ ∆[k] and Xn ∼ p ∈ ∆k, our aim
is to estimate the quantity `1 (p̃, p×) . Observe that `1 (p̃, p×) is 1-Lipschitz regarding every p̃(j)
and every pi(ji), for all j ∈ [k]. Denote by p̆ and p̂ the empirical distribution of Y ñ and Xn,
respectively. Then the empirical estimator `1 (p̆, p̂×) satisfies

Theorem 3 Under the conditions presented above, for any ε > 0, δ ∈ (0, 1/2), ñ ≥ 8(2
∏
i ki +

log(1/δ))/ε2, and ni ≥ 8(2kid
2 + d log(1/δ))/ε2, ∀i ∈ [d],

Pr
(∣∣`1 (p̆, p̂×)− `1 (p̃, p×)∣∣ ≥ ε) ≤ δ.

The proof of this theorem appears in Appendix E as well. The next theorem gauges the performance
of our estimator, establishing a sub-linear sample complexity bound when the alphabet size ki’s do
not differ from each other by too much.

Theorem 4 Assume that c1 log k0 ≤ log ki ≤ c2 log k0,∀i ∈ [d], for some k0 and absolute con-
stants c1, c2 > 0. Then for any parameters ε > 0 and d ∈ Z+, sufficiently large k0, and distributions

p̃ ∈ ∆[k] and p ∈ ∆k, if ñ = Ω

(
(
∏
i ki)d

1/2

√
log(

∏
i ki)ε

3

)
and ni = Ω

(
kid

7/2
√

log kiε3

)
, ∀i ∈ [d],

Pr
Y ñ∼p̃,Xn∼p

(∣∣∣f̂(Y ñ, Xn)− `1
(
p̃, p×

)∣∣∣ ≥ ε) = Õ
(

1

ñ1/6

)
.

In fact, we establish a stronger result similar to Theorem 1 (see Theorem 5 in Appendix L), and we
present one of its corollaries above for the ease of illustration. Furthermore, p̃ can be any distribution
in ∆[k], and is unnecessary to have marginal p. We prove this theorem in Appendices K and L.

Tolerant mixture testing The next result shows that our approach yields the first sub-linear
sample-complexity tester (or estimator) for tolerant distribution mixture testing. We first present a
corollary of Theorem 1 involving three distributions, and then extend this to multi-distribution cases.

Corollary 2 For any ε > 0, sufficiently large k, and n = Ω(k/(ε3
√

log k)), given a sample Xn

from p, we can compute an estimate M̂(Xn) in time Õ(n/ε) such that∣∣∣M̂(Xn)−M(p)
∣∣∣ ≤ ε,

with probability at least 9/10. Simultaneously, the algorithm also provides an estimate of α that,
when plugged into |p1 − αp2 − (1− α)p3|, approximates M(p) to an accuracy of ε.

In Appendix D, we provide a constructive proof of this corollary. For the multi-distribution case,

Corollary 3 For any ε > 0, d ∈ Z+, sufficiently large k, and p ∈ ∆d
k, if n=Ω

(
kd7/2/(ε3

√
log k)

)
,

given a sample Xn from p, we can compute an estimate M̂(Xn) such that∣∣∣M̂(Xn)−M(p)
∣∣∣ ≤ ε,

with probability at least 9/10 and in time Õ(dn·(d/ε)d−1). The algorithm also provides an estimate
α ∈ ∆d−1 that, when plugged into |p1 −

∑
i∈[d−1] α(i) · pi+1|, approximates M(p) to within ε.
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4. Our Techniques and Estimators

Our first theoretical contribution, Theorem 1, is a nontrivial generalization of the main result in Hao
et al. (2018), which addressed the special case of d = 1. The key component of the learning method
in Hao et al. (2018) is an approximation technique based on the Bessel functions of the first kind.
This technique approximates a single Poisson probability by a sum of such terms with smaller mean
parameters, and achieves a small approximation error by re-weighting each term in the sum via
Bessel functions, which are uniformly bounded and relatively smooth. In Appendix F, we present
and analyze a variant of the estimator in Hao et al. (2018) which is not sensitive to sample changes.
Henceforth, we refer to this technique as Bessel smoothing, since both its construction and analysis
strongly rely on the Bessel functions and their attributes.

To extend the result to the multi-distribution setting, a natural idea is to apply the Bessel smooth-
ing recursively to each component (i.e., a distribution in the d-tuple) of the property and utilize the
resulting estimator. This is essentially the approach we adopt in the current work, yet as in many
other theoretical analyses, showing the effectiveness of a natural approach is often nontrivial. Just
as one may expect, the difficulty comes from both analyzing the bias and variance (or deviation
probability) of the resulting estimator.

In the bias analysis, while the original function may take a simple form, once we apply the
Bessel smoothing to a distribution component, the expectation of the resulting estimator becomes
much more complicated. More importantly, for it to be reasonable to apply the smoothing technique
to a consecutive component, the aforementioned expectation must be a property satisfying certain
conditions required by the technique to work. Our first technical contribution is showing that the
expectation induced by the Bessel smoothing is a linear operator over continuous functions that
preserves regularity and essentially preserves Lipschitzness. Then we leverage this fact to bound
the bias of our proposed estimator. See Appendices G and H for details.

As for the variance, the recursive application of Bessel smoothing yields a sophisticated es-
timator expression that mixes different products of statistics from multiple samples. While these
products are distinct, they may share common factors, resulting in nontrivial dependence relations.
To obtain tight variance upper bounds and handle the underlying dependency, we apply the law of
total variance to separate the randomness associated with each distribution sample. This decompo-
sition enables us to derive a recursion relation between the variances of the estimator’s conditional
expectation of different orders, where the word “order” refers to the amount of randomness that the
conditioning is over. See Appendix I and specifically Appendix I.2 for details.

Our second theoretical contribution, Theorem 4, addresses the fundamental task of tolerant
independence testing. As noted before, the property is non-additive, and hence, the previous analysis
does not directly apply to this setting. A key observation is that the property is additive if we view it
as a property of any of its input distribution components. Furthermore, for any single probability in
the property’s expression, the terms containing it are all Lipschitz functions with Lipschitz constants
summing to one. Correspondingly, our second technical contribution shows that the linear operator
induced by the Bessel smoothing not only preserves the Lipschitzness attribute of the input function,
but also essentially preserves the magnitude of the Lipschitz constant (Appendix K).

Finally, we want to re-emphasize that sub-linear sample-complexity algorithms are not known in
literature for tasks involving more than two distributions considered in the current work. In addition,
except for tolerant mixture testing, our estimators are computable in time near-linear in the sample
size, which is desired for large-domain applications.
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We conclude this section by providing an explicit description of our estimator for d-distribution
additive properties. In this case, the property of interest is

f(p) =
∑

jfj(p(j)).

Our strategy is to: 1) view the method in Hao et al. (2018) as a linear operator over C [0, 1]; 2) apply
a variant of it (shown below) to each argument of (every) fj while holding the other arguments
fixed; 3) repeat this procedure until all probabilities are effectively replaced by their associated
sample versions; 4) output the sum of our estimates for fj(p(j))’s.

More concretely, for each i ∈ [d], we randomly split the sampleXn
i from distribution pi into two

halves of equal size, and denote the empirical counts of each symbol j in the first and second halves
by Ni,j and N ′i,j , respectively. Then, for each j ∈ [k] and each i ∈ [d], we view fj as a univariate
function of its input pi(j) with all other parameters fixed, and apply the following operator with X
and X ′ replaced by Ni,j and N ′i,j , recursively. For parameters n, a,m, τ ≥ 1 in Theorem 1, the
operator below maps a continuous function g to a function of random variables X and X ′:

Ĥ(g,X,X ′) := 1X′≤τ ·

(
ũ∑
u=0

huX−u · g
( u
m

))
+ (1− 1X′≤τ1X≤2rτ ) · g

(
X

n

)
,

where ũ := 5aτ , r := 6ũ, and

hus := (2a)u(1− 2a)s
(
s+ u

u

)
Pr (Poi(r) > s+ 2u) .

Here, τ is the parameter appearing in Theorem 1 that controls the estimation error. In the above
estimator (operator), τ also serves as a threshold to separate small- and large-probability symbols.

The first and second components of the estimator respectively approximate the contributions
from symbols of O(τ/n) and Ω(τ/n) probability. On a high level, the estimator: 1) approximates
the performance of the m-sample empirical estimator of g(·); 2) is a variant of empirical estimator;
3) is a weighted sum of terms like g(u/m). The parameter ũ truncates the first sum as it is unlikely
for a small-probability symbol to appear many times in the sample; parameter r determines how the
summation terms will be attenuated, and serves as a smoothing parameter. Appendix F presents the
detailed construction. For a concise two-page summary, see Section 6 of Hao et al. (2018).

5. Prior Results and Technique Comparisons

5.1. Property Estimation

There is a long line of research on estimating the properties of distributions from their samples,
dating back several decades to the works of Good (1953); Efron and Thisted (1976). Because
of the wide applications of property estimation in multiple disciplines, it has attracted significant
attention from researchers working on information theory (Jiao et al., 2015; Orlitsky et al., 2016;
Acharya et al., 2017; Jiao et al., 2018; Hao et al., 2018; Hao and Orlitsky, 2019a,b,c), theoretical
computer science (Batu et al., 2005; Valiant and Valiant, 2011a, 2016, 2017; Charikar et al., 2019),
and statistics (Paninski, 2003, 2004; Cai and Low, 2005, 2011; Wu and Yang, 2016, 2019). Below,
we classify the results into two categories according to the parameter regimes.

The classical regime addresses the case where the sample size is much larger than the dimen-
sion of parameters. For a large class of statistical models, it is known (Van der Vaart, 2000) that
the empirical estimator that utilizes the sample empirical distribution performs optimally. However,
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modern learning applications frequently encounter problems with parameter dimensions compara-
ble or even larger than the number of observations available. The desire to design estimators that
outperform the empirical estimator in this data-sparse regime has driven the research in property
estimation for the last two decades. For brevity, below we focus on results in the latter regime.

Before moving on to discuss the literature, we emphasize that both Theorem 1 and Corollary 1
cover a broad class of non-symmetric properties in a unified manner. While some common proper-
ties including those presented in Section 2 are symmetric (and additive), the class of non-symmetric
properties is clearly much more general and practically important. In particular, it is easy to extend
a symmetric additive property to a non-symmetric one. For example, one can associate different
weights with the domain symbols and re-weighting the corresponding functions, for example, the
expectation and variance of a random variable. A common motivation for considering these prop-
erties is to reflect the unequal levels of importance of different symbols. From a technical point of
view, to estimate a symmetric property, it suffices to either estimate the function value of each sym-
bol or the distribution probability multiset. On the other hand, for non-symmetric properties, the
distribution multiset is generally insufficient for the purpose of estimation. As we illustrate below,
this leads to the failure of several common estimation techniques, thus making our work distinct.

Next, we review some of the major techniques in literature besides Bessel smoothing and argue
that none of them can easily adapt to our setting to yield similar results.

Plug-in with PML While the empirical distribution maximizes the probability of obtaining the
labeled sample, the profile maximum likelihood (PML) finds a distribution maximizing the proba-
bility of observing the unlabeled sample, i.e., the multiset of empirical symbol counts Orlitsky et al.
(2004). The PML plug-in estimator of a symmetric property simply evaluates the property value of
the PML estimate. In the case of d = 1, Acharya et al. (2017) show that PML plug-in is sample-
optimal for four additive symmetric properties. More recently, Hao and Orlitsky (2019b) extend
PML’s optimality to any symmetric additive properties that are appropriately Lipschitz, Charikar
et al. (2019) propose an efficiently computable variant of PML, and Hao and Orlitsky (2020) further
derive non-trivial results on estimating any symmetric properties.

As for the case of d > 1, the paper of Acharya (2018) proposes a generalization of the original
single-distribution PML approach and shows that if there is an estimator achieving an ε error with
probability at least 1− exp(−Θd(maxi n

d
i )), over all d-tuples of distributions, then the generalized

PML will achieve twice this error with high probability. However, as demonstrated by the afore-
mentioned papers (Paninski, 2003; Valiant and Valiant, 2011a, 2017; Jiao et al., 2015; Wu and Yang,
2016; Orlitsky et al., 2016; Hao and Orlitsky, 2019a,c), showing the existence of a “nice” estimator
that has sub-linear sample complexities and exponentially concentrates around its mean value, is
highly nontrivial (Acharya et al., 2017; Hao and Orlitsky, 2019b, 2020). For the case of d > 1,
existing results imply only the existence of such estimators for some specific two-distribution diver-
gences, for example the KL-divergence (Acharya, 2018; Charikar et al., 2019). Hence establishing
the efficiency of the PML approach in general for d ≥ 2 remains open.

A different Bessel-type smoothing method A different smoothing method based on Bessel func-
tions is proposed in Orlitsky et al. (2016); Acharya et al. (2017), and later adapted in Raghunathan
et al. (2017) to estimate a particular multi-distribution property that generalizes the support coverage
(different from the one mentioned in Section 2). However, as we explained below, the method in Or-
litsky et al. (2016); Acharya et al. (2017); Raghunathan et al. (2017) does not seem to generalize to
most of the additive properties considered in Hao et al. (2018) or this paper.
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More specifically, we again think about the d = 1 case, i.e., estimating the single-distribution
support coverage. Due to additiveness and symmetry, the problem is essentially approximating the
function 1 − (1 − pi)m ≈ 1 − e−mpj , where the “≈” operator changes the whole property value
by at most 2. By the well-known series expansion 1 − e−y = −

∑
t(−y)t/t!, a naive approach

is to construct an unbiased estimator for each term ptj , which is possible under Poisson sampling
with sample size being an independent Poisson random variable. However, both theoretical analysis
and experimental evidences quickly show that the resulting property estimator has an unsatisfiable
variance. To address this issue, Orlitsky et al. (2016) propose a smoothing method that weights each
component (−y)t/t! by a real weight wt. In particular, based on an integral expression of 1 − e−y
involving the first-order Bessel function, we can set wt = Pr(Poi(r) ≥ t) for some parameter
r > 0 and choose r properly to balance the estimator’s variance and squared bias. This estimator
achieves a sample complexity sublinear in m. Subsequently, Raghunathan et al. (2017) apply the
same smoothing scheme to a generalization of support coverage involving multiple distributions.

By its construction, the method in Orlitsky et al. (2016) aims at approximating the exponential
function e−y. Yet as the derivations in Section F.1 demonstrate, we need to approximate a sequence
of Poisson probabilities, i.e., functions in the form of e−yyj/j!. Following the reasoning in Sec-
tion F, we can show that if one applies the approximation method in Orlitsky et al. (2016) to the
e−y component, no parameter r can yield the desired bias while maintaining a vanishing variance.
Indeed, this is one of the motivations for the authors of the support-coverage-estimation paper to
propose the novel Bessel smoothing method in Hao et al. (2018), which utilizes Bessel functions of
different orders to address different functions e−yyj/j! and consequently general single-distribution
properties. Therefore, we naturally adopt the method in Hao et al. (2018) to tackle the problem of
multi-distribution property estimation.

Another two interesting methods appearing in the literature are the plug-in with linear pro-
gramming (Valiant and Valiant, 2011a, 2016, 2017; Han et al., 2018) and min-max polynomial
approximation (Jiao et al., 2015; Wu and Yang, 2016; Hao and Orlitsky, 2019c). For space con-
siderations, we postpone relevant discussions and comparisons to Appendix B.

5.2. Property Testing

While the property estimation framework aims to infer the f(p) value, (distribution) property testing
examines whether the underlying distribution(s) possess a certain attribute or not. Often, the latter
reduces to a statistical test between two hypotheses, f(p) ∈ A and f(p) ∈ B, with A ∩B = ∅.

There is a rich literature on this topic. Interested readers can refer to the survey by Canonne
(2015) for a thorough review of prior works and open problems. Besides the numerous references in
Section 2, Batu et al. (2005) considered multiplicative entropy estimation from a testing perspective.
Hence, a future research direction is extending our results to this multiplicative estimation setting.

From a technical viewpoint, many distribution testing papers, such as Batu et al. (2000) and Di-
akonikolas and Kane (2016), build their algorithm based on estimating the `2 distance, or equiva-
lently, counting “symbol collisions”. The induced algorithms are simple and geared towards specific
testing tasks. In particular, the `2 scheme puts much attention on relatively large probabilities and
are not suitable for many other tasks such as the `1-tolerant testing of distribution closeness.

On the other hand, one may expect these algorithms to be more efficient as they focus on a
specific problem. Hence, another research direction is determining the optimal sample complexity
for any of the problems studied in Section 2 and 3, which are fundamental and practically important.
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Appendix A. Outline

The appendices are organized as follows. Appendix B completes the discussion in Section 5. Ap-
pendix C shows that simple variants of several properties presented in Section 2 are regular and
Lipschitz. Appendix D proves Corollary 2 on tolerant mixture testing. In Appendix E, we analyze
the performance of the most widely used empirical estimators, establishing Theorem 2 and 3.

In Appendix F, we present and analyze a variant of the estimator in Hao et al. (2018), which
serves as a basic tool for subsequent constructions and reasoning. Appendix G treats the expectation
of the estimator as a linear operator over continuous functions, and then proceeds to analyzing the
estimator’s analytical attributes, showing how they imply the desired result for d = 2. Through
mathematical induction, Appendix H completes the bias analysis in the proof of Theorem 1. Ap-
pendix I continues the proof and analyzes the variance of the modified estimator for d = 1, and then
extends the analysis to d > 1 via the aforementioned decomposition via the law of total variance.
Note that all these results hold without assuming that the sample size ni’s are equal. In Appendix J,
we specialize the result to the equal-sample-size case in Theorem 1 and fully establish the theorem.

We then proceed in Appendix K to the proof of Theorem 4 on the tolerant testing of high-
dimensional independence. Despite that the property is not additive, we argue that the linear op-
erator induced by the proposed estimator nearly preserves the Lipschitz constant of the original
property with respect to each of its arguments. Following this claim, we analyze the bias of the
estimator in Appendix K.1 and relate this bias to that of the empirical estimator having access to
more observations. Utilizing the same claim and a tight bound on the estimator’s coefficients, we
establish in Section K.2 upper bounds on the estimator’s sensitivity, i.e., the maximum difference
in the estimator’s values for two inputs differing at exactly one location. Finally, regardless of the
involved statistical dependency, McDiarmid’s inequality (Lemma 22) shows that the estimator is
highly concentrated around its mean value. Consolidating these results yields Theorem 4.

Appendix B. Comparisons

This section continues our discussion in Section 5.

Plug-in with linear programming The linear-programming based methods, initiated by Efron
and Thisted (1976), and analyzed and extended in the work of Valiant and Valiant (2011a, 2016,
2017) and its refinement Han et al. (2018), essentially estimates the moments of the underlying
distribution from the samples, and through linear-programming, finds a distribution whose (low-
order) moments are consistent with these estimates.

Three properties are considered in Valiant and Valiant (2016, 2017) and the corresponding es-
timators are shown to achieve optimal sample complexities for Shannon entropy, support size, and
distance to uniformity in the constant error regime. The estimator proposed in Valiant and Valiant
(2011a) uses similar techniques and achieves optimal sample complexity for Shannon entropy in
terms of both the alphabet size and desired accuracy. We notice that Raghunathan et al. (2017) con-
structs a multi-distribution linear program and applies it to estimate a different generalization of the
support coverage property. However, the paper evaluates only this linear program experimentally
and provides no theoretical guarantees.

Applying such moment-based methods locally instead of globally, the work of Han et al. (2018)
designs a refined estimator whose sample complexities are optimal for Shannon entropy, power sum,
and support size, over broader error regimes. Nonetheless, it is not known if this method extends to
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the multi-distribution case where d > 2. Consequently, it is also not clear what kind of guarantees
this estimator will have on symmetric property estimation even if such an extension is possible.
In addition, similar to most linear-programming based property estimators, the computation of this
estimator takes polynomial time, thus may not be suitable for large-scale learning applications.

Min-max polynomial approximation For several single-distribution properties including en-
tropy and support coverage, the empirical estimator performs well in estimating the function value
of fj(pj) unless pj belongs to some sub-interval(s) of [0, 1] where fj is non-smooth, causing a non-
negligible bias. The method of min-max polynomial approximation first estimates each probability
pj by its empirical frequency p̂j , and if p̂j falls into the non-smooth segment of fj , the method
replaces the function by its local min-max polynomial approximation and finds an unbiased esti-
mate for the polynomial, otherwise, it uses a simple bias-corrected variant of the empirical plug-in
estimator. The method yields sample-optimal estimators for several properties involving one or two
distributions, such as entropy, support size, `1 distance, KL-divergence (Jiao et al., 2015; Wu and
Yang, 2016; Bu et al., 2018; Han et al., 2016; Jiao et al., 2018; Wu and Yang, 2019), and more
generally, additive Lipschitz properties (Hao and Orlitsky, 2019c).

This is similar to our method in the sense that both methods start from the classical empirical
plug-in estimator, and replace the inaccurate part of the empirical estimator with a polynomial-based
estimator for bias correction. The major difference between the two methods, as one would expect,
lies in the construction and analysis of the polynomial estimator.

For simplicity, we first think about d = 1. In Bessel smoothing, the approximation polynomial
has coefficients being linear combinations of the function values at multiple points, where “func-
tion” refers to the univariate function to be approximate by polynomials. In the case of the min-max
method, the polynomial is the min-max polynomial over certain interval that achieves the least max-
imum deviation from the function. Even for simple function classes, the mapping from a function
to its min-max polynomial is not linear, and the coefficients do not admit closed-form formulas.

Now consider extending both methods to d > 1. For Bessel smoothing, by the above mentioned
nice attributes established in the current paper, each step in the approximation process is essentially
a linear operator that nearly preserves Lipschitzness of all continuous functions. Hence we can nat-
urally apply this technique to each distribution component and obtain sub-linear sample estimators.
On the other hand, for d > 1, it is well-known in approximation theory that the min-max polynomial
is usually non-unique. In fact, even for `1 distance, a basic additive symmetric property involving
only two distributions (d = 2), the paper (Jiao et al., 2018) argues that not all min-max polynomials
will work. In particular, the paper also reasons that the min-max polynomial may yield only a sam-
ple complexity linear in the alphabet size. Consequently, the final construction in Jiao et al. (2018)
utilizes the decomposition |x− y| = |

√
x−√y| · |

√
x+
√
y|, approximates each of the two factors

by its min-max polynomial, and employs the product of the resulting two polynomials. Given the
involved construction, an extension to d > 3 and other properties seems to be quite nontrivial.

Appendix C. Regular and Lipschitz Properties

In the following, we prove the last claim made in Section 3, i.e., the `q distance, triangular discrimi-
nation, intersection kernel, and generalized support coverage, all satisfy the regularity and Lipschitz
conditions after suitable modifications.
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Distribution divergences We can decompose the `q distance `q(p1, p2) into three pieces such that
every piece is regular and 1-Lipschitz regarding each of its arguments for q ≥ 1. Specifically,

`q(p1, p2) =
∑
j∈[k]

(|p1(j)− p2(j)|q − p1(j)q − p2(j)q) +
∑
j∈[k]

p1(j)q +
∑
j∈[k]

p2(j)q.

As for the triangular discrimination, we consider estimating the equivalent property

Γ(p1, p2)− 2

4
=
∑
j∈[k]

(
(p1(j)− p2(j))2

4(p1(j) + p2(j))
− p1(j) + p2(j)

4

)
.

It is sufficient to prove that g(x, y) := (x− y)2/(4x+ 4y)− (x+ y)/4 satisfies the two conditions.
For any y ∈ (0, 1], setting x = 0 implies g(0, y) = y/4 − y/4 = 0. In addition, the function’s
partial derivative with respect to x is dg/dx = −y2/(x + y)2, whose absolute value is at most 1
given x, y ≥ 0. By symmetry, the function is 1-Lipschitz and regular regarding both arguments.

Intersection kernel Recall that the intersection kernel of a d-distribution tuple p is KI(p) :=∑
j∈[k] mini∈[d] pi(j). The regularity ofKI(p) follows by mini∈[d] pi(j) = 0 iff pi(j) = 0 for some

j ∈ [k]. The Lipschitzness of KI(p) follows by |min{x, y+ z}−min{x, y}| = |min{0, (y−x) +
z} −min{0, (y − x)}| ≤ |z| where the inequality shows the Lipschitzness of the ReLU function.

Common support coverage While other properties considered above accept an upper bound of
O(d), the d-distribution common support coverage can be arbitrarily large as m and k increase.
Following the formulation in Orlitsky et al. (2016); Acharya et al. (2017), we normalize the property
by its parameter m and consider

S̃m(p) :=
Sm(p)

m
=
∑
j

1

m

d∏
i=1

(1− (1− pi(j))m) .

We can verify that the normalized version is both Lipschitz and regular via simple algebra.

Appendix D. Tolerant Mixture Testing

In the following, we prove Corollary 2. To recap, we restate the corollary below.

Corollary 2 For any ε > 0, sufficiently large k, and n = Ω(k/(ε3
√

log k)), given a sample Xn

from p, we can compute an estimate M̂(Xn) in time Õ(n/ε) such that∣∣∣M̂(Xn)−M(p)
∣∣∣ ≤ ε,

with probability at least 9/10. Simultaneously, the algorithm also provides an estimate of α that,
when plugged into |p1 − αp2 − (1− α)p3|, approximates M(p) to an accuracy of ε.

Proof For ease of exposition, we denoteMα(p) := |p1−αp2−(1−α)p3| andα∗ :=arg minαMα(p).
DecomposeMα(p) into several pieces (expressions in the square brackets below) so that all of them
satisfy the regularity condition.
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Then, we view α as a constant and apply our estimator to approximate each piece of

Mα(p) =|p1 − αp2 − (1− α)p3|
= [|p1 − αp2 − (1− α)p3| − |αp2 + (1− α)p3| − |p1 − αp2|
−|p1 − (1− α)p3|+ p1 + αp2 + (1− α)p3]

+ [|αp2 + (1− α)p3| − αp2 − (1− α)p3] + [|p1 − αp2| − p1 − αp2]

+ [|p1 − (1− α)p3| − p1 − (1− α)p3] + 2.

Sum up the corresponding estimates and denote the sum by M̂α(Xn). The key observation is that
for each multi-variate function component (i.e., fj’s) of the property, the value of our estimator is
always a linear combination of the function evaluated at multiple points, and the coefficients for this
linear combination and the evaluation points are completely determined by the input samples, am-
plification vector a, and parameter τ = O(1/ε2) (see Section 4). In addition, the linear combination
has only a single nonzero coefficient. It is clear from the construction that computing this estimator
only takes time near-linear in the input sample size.

Denote J := {j′ ∈ N : εj′ ∈ [0, 1]}. Denote by j∗ ∈ J the index minimizing |jε − α∗|.
Since Mα(p) is Lipschitz with respect to α, we obtain |Mεj∗(p) −Mα∗(p)| ≤ ε. By the triangle
inequality, union bound, and Corollary 1, for n = Ω(k/(ε3

√
log k)),

min
j∈J

M̂εj(X
n) ≤ M̂εj∗(X

n) ≤Mεj∗(p)+ε = (Mεj∗(p)−Mα∗(p))+Mα∗(p)+ε ≤Mα∗(p)+2ε

and
min
j∈J

M̂εj(X
n) ≥ min

j∈J
Mεj(p)− ε ≥Mα∗(p)− ε,

with probability at least 1−Õ
(
1/(ε1/2k1/6)

)
. Let ĵ denote the index that minimizes M̂j(X

n). We
output α̂ := ĵ · ε as our estimate for α. Note that α̂ may not be close to α∗, yet the corresponding
values of Mα(p) are close, which suffices for our purpose.

Appendix E. Performance of the Empirical Estimator

The degree-t Bernstein polynomial of a real function g : [0, 1]→ R is defined as

Bt(g, x) :=

t∑
j=0

(
t

j

)
xj(1− x)t−jg

(
j

t

)
.

Bernstein polynomials are closely related to empirical estimators. More specifically, draw a sample
of size t from a Bernoulli random variable with success probability x. Denote by X the number of
times symbol 1 appearing in the sample. The expected value of the empirical estimator for g(x) is
the Bernstein polynomial Bt(g, x), i.e.,

Bt(g, x) = E
[
g

(
X

t

)]
.

The next lemma (Bustamante, 2017) (Proposition 4.9) shows that for a Lipschitz function, its Bern-
stein polynomial approximates the function well over (0, 1) and coincides with it at the boundary.
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Lemma 2 For any g : [0, 1]→ R that is 1-Lipschitz, t ≥ 1 and x ∈ [0, 1],

|Bt(g, x)− g(x)| ≤
√
x(1− x)

t
.

Utilizing this lemma, we bound the bias of the empirical estimator for an additive property.

Lemma 3 Let f be an additive property satisfying the Lipschitz condition. For any distribution
tuple p ∈ ∆d

k and sampling vector n,∣∣∣∣f(p)− E
Xn∼p

[f̂E(Xn)]

∣∣∣∣ ≤ d∑
i=1

√
k

ni
.

Proof Let p̂ be the empirical distribution associated with Xn. By the triangle inequality, we can
decompose the absolute mean deviation of f̂E into d parts,∣∣∣f(p)−E[f̂E(p̂)]

∣∣∣ (a)

≤
d∑
i=1

|E[f(p1, . . . , pd−i+1, p̂d−i+2, . . . , p̂d)−f(p1, . . . , pd−i, p̂d−i+1, . . . , p̂d)]|

(b)

≤
d∑
i=1

k∑
j=1

|E[f(p1(j), . . . , pd−i+1(j), p̂d−i+2(j), . . . , p̂d(j))

−f(p1(j), . . . , pd−i(j), p̂d−i+1(j), . . . , p̂d(j))]|
(c)

≤
d∑
i=1

k∑
j=1

√
pd−i+1(j)

nd−i+1

(d)

≤
d∑
i=1

√
k

nd−i+1

(e)
=

d∑
i=1

√
k

ni
,

where both (a) and (b) follow by the triangle inequality; (c) follows by Lemma 2; (d) follows by
the Cauchy-Schwarz inequality; (e) follows by a change of indices.

The next lemma, whose proof follows from McDiarmid’s inequality (Lemma 22), demonstrates
the concentration of empirical estimators around their mean values.

Lemma 4 Let f be an additive property satisfying the Lipschitz condition. For any error parameter
ε > 0 and distribution tuple p ∈ ∆d

k,

Pr
Xn∼p

(∣∣∣f̂E(Xn)− E[f̂E(Xn)]
∣∣∣ ≥ ε) ≤ 2 exp

(
− 2ε2∑

i
1
ni

)
.

Proof By the Lipschitz condition, for any i ∈ [d] and j ∈ [ni], changing a single observation Xi,j

changes the value of function gi by at most ci,j := 1/ni. Then we have∑
i

∑
j

c2
i,j =

∑
i

ni ·
1

n2
i

=
∑
i

1

ni
.
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Hence by McDiarmid’s inequality (Lemma 22),

Pr
Xn∼p

(∣∣∣f̂E(Xn)− E[f̂E(Xn)]
∣∣∣ ≥ ε) ≤ 2 exp

(
− 2ε2∑

i
1
ni

)
.

Utilizing the above lemma and setting ε =
√

log(1/δ)
∑

i(1/ni) for some δ ∈ (0, 1/2), we char-
acterize the performance of the empirical property estimator as follows.

Lemma 5 Let f be an additive property satisfying the Lipschitz assumption. For any parameter
δ ∈ (0, 1/2), distribution tuple p ∈ ∆d

k, and sample Xn ∼ p, with probability at least 1− δ,

∣∣∣f̂E(Xn)− f(p)
∣∣∣ ≤ d∑

i=1

√
k

ni
+

√
log

(
1

δ

)∑
i

1

ni
.

When ni’s are equal, the above lemma implies

Lemma 6 Under the conditions stated in Lemma 5, if n ≥ 4(kd2 + d log(1/δ))/ε2,

Pr
Xn∼p

(∣∣∣f̂E(Xn)− f(p)
∣∣∣ ≥ ε) ≤ δ.

Testing high-dimensional independence Given independent samples Y ñ ∼ p̃ ∈ ∆[k], andXn ∼
p ∈ ∆k, the objective of tolerant independence testing is to estimate the quantity

`1
(
p̃, p×

)
=
∑
j∈[k]

∣∣p̃(j)− p×(j)
∣∣ =

∑
j∈[k]

∣∣∣∣∣p̃(j)−
d∏
i=1

pi(ji)

∣∣∣∣∣ .
The key observation (Section K) is that `1 (p̃, p×) is 1-Lipschitz with respect to every p̃(j) and every
pi(ji), where j ∈ [k]. Denote by p̆ and p̂ the empirical distribution of Y ñ and Xn, respectively.
Following the same derivation as in the proof of Lemma 4, for any ε > 0,

Pr
(∣∣`1 (p̆, p̂×)− E[`1

(
p̆, p̂×

)
]
∣∣ ≥ ε) ≤ 2 exp

(
− 2ε2

1
ñ +

∑
i

1
ni

)
.

Correspondingly, the following result is an analogy to Lemma 3.

∣∣`1 (p̃, p×)− E[`1
(
p̆, p̂×

)
]
∣∣ ≤√∏i ki

ñ
+

d∑
i=1

√
ki
ni
.

Consolidating these results shows that the empirical estimator satisfies

Lemma 7 Under the conditions stated above, for any ε > 0 and δ ∈ (0, 1/2), if ñ ≥ 8(2
∏
i ki +

log(1/δ))/ε2 and ni ≥ 8(2kid
2 + d log(1/δ))/ε2,∀i ∈ [d],

Pr
(∣∣`1 (p̆, p̂×)− `1 (p̃, p×)∣∣ ≥ ε) ≤ δ.
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Poisson sampling For the sake of simplicity, we adopt the conventional Poisson sampling tech-
nique. That is, we make each of the sample sizes involved in the problem an independent Poisson
random variable with mean value being equal to the targeting sample size. This does not change
the nature of the problem or that of the estimators, and eliminates the dependence among symbols’
empirical counts in the sample. More rigorously, in Appendix N, we show that for a d-distribution
property and sampling vector n = (n1, . . . , nd), the expected values of the empirical estimator dif-
fer by only at most 3

∑
i n
−1/3
i under the two sampling models, i.e., fixed sampling and Poisson

sampling, as long as all the sampling parameters are at least 44. As for the proposed estimator, we
also assume that samples of independent Poisson sizes are provided. Below we argue that the same
estimator will also work well in the fixed-sample-size case.

For clarity, we will further assume that all the ni’s are equal and suppress the sub-script i.
According to the reasoning in Section K.2 and L (Theorem 5), our estimator for the property of high-
dimensional independence is highly concentrated around the expected value of the larger-sample-
size empirical estimator. The same reasoning works for our proposed estimator for general additive
properties as well, showing that for sufficiently large n, the error-probability bound in Theorem 1
can be strengthened (with respect to n) to d exp(−n0.2). We would like to point out that this
probability bound is generally not sufficient to establish the optimality of the aforementioned PML
estimator (we need something like exp(−nd)), yet it is sufficient for establishing the efficiency of
our estimator under the fixed sampling model. By simple algebra, the probability that a Poisson
random variable with mean n will be exactly n is at least 1/(3

√
n). Hence the probability that all

the given d independent samples will have sample size n is at least 1/(3
√
n)d. Therefore given that

this event happens, the probability that the proposed estimator will violates the guarantee stated in
Theorem 1 is at most (3

√
n)d ·d exp(−n0.2), which vanishes with n as long as d� n0.2/ log n. As

illustrated previously, d is often small for many applications. In addition, Theorem 1 assumes that
d ≤ log n. Hence d� n0.2/ log n is not a strong assumption, implying the desired result.

Appendix F. Basic Case: d = 1

Let us first consider perhaps the simplest setting: Given a size-Poi(n) sample (2n is chosen for the
simplicity of notation) from a Bernoulli distribution with success probability x, our objective is to
estimate the value of some real function f at point x and emulate the performance of an empirical
plug-in estimator that has access to more sample points, i.e., a sample of size m := na for some
a ≥ 2.5. Note that in this section, most of the parameters, e.g., m,n, and x, are 1-dimensional, i.e.,
a real number or an integer.

The basic design of our estimator follows from the construction in Hao et al. (2018), yet for the
later analysis on the mean deviation probability, we need to modify the large-probability estimator
for symbols with relatively high empirical frequencies. Besides this, we also tightened several
deviation bounds, obtained non-asymptotic guarantees with fairly small constants, and simplified
multiple proofs utilizing the theory of linear operators.

Formally, consider a real function f ∈ C [0, 1] that is both 1-Lipschitz and regular. We naturally
extend the function and maintain its Lipschitzness by setting f(z) = f(1), ∀z ≥ 1.

Let x be an unknown real parameter in [0, 1]. Given parameters n ∈ N and a > 1 satisfying
m := an ∈ N, and independent samples X,X ′ ∼ Poi(λ) where λ := nx, we want to estimate

Sm[f, x] := E
Y∼Poi(mx)

[
f

(
Y

m

)]
,
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where Sm is the m-th order Szász-Mirakyan operator (See Section F.2). For a threshold τ > 0 to
be specified later, we can decompose this quantity into two parts:

Sm[f, x] = E
X′∼Poi(nx)

[1X′≤τ ] E
Y∼Poi(mx)

[
f

(
Y

m

)]
+ E
X′∼Poi(nx)

[1X′>τ ] E
Y∼Poi(mx)

[
f

(
Y

m

)]
.

Due to the concentration of Poisson random variables, for a smooth function f and values of x
that are small, the main contribution to Sm[f, x] comes from the first term on the right-hand side.
Analogously, for relatively large x, the value of Sm[f, x] mainly depends on the second term. Con-
sequently, we refer to the first term as the small-probability part PS(f, λ), and the second term as
the large-probability part PL(f, λ).

First, we approximate the small-probability part PS(f, λ).

F.1. Small-Probability Estimator

Our estimator for PS closely relates to the Bessel functions of the first kind (Gradshteyn and Ryzhik,
2007), which are solutions Jv(y) of the Bessel differential equation. For notational convenience,
further denote fu(y) := J2u(2

√
y).

Fixing a > 1, we define two functions. The first function takes u ∈ Z+ and λ ∈ R≥0 as input,
and represents the probability of observing u when we sample from Poi(aλ):

ha(u, λ) := Pr(Poi(aλ) = u) =
e−λ

u!

(
a

a− 1

)u ∫ ∞
0

e−ββufu(β(a− 1)λ)dβ,

where the last equality follows by Lemma 14 in the supplementary material of Hao et al. (2018).
Truncating the inner integral at a level r ∈ R+ yields the second function

hra(u, λ) :=
e−λ

u!

(
a

a− 1

)u ∫ r

0
e−ββufu(β(a− 1)λ)dβ.

Note that ha(u, λ) = h∞a (u, λ). For sufficiently large r, we naturally expect the function values of
ha and hra to be close. The next lemma formalizes this intuition.

Lemma 8 For any λ ≥ 0, a ≥ 2.5, and r ≥ 5(u+ 1) ∨ 10(a− 1),

|ha(u, λ)− hra(u, λ)| ≤ e−λλ · e−r/3

and |hra(u, λ)| ≤ Pr(Poi(aλ) = u) + e−λλ · e−r/3.

Proof By the inequality J2u(2
√
y) ≤ y/(u + 1),∀u ≥ 1, y ≥ 0 (Watson, 1995; Hao et al., 2018),

and the series expansion of the upper incomplete Gamma function, we have

|ha(u, λ)− hra(u, λ)| ≤ e−λ

u!

(
a

a− 1

)u ∫ ∞
r

e−ββu|fu(β(a− 1)λ)|dβ

≤ e−λ

u!

(
a

a− 1

)u ∫ ∞
r

e−ββu
β(a− 1)λ

u+ 1
dβ

≤ e−λλ(a− 1)

(
a

a− 1

)u 1

(u+ 1)!

∫ ∞
r

e−ββu+1dβ

= e−λλ(a− 1)

(
a

a− 1

)u
Pr(Poi(r) ≤ u+ 1).
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Further, by the Chernoff bound, for a ≥ 2.5 and r ≥ 5(u+ 1) ∨ 10(a− 1),

e−λλ(a− 1)

(
a

a− 1

)u−1

Pr(Poi(r) ≤ u+ 1) ≤ e−λλ · r
10
· e(0.52r)/5 · e−0.478r ≤ e−λλ · e−r/3.

Combined with the triangle inequality, the above derivation also yields

|hra(u, λ)| ≤ ha(u, λ) + |ha(u, λ)− hra(u, λ)| ≤ Pr(Poi(aλ) = u) + e−r/3.

Now we consider estimating the small-probability part. By definition, we can rewrite PS as

Pr(Poi(λ) ≤ τ) E
Y∼Poi(aλ)

[
f

(
Y

m

)]
=
∞∑
u=0

(Pr(Poi(λ) ≤ τ) · Pr(Poi(aλ) = u)) · f
( u
m

)
.

A naive unbiased estimator of this quantity suffers from large variance. For this reason, we first
reduce the size of the sum to make it more manageable. Note that Poisson random variables highly
concentrate around their mean values. Hence for parameter u � aτ , the product Pr(Poi(λ) ≤
τ) · Pr(Poi(aλ) = u) becomes negligible. More concretely, the following lemma holds.

Lemma 9 For any λ, τ ≥ 0, a ≥ 2.5, and u ≥ 2.5aτ ,

Pr(Poi(aλ) ≥ u) · Pr(Poi(λ) ≤ τ) ≤ exp

(
−3

8
τ

)
.

We postpone the proof of this lemma to Appendix M. Hence for ũ ≥ 2.5aτ , the magnitude of the
partial sum over u > ũ is at most

Pr(Poi(λ) ≤ τ)

∣∣∣∣∣
∞∑

u=ũ+1

Pr(Poi(aλ) = u)f
( u
m

)∣∣∣∣∣
≤Pr(Poi(λ) ≤ τ)

∞∑
u=ũ+1

e−aλ
(aλ)u

u!

u

m

≤aλ
m

Pr(Poi(λ) ≤ τ)

∞∑
u=ũ+1

e−aλ
(aλ)u−1

(u− 1)!

=
λ

n
Pr(Poi(λ) ≤ τ) · Pr(Poi(aλ) ≥ ũ)

≤ exp

(
−3

8
τ

)
λ

n
,

showing that we need to consider approximating only the first ũ terms of the sum.
The last ingredient required for balancing the variance and bias is substituting each probability

term Pr(Poi(aλ)=u)=ha(u, λ) by hra(u, λ). That is, we approximate the small-probability part by

HS(f, λ) := Pr(Poi(λ) ≤ τ)

ũ∑
u=0

hra(u, λ) · f
( u
m

)
.

27



MULTI-DISTRIBUTION PROPERTY ESTIMATION

Our small-probability estimator is simply the unbiased estimator for this quantity. It will be clear
later that reducing the truncation parameter r will generally increase the bias but decrease the vari-
ance of this estimator. Below we find the explicit form of our estimator for PS(f, λ).

Expanding the inner integral, we can rewrite hra(u, λ) as

hra(u, λ) =
e−λ

u!

(
a

a− 1

)u ∫ r

0
e−ββufu(β(a− 1)λ)dβ

=
e−λ

u!

(
a

a− 1

)u ∞∑
s=0

(−1)s
(λ(a− 1))s+u

s!

1− e−r
s+2u∑
j=0

rj

j!


=
∞∑
s=0

au(1− a)s
(
s+ u

u

)1− e−r
s+2u∑
j=0

rj

j!

(e−λ λs+u

(s+ u)!

)

=
∞∑
s=0

(
au(1− a)s

(
s+ u

u

)
Pr (Poi(r) > s+ 2u)

)(
e−λ

λs+u

(s+ u)!

)
.

For brevity, we define the inner coefficients by

hus := au(1− a)s
(
s+ u

u

)
Pr (Poi(r) > s+ 2u) , ∀s ≥ 0,

and set hus := 0,∀s < 0. Then given X ∼ Poi(λ), an unbiased estimator for hra(u, λ) is∑
s≥0

hus · 1X=s+u = huX−u.

Consequently, our unbiased estimator for HS(f, λ), the small-probability estimator, is

ĤS(f,X,X ′) := 1X′≤τ ·

(
ũ∑
u=0

huX−u · f
( u
m

))
.

Bounding the estimation bias Consolidating the previous results and applying Lemma 8, for
a ≥ 2.5, τ ≥ 1, ũ ≥ 2.5aτ , and r ≥ 5(ũ+ 1) ∨ 10(a− 1), the bias of ĤS(f,X,X ′) is equal to

|PS(f, λ)−HS(f, λ)| ≤ Pr(Poi(λ) ≤ τ)

∣∣∣∣∣
∞∑

u=ũ+1

Pr(Poi(aλ) = u)f
( u
m

)∣∣∣∣∣
+

ũ∑
u=0

|hra(u, λ)− ha(u, λ)| ·
∣∣∣f ( u

m

)∣∣∣
≤ exp

(
−3

8
τ

)
λ

n
+

ũ∑
u=0

λ · u
m

=

(
exp

(
−3

8
τ

)
+
ũ(ũ+ 1)

2aer/3

)
λ

n

≤ exp
(
−τ

3

) λ
n
.
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F.2. Large-Probability Estimator

In this section, we consider estimating the large-probability part:

PL(f, λ) = E
X′∼Poi(λ)

[1X′>τ ] E
Y∼Poi(aλ)

[
f

(
Y

an

)]
.

We approximate this quantity using the estimator ĤL below. The reason for such construction and
the choice of corresponding parameters will become clear in later sections, e.g., Section K.2. For
now, we will take this estimator for granted and focus on analyzing its approximation attributes.

ĤL(f,X,X ′) := (1− 1X′≤τ1X≤2rτ ) · f
(
X

n

)
.

Analogous to the analysis in the last section, denote by HL(f, λ) the expectation of ĤL(f,X,X ′).
Then by the triangle inequality, the bias of this large-probability estimator is equal to

|PL(f, λ)−HL(f, λ)| ≤
∣∣∣∣ E
X′∼Poi(λ)

[1X′>τ ]

(
E

Y∼Poi(aλ)

[
f

(
Y

an

)]
− E
X∼Poi(λ)

[
f

(
X

n

)])∣∣∣∣
+ E
X,X′∼Poi(λ)

∣∣∣∣1X′≤τ1X>2rτ · f
(
X

n

)∣∣∣∣ .
Noting that λ = nx, we can relate the first term in the above bias upper bound to a classical

positive linear operator as follows. For any continuous real function F ∈ C [0, 1], the n-th order
Szász-Mirakyan operator (Szasz, 1950) Sn : C [0, 1]→ C [0, 1] maps F to

Sn[F, x] := E
N∼Poi(nx)

[
F

(
N

n

)]
= e−nx

∞∑
i=0

(nx)i

i!
F

(
i

n

)
,

where we set F (x) = F (1) for x > 1 iff F (x) is not defined for x > 1. The following lemma
shows that Sn[F, x] closely approximates F whenever F is a Lipschitz function.

Lemma 10 For any n ∈ N, x ∈ [0, 1], and 1-Lipschitz function F ∈ C [0, 1],

• the function Sn[F, x] is also 1-Lipschitz;

• we have the following point-wise error bound: |Sn[F, x]− F (x)| ≤
√
x/n.

Proof We present two proofs – one is probabilistic, and the other is analytical. Let N ∼ Poi(nx)
and N ′ ∼ Poi(nx′) with x′ > x. Couple N ′ and N such that N ′ −N ∼ Poi(n(x′ − x)). Then,

|Sn[F, x′]− Sn[F, x]| =
∣∣∣∣E[F

(
N ′

n

)
− F

(
N

n

)
]

∣∣∣∣
≤ E

∣∣∣∣F (N ′n
)
− F

(
N

n

)∣∣∣∣
≤ E|N ′ −N |

n
= |x′ − x|.
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This establishes the first bullet. For the second, note that

|Sn(F, x)− F (x)| ≤ E
∣∣∣∣F (Nn

)
− F (x)

∣∣∣∣
≤ E

∣∣∣∣Nn − x
∣∣∣∣

≤
√
x

n
,

where the last step follows by the Cauchy-Schwarz inequality.
Next, we provide an analytical proof, which shines light on the proof of Lemma 15. We again

begin with the first bullet and show that the operator preserves Lipschitzness. Denote x′ := x + s
and assume that s ≥ 0. Then we can express Sn[F, x′] as

Sn[F, x′]
(a)
= e−nx

′
∞∑
i=0

(nx′)i

i!
F

(
i

n

)
(b)
= e−n(x+s)

∞∑
i=0

(n(x+ s))i

i!
F

(
i

n

)
(c)
= e−n(x+s)

∞∑
i=0

1

i!

i∑
j=0

(
i

j

)
(nx)j(ns)i−jF

(
i

n

)
(d)
= e−n(x+s)

∞∑
j=0

(nx)j

j!

∞∑
i=j

j!

i!

(
i

j

)
(ns)i−jF

(
i

n

)
(e)
= e−n(x+s)

∞∑
j=0

(nx)j

j!

∞∑
i=j

(ns)i−j

(i− j)!
F

(
i

n

)
(f)
= e−nx

∞∑
j=0

(nx)j

j!

e−ns ∞∑
i=j

(ns)i−j

(i− j)!
F

(
i

n

) ,

where (a) and (b) follow by the definitions of Sn and x′, respectively; (c) follows by the binomial
theorem; (d) follows by re-ordering the summation operators; (e) follows by

(
i
j

)
= i!/(j!(i− j)!);

(f) follows by factorizing out e−ns.
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Therefore, the difference between Sn[F, x′] and Sn[F, x] satisfies

∣∣Sn[F, x′]− Sn[F, x]
∣∣ (a)

=

∣∣∣∣∣e−nx′
∞∑
i=0

(nx′)i

i!
F

(
i

n

)
− e−nx

∞∑
i=0

(nx)i

i!
F

(
i

n

)∣∣∣∣∣
(b)

≤

∣∣∣∣∣∣e−nx
∞∑
j=0

(nx)j

j!

e−ns ∞∑
i=j

(ns)i−j

(i− j)!
F

(
i

n

)
− F

(
j

n

)∣∣∣∣∣∣
(c)
=

∣∣∣∣e−nx ∞∑
j=0

(nx)j

j!

(
e−ns

∞∑
i=j

(ns)i−j

(i− j)!
F

(
i

n

)

− e−ns
∞∑
i=j

(ns)i−j

(i− j)!
F

(
j

n

))∣∣∣∣
(d)

≤ e−nx
∞∑
j=0

(nx)j

j!

e−ns ∞∑
i=j

(ns)i−j

(i− j)!

∣∣∣∣F ( in
)
− F

(
j

n

)∣∣∣∣


(e)

≤ e−nx
∞∑
j=0

(nx)j

j!

e−ns ∞∑
i=j

(ns)i−j

(i− j)!
|i− j|
n


(f)
= e−nx

∞∑
j=0

(nx)j

j!
· s (g)

= s,

where (a) follows by the definition of Sn; (b) follows by the equality we just established; (c)
follows by 1 = e−ns

∑∞
i=j (ns)i−j/(i− j)!; (d) follows by the triangle inequality; (e) follows by

the Lipschitz condition on F ; (f) follows by the expectation formula of Poisson random variables;
(g) follows by e−nx

∑∞
j=0 (nx)j/j! = 1.

The proof is complete by noting that s = x′ − x. Next we establish the second claim, whose
proof closely follows that of Proposition 4.9 in Bustamante (2017).

|Sn[F, x]− F (x)|
(a)

≤ Sn(|F (t)− F (x)|, x)
(b)

≤ Sn(|t− x|, x)
(c)

≤ Sn((t− x)2, x)
1
2

(d)

≤
√
x

n
,

where (a) follows by the triangle inequality; (b) follows by the Lipschitzness of F ; (c) follows by
Lemma 4.1 in Bustamante (2017); and (d) follows by VarX∼Poi(λ)(X) = λ or direct evaluation.

As a corollary, we obtain tight upper bounds on the difference between Sn[F, x] and Sna[F, x].

Corollary 4 For any n ∈ N, x ∈ [0, 1], a ≥ 2.5, and 1-Lipschitz function F ∈ C [0, 1],

|Sn[F, x]− Sna[F, x]| ≤
√

8x

3n
.

Using this corollary, we bound the quantity of interest as follows.∣∣∣∣ E
X′∼Poi(λ)

[1X′>τ ]

(
E

Y∼Poi(aλ)

[
f

(
Y

an

)]
− E
X∼Poi(λ)

[
f

(
X

n

)])∣∣∣∣ ≤ λ

n

√
8

3τ
.
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where the first inequality follows by EX′∼Poi(λ)[1X′>τ ] = Pr(Poi(λ) > τ) ≤
√

Pr(Poi(λ) > τ)
and the corollary; the second follows by applying Markov’s inequality, i.e., Pr(Poi(λ) > τ) ≤ λ/τ .

It remains to bound the second term on the right-hand side of the aforementioned bias upper
bound, for which we have

E
X,X′∼Poi(λ)

∣∣∣∣1X′≤τ1X>2rτ · f
(
X

n

)∣∣∣∣ (a)
= E

X′∼Poi(λ)
[1X′≤τ ] E

X∼Poi(λ)

[∣∣∣∣1X>2rτ · f
(
X

n

)∣∣∣∣]
(b)

≤ E
X∼Poi(λ)

[1X≤τ ] E
X∼Poi(λ)

[
1X>2rτ ·

X

n

]
(c)
= E

X∼Poi(λ)
[1X≤τ ] · 1

n

∑
j>2rτ

e−λ
λj

j!
· j

(d)
=
λ

n
Pr (Poi(λ) ≤ τ) · Pr (Poi(λ) ≥ 2rτ)

(e)

≤ exp

(
−2

5
r

)
λ

n
,

where (a) follows by the fact thatX andX ′ are independent; (b) follows by the regularity and Lips-
chitz conditions on f ; (c) follows by expanding the expectation; (d) follows by

∑
j>2rτ (e−λλj/j!)·

j = λPr (Poi(λ) ≥ 2rτ); (e) follows by the following generalization of Lemma 9.

Lemma 11 For any λ, τ ≥ 0 and b > 1,

Pr(Poi(λ) ≤ τ) · Pr(Poi(λ) ≥ bτ) ≤ exp

(
−
(

(c(b)− 1)2

2c(b)
+

3(b− c(b))2

2(b+ 2c(b))

)
τ

)
,

where for

t(b) :=
(
−64− 528b2 − 8742b4 − 1331b6 + 54

√
5
√

64b4 + 528b6 + 5097b8 + 1331b10
)1/3

,

c(b) :=− b

4
+

1

2

√
{
b2

4
+

1

15

(
4 + 11b2

)
+

(
4 + 11b2

)2
30t(b)

+
t(b)

30

}

+
1

2

√
{
b2

2
+

2

15

(
4 + 11b2

)
−
(
4 + 11b2

)2
30t(b)

− t(b)

30

+

(
16b

5
− b3 +

2

5
b
(
−4− 11b2

)) / (
4
√
[
b2

4
+

1

15

(
4 + 11b2

)
+

(
4 + 11b2

)2
30t(b)

+
t(b)

30

])}
.

We postpone the proof of this lemma to Appendix M.

Bounding the bias of the combined estimator By our previous constructions, we naturally esti-
mate Sm[f, x] = Sm[f, λ/n] = PS(f, λ) + PL(f, λ) by the unbiased estimator of

H(f, λ) := HS(f, λ) +HL(f, λ),
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which can be constructed using X,X ′ ∼ Poi(λ) (see the next section). Denote the resulting esti-
mator by Ĥ(f,X,X ′). The absolute bias of this estimator in estimating H(f, λ) is at most

|PS(f, λ)−HS(f, λ)|+ |PL(f, λ)−HL(f, λ)| ≤ λ

n
· 5

2
√
τ

=
5x

2
√
τ
.

Appendix G. From d = 1 to d = 2 via a Linear-Operator View

By the derivations in the last section, utilizing the samples X,X ′ ∼ Poi(nx), we can employ the
following estimator to estimate Sm[f, x]:

Ĥv(f,X,X ′) := 1X′≤τ ·

(
ũ∑
u=0

huX−u · f
( u
m

))
+ (1− 1X′≤τ1X≤2rτ ) · f

(
X

n

)
.

where m := an and v := (a, n, ũ, τ, r) is the vector of parameters. Similar to Sm, the expectation
of this estimator is a linear operator over C [0, 1] as well:

Lv[f, x] := E
X∼Poi(nx)

[1X≤τ ]
ũ∑
u=0

hra(u, nx) · f
( u
m

)
+
∑
v≥0

∑
w≥0

h1(v, nx)h1(w, nx)(1− 1v≤τ1w≤2rτ ) · f
(w
n

)
.

Given this definition, we summarize the results obtained in the last section as follows.

Lemma 12 For any parameters a ≥ 2.5, τ ≥ 1/3, ũ ≥ 2.5aτ , r ≥ 5(ũ + 1) ∨ 10(a − 1), and
function f ∈ C [0, 1] that is c-Lipschitz,

|Lv[f, x]− Sn[f, x]| ≤ 5c

2
√
τ
· x,

To facilitate the subsequent discussions, denote

|Lv| [f, x] := E
X∼Poi(nx)

[1X≤τ ]

ũ∑
u=0

|hra(u, nx)| · f
( u
m

)
+
∑
v≥0

∑
w≥0

h1(v, nx)h1(w, nx)(1− 1v≤τ1w≤2rτ ) · f
(w
n

)
,

which is a positive linear operator over C [0, 1]. The triangle inequality yields a simple relation
between Lv and |Lv|:

|Lv[f, x]| ≤ |Lv| [|f |, x].

In the special case where f being the identity function I , we can further bound the magnitude of
|Lv| [I, x] and Sn[I, x] via the following lemma.

Lemma 13 For any x ∈ [0, 1] and n ≥ 1,

Sn[I, x] = I(x) = x,

and if in addition, a ≥ 2.5, τ ≥ 1/3, ũ ≥ 2.5aτ , and r ≥ 5(ũ+ 1) ∨ 10(a− 1), then

|Lv[I, x]| ≤ |Lv| [I, x] ≤
(

1 +
2

3
e−r/4

)
· x.
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Proof We begin by establishing the first claim.

Sn[I, x] = e−nx
∞∑
i=0

(nx)i

i!
I

(
i

n

)
= x · e−nx

∞∑
i=1

(nx)i−1

(i− 1)!
= x.

As for the second claim, the inequality |Lv[I, x]| ≤ |Lv| [I, x] follows by the triangle inequality,
and the inequality |Lv| [I, x] ≤

(
1 + 2

3e
−r/4) · x follows by

|Lv| [I, x]
(a)
= E

X∼Poi(nx)
[1X≤τ ]

ũ∑
u=0

|hra(u, nx)| · u
m

+
∑
v≥0

∑
w≥0

h1(v, nx)h1(w, nx)(1− 1v≤τ1w≤2rτ ) · w
n

(b)

≤ E
X∼Poi(nx)

[1X≤τ ]

ũ∑
u=0

|hra(u, nx)| · u
m

+ E
X∼Poi(nx)

[1X>τ ] · x+ e−2r/5x

(c)

≤ E
X∼Poi(nx)

[1X≤τ ]
ũ∑
u=0

(
Pr(Poi(anx) = u) + e−nx(nx) · e−r/3

) u

m

+

(
E

X∼Poi(nx)
[1X>τ ] + e−2r/5

)
x

(d)

≤ E
X∼Poi(nx)

[1X≤τ ]

( ∞∑
u=0

Pr(Poi(anx) = u) · u
m

+

ũ∑
u=0

ux

a
· e−r/3

)

+

(
E

X∼Poi(nx)
[1X>τ ] + e−2r/5

)
x

(e)
= E

X∼Poi(nx)
[1X≤τ ]

(
1 +

ũ(ũ+ 1)

2a
· e−r/3

)
· x+

(
E

X∼Poi(nx)
[1X>τ ] + e−2r/5

)
x

(f)

≤
(

1 +
ũ(ũ+ 1)

2a
· e−r/3 + e−2r/5

)
· x

(g)

≤
(

1 +
2

3
e−r/4

)
· x,

where (a) follows by the definition of |Lv| [I, ·]; (b) follows by h1(v, nx) = e−nx(nx)v/v!, the
equality 1 − 1v≤τ1w≤2rτ = 1v<τ + 1v≤τ1w>2rτ , and Lemma 11 and the reasoning before it;
(c) follows by Lemma 8 and grouping the last two terms together; (d) follows by e−nx ≤ 1 and
m = na; (e) follows by E[Poi(nax)] = nax = mx and

∑ũ
u=0 u = (ũ + 1)ũ/2; (f) follows by

E[1A] + E[1Ā] = 1 and re-organizing the terms; (g) follows by the conditions r ≥ 5(ũ + 1) ∨
10(a− 1) and a ≥ 2.5, and the inequality 1

5( r5)2e−r/3 + e−2r/5 ≤ 2
3e
−r/4, ∀r ≥ 3.5.

To facilitate the consecutive discussions, we define the “inverse” of the Szász-Mirakyan operator
Sn as S−1

n , which satisfies, for any F ∈ C [0, 1], that

S−1
n [Sn[F, ·], x] = F (x).

For our purpose, this “inverse operator” is well-defined in the following sense.
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Lemma 14 For any 1-Lipschitz functions F,G ∈ C [0, 1], if for all n ∈ N and all x ∈ [0, 1],

Sn[F, x] = Sn[G, x],

then the two functions must be identical, i.e., F = G.

The correctness of this lemma follows from Lemma 10.

Next we consider the d = 2 version of our estimation problem. Specifically, given a real function
f(x1, x2) ∈ C [0, 1]2 that is 1-Lipschitz with respect to both x1 and x2, we want to approximate

f3 (x1, x2) = E
Xi∼Poi(mixi)

[
f

(
X1

m1
,
X2

m2

)]
= Sm2 [Sm1 [f(·, x2), x1] (x1, ·), x2] .

To make the expression more manageable, we denote

f2(x1, x2) = S−1
m2

[f3 (x1, ·) , x2] = E
X1∼Poi(m1x1)

[
f

(
X1

m1
, x2

)]
.

Then, for v2 := (a2, n2, ũ2, τ2, r2), we can write Lv2 [f2(x1, ·), x2] as

Lv2 [f2(x1, ·), x2] = E
X∼Poi(n2x2)

[1X≤τ2 ]

ũ2∑
u=0

hr2a2(u, n2x2)f2

(
x1,

u

m2

)
+
∑
v≥0

∑
w≥0

h1(v, n2x2)h1(w, n2x2)(1− 1v≤τ21w≤2r2τ2)f2

(
x1,

w

n2

)

= E
X∼Poi(n2x2)

[1X≤τ2 ]

ũ2∑
u=0

hr2a2(u, n2x2) E
X1∼Poi(m1x1)

[
f

(
X1

m1
,
u

m2

)]
+
∑
v≥0

∑
w≥0

h1(v, n2x2)h1(w, n2x2)(1− 1v≤τ21w≤2r2τ2) E
X1∼Poi(m1x1)

[
f

(
X1

m1
,
w

n2

)]
.

Move the inner expectation outside and define

f1(x1, x2) := E
X∼Poi(n2x2)

[1X≤τ2 ]

ũ2∑
u=0

hr2a2(u, n2x2)f

(
x1,

u

m2

)
+
∑
v≥0

∑
w≥0

h1(v, n2x2)h1(w, n2x2)(1− 1v≤τ21w≤2r2τ2)f

(
x1,

w

n2

)
.

Then we establish the identity

Lv2 [f2(x1, ·), x2] = E
X1∼Poi(m1)

[
f1

(
X1

m1
, x2

)]
= Sm1 [f1(·, x2), x1].

According to Lemma 10, function f2 is also 1-Lipschitz with respect to both of its arguments.
The key observation is that for properly chosen hyper-parameters, the function

f1(·, x2) := S−1
m1

[Lv2 [f2(x1, ·), x2](·, x2), ·] = Lv2 [f(x1, ·), x2](·, x2)

is almost 1-Lipschitz for any x2 ∈ [0, 1].
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Lemma 15 For any function f : [0, 1]2 → R that it 1-Lipschitz with respect to both of its argu-
ments, and any parameter vector v := (a, n, ũ, τ, r) satisfying the conditions in Lemma 12, the
function

f̃(·, x2) := Lv[f(x1, ·), x2](·, x2)

is
(
1 + 4

3e
−r/4)-Lipschitz for any x2 ∈ [0, 1].

Proof For any two real values x1 6= x′1 ∈ [0, 1] and x2 ∈ [0, 1],

|f̃(x1, x2)− f̃(x′1, x2)|
|x1 − x′1|

(a)

≤ 1

|x1 − x′1|

∣∣∣∣∣ E
X∼Poi(nx2)

1X≤τ

ũ∑
u=0

hra(u, nx2)×(
f
(
x1,

u

m

)
−f

(
x′1,

u

m

))
+
∑
v≥0

∑
w≥0

h1(v, n2x2)h1(w, n2x2)×

(1− 1v≤τ21w≤2r2τ2)
(
f
(
x1,

w

n

)
− f

(
x′1,

w

n

))∣∣∣
(b)

≤ E
X∼Poi(nx2)

[1X≤τ ]
ũ∑
u=0

|hra(u, nx2)|

+ E
X∼Poi(nx2)

[1X>τ ] + exp

(
−2

5
r

)
(c)

≤ E
X∼Poi(nx2)

[1X≤τ ]
ũ∑
u=0

(
Pr(Poi(mx2) = u) + e−r/3

)
+ E
X∼Poi(nx2)

[1X>τ ] + exp

(
−2

5
r

)
(d)

≤ 1 + E
X∼Poi(nx2)

[1X≤τ ]

(
ũ(ũ+ 1)

2er/3

)
+ exp

(
−2

5
r

)
(e)

≤ 1 +
ũ(ũ+ 1)

2er/3
+ e−2r/5

(f)

≤ 1 +
r

5

(r
5
− 1
) 1

2er/3
+ e−2r/5

(g)

≤ 1 +
4

3er/4
,

where (a) follows by the definition of Lv; (b) follows by the Lipschitzness of f ; (c) follows by
Lemma 8 and reorganizing the terms; (d) follows by the definition of ha and the law of total prob-
ability; (e) follows by E[1A] = Pr(A) ≤ 1; (f) follows by the assumption that r ≥ 5(ũ + 1); (g)
follows by the inequality r

5

(
r
5 − 1

)
1

2er/3
+ e−2r/5 ≤ 4

3er/4
for all r ≥ −1.

For brevity, we conclude our discussion about the d = 2 case with this lemma, showing that our
estimator essentially preserves the Lipschitzness of the function to approximate. In the next section,
we leverage this lemma to bound the bias of our estimator for general additive properties.
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Appendix H. From d = 2 to d > 2 By Induction

For any x ∈ [0, 1]d and i ∈ [d], denote

(x; y)i := (x1, . . . , xi−1, y, xi+1, . . . , xd).

For any function f : Rd → R, define

fd+1((x)) := E
Ni∼Poi(mixi)

[
f

((
Ni

mi

)d
i=1

)]

and
fd((x)) := S−1

md
[fd+1 ((x; ·)d) , xd] .

For i ∈ [d− 1], we define a sequence of functions inductively.

fi((x)) := S−1
mi

[
Lvi+1 [fi+1((x; ·)i+1), xi+1] ((x; ·)i) , xi

]
,

and
f0((x)) := Lv1 [f1((x; ·)1), x1] .

By Lemma 15, for any i ∈ [d], the function fi is Lipschitz with a Lipschitz constant

Ci :=
d∏

t=i+1

(
1 +

4

3ert/4

)
.

We approximate fd+1 with f0. Next we bound the approximation error

|f0((x))− fd+1((x))| ≤ |f0((x))− Sm1 [f1((x; ·)1), x1]|+ |Smd [fd((x; ·)d), xd]− fd+1((x))|

+
d−1∑
i=1

∣∣Smi [fi((x; ·)i), xi]− Smi+1 [fi+1((x; ·)i+1), xi+1]
∣∣

= |Lv1 [f1((x; ·)1), x1]− Sm1 [f1((x; ·)1), x1]|

+

d−1∑
i=1

∣∣Lvi+1 [fi+1((x; ·)i+1), xi+1]− Smi+1 [fi+1((x; ·)i+1), xi+1]
∣∣

≤
d∑
i=1

5Ci
2
√
τi
· xi =

d∑
i=1

5xi
2
√
τi
·

d∏
t=i+1

(
1 +

4

3ert/4

)

≤
d∑
i=1

4
√
τi
xi,

where we have made the simple assumption that 3d ≤ mini e
ri/4 and 5e4/9 < 8. Note that we can

replace the multiplicative factor of 4 with 3.9, which is used in Appendix J for clean expressions.
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Bounding the bias of the general estimator Recall that the quantity of interest is

∑
j∈[k]

E
Mi,j∼Poi(mipi(j))

[
fj

((
Mi,j

mi

)d
i=1

)]
=
∑
j∈[k]

fj,d+1(p(j)).

Following the above reasoning, we approximate this quantity by an unbiased estimator of

f0(p) :=
∑
j∈[k]

fj,0(p(j)).

The exact form of this estimator is postponed to Section I.2, where we define this estimator and
analyze its variance. Given the last inequality |f0((x))− fd+1((x))| ≤

∑d
i=1 4xi/

√
τi, the bias of

this estimator is at most

∑
j∈[k]

d∑
i=1

4
√
τi
pi(j) =

d∑
i=1

4
√
τi

∑
j∈[k]

pi(j) =

d∑
i=1

4
√
τi
.

Appendix I. Variance Analysis

I.1. Basic case: d = 1

Utilizing the samples X,X ′ ∼ Poi(nx), we employ the following estimator to estimate Sm[f, x]:

Ĥv(f,X,X ′) = 1X′≤τ ·

(
ũ∑
u=0

huX−u · f
( u
m

))
+ (1− 1X′≤τ1X≤2rτ ) · f

(
X

n

)
.

where we recall that hus = 0,∀s < 0, and

hus = au(1− a)s
(
s+ u

u

)
Pr (Poi(r) > s+ 2u) ,∀s ≥ 0.

The variance of this estimator satisfies

Var
(
Ĥv(f,X,X ′)

) (a)

≤ 2E

(
ũ∑
u=0

huX−u · f
( u
m

))2

+ 4Var

(
1X′>τ · f

(
X

n

))
+ 4Var

(
1X′≤τ1X>2rτ · f

(
X

n

))
(b)

≤ 2E

(
ũ∑
u=0

huX−u · f
( u
m

))2

+ x · 8(τ + 3)

n

(c)

≤ 2 Pr(Poi(nx) ≥ 1) ·max
t

(
ũ∑
u=0

hut−u · f
( u
m

))2

+ x · 8(τ + 3)

n
,

where (a) follows by Var(X + Y ) ≤ 2Var(X) + 2Var(Y ); (b) follows by Lemma 11 in the
supplementary of Hao et al. (2018) and the next lemma; (c) follows by f(0) = 0 and the linearity
of expectation.
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Lemma 16 For any n ∈ Z+, r, τ, x ≥ 0, and independent random variables X,X ′ ∼ Poi(nx),

Var

(
1X′≤τ1X>2rτ · f

(
X

n

))
≤ x · τ + 3

n
.

Proof Following the independence assumption,

Var

(
1X′≤τ1X>2rτ · f

(
X

n

))
(a)
= Var(1X′≤τ )E

[
12
X>2rτ · f2

(
X

n

)]
+ (E[1X′≤τ ])2 Var

(
1X>2rτ · f

(
X

n

))
(b)

≤ E [1X′<τ ] · E
[
f2

(
X

n

)]
+ Var

(
1X>2rτ · f

(
X

n

))
(c)

≤ x · τ + 2

n
+

1

2
Var

(
1X>2rτf

(
X

n

)
− 1X′>2rτf

(
X ′

n

))
(d)
= x · τ + 2

n
+

1

2
E
(
1X>2rτf

(
X

n

)
− 1X′>2rτf

(
X ′

n

))2

(e)

≤ x · τ + 2

n
+

1

2
E
(
1X>2rτ ·

X

n
− 1X′>2rτ ·

X ′

n

)2

(f)
= x · τ + 2

n
+

Var(1X>2rτ ·X)

n2

(g)

≤ x · τ + 2

n
+

Var(X)

n2

(h)
= x · τ + 3

n
,

where (a) follows by Var(Y ·Z) = Var(Y )E[Z2] + (E[Y ])2Var(Z) for any independent Y and Z;
(b) follows by Var(1A) = E[1A] · E[1Ā] and the fact that the expectation of an indicator random
variable is ≤ 1; (c) follows by the Lipschitzness and regularity of f , the inequality E[X2] ≤
(nx)2 + nx, and

E [1X′<τ ]
(
x2 +

x

n

)
≤ x

(
E [1X′<τ ]x+

1

n

)

=
x

n

e−nx τ∑
j=0

(nx)j+1

(j + 1)!
(j + 1) + 1


≤ x · τ + 2

n
;

(d) follows by the equality Var(Z) = E[(Z − Z ′)2]/2 for any i.i.d. random variables Z and Z ′;
(e) follows by considering four cases induced by the possible values of the indicator functions; (f)
follows by the same reasoning as in (d); (g) follows by Var(min{C,Z}) ≤ Var(Z) for any fixed
C; (h) follows by Var(X) = nx.

The following lemma bounds the remaining term on the right-hand side of our variance bound.
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Lemma 17 For any index t and coefficients hu· defined at the beginning of this section,∣∣∣∣∣
ũ∑
u=0

hut−u · f
( u
m

)∣∣∣∣∣ ≤ earũ

ma
.

Proof By the definition of hu· , we obtain∣∣∣∣∣
ũ∧t∑
u=0

hut−u · g
( u
m

)∣∣∣∣∣ (a)
=

∣∣∣∣∣
ũ∧t∑
u=0

au(1− a)t−u
(
t

u

)
Pr (Poi(r) > t+ u) · g

( u
m

)∣∣∣∣∣
(b)

≤
ũ∧t∑
u=0

au(a− 1)t−u
(
t

u

)
Pr (Poi(r) > t+ u) ·

∣∣∣g ( u
m

)∣∣∣
(c)

≤ e−r
(a− 1)t−u

m

ũ∧t∑
u=0

uau
(
t

u

) ∑
j>t+u

rj

j!

(d)

≤ e−r

m

ũ∧t∑
u=1

u

au

(
t

u

)∑
j>t

(ar)j

j!

(e)

≤ e−rũ

ma

∑
j>t

(
ũ∧t∑
u=1

1

au

(
t

u

))
(ar)j

j!

(f)

≤ e−rũ

ma

∑
j>t

(
1 +

1

a

)t (ar)j

j!

(g)

≤ e−rũ

ma

∑
j>t

((a+ 1)r)j

j!

(h)

≤ e−rũ

ma
e(a+1)r

(i)
=
earũ

ma
,

where (a) follows by our construction; (b) follows by the triangle inequality; (c) follows by the regu-
larity and Lipschitzness of g, and re-organizing terms; (d) follows by (a−1)t−uau

∑
j>t+u r

j/j! ≤
a−u

∑
j>t+u(ra)j/j! ≤ a−u

∑
j>t(ra)j/j!; (e) follows by re-ordering the summation operators,

and the fact that the summation is over u ≤ ũ; (f) follows by the binomial theorem; (g) follows by
(1 + 1/a)t ≤ (1 + 1/a)j for j > t; (h) follows by the series expansion of e(a+1)r; (i) follows by
the simple equality e−r · e(a+1)r = ear.

Therefore, the variance of the proposed estimator admits

Var
(
Ĥv(f,X,X ′)

)
≤ 2 Pr(Poi(nx) ≥ 1) ·

(
earũ

ma

)2

+x · 8(τ + 3)

n
≤ x

n
·2
(
e2arτ2 + 4τ + 12

)
,

where the second step follows by Markov’s inequality and an additional assumption ũ = 2.5aτ .
The following lemma summarizes and slightly rephrases the previous results.

Lemma 18 For any 1-Lipschitz function f ∈ C [0, 1], τ ≥ 1, and ũ = 2.5aτ ,

Var
(
Ĥv(f,X,X ′)

)
≤ 6e2arτ2 · x

n
.
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I.2. General Case: d > 1

For any x, y ∈ [0, 1]d and i ∈ [d], denote

(x, y; i) := (x1, . . . , xi, yi+1, . . . , yd) and (x, y; z, i) := (x1, . . . , xi−1, z, yi+1, . . . , yd)

For random variables Xi, X
′
i ∼ Poi(nixi) and any function f(1) := f ∈ C [0, 1]d, we define a

sequence of random functions f(i) ∈ C [0, 1]d as

f(i+1)((x, y; i)) := 1X′i≤τi ·
ũi∑
u=0

huXi−u · f(i)

((
x, y;

u

mi
, i

))
+ (1− 1X′i≤τi1X′i≤2riτi) · f(i)

((
x, y;

Xi

ni
, i

))
.

This construction provides an unbiased estimator for the desired quantity (see Section H), i.e.,

E
Xi,X′i∼Poi(nixi)

[
f(d+1)((x))

]
= f0((x)).

Our objective is to bound the variance of f(d+1)((x)). By the law of total variance,

Var
(
f(i+1)((x, y; i)

)
= Var

(
E
[
f(i+1)((x, y; i))

∣∣∣∣Xi, X
′
i ∼ Poi(nixi)

])
+ E

[
Var

(
f(i+1)((x, y; i))

∣∣∣∣Xi, X
′
i ∼ Poi(nixi)

)]
Fix the vector (y) and view f((x, y; ·, i)) as a function in C [0, 1]i−1. For the first quantity on the
right-hand side, the construction of f(i+1) yields

E
[
f(i+1)((x, y; ·, i))

∣∣∣∣Xi, X
′
i ∼ Poi(nixi)

]
= Ĥ

(
f0((x, y; ·, i)), Xi, X

′
i

)
By the derivations in the last section (Section H), fixing (x) and (y), the real function f0((x, y; ·, i))
is 5/3-Lipschitz in its argument. Therefore, by Lemma 18,

Var(Ĥvi

(
f0((x, y; ·, i)), Xi, X

′
i

)
) ≤

(
6τ2
i e

2airi
) xi
ni
.

Next we consider the second quantity on the right-hand side. By the linearity of expectation,

E
Xi,X′i∼Poi(nixi)

Var

(
f(i+1)((x, y; i))

∣∣∣∣Xi, X
′
i

)
≤ max
zi,z′i∈N

Var

(
f(i+1)((x, y; i))

∣∣∣∣(Xi, X
′
i)=(zi, z

′
i)

)
.

We leverage the recursion relation between f(i+1) and f(i) through the following lemma.

Lemma 19 For any random variables Xi and real numbers ci,

Var

(∑
i

ci ·Xi

)
≤

(∑
i

|ci|

)2

max
j

Var (Xj) .
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Proof Expanding the left-hand side yields

Var

(∑
i

ci ·Xi

)
=
∑
i

c2
iVar (Xi) +

∑
i1 6=i2

ci1ci2Cov(Xi1 , Xi2)

≤
∑
i

c2
iVar (Xi) +

∑
i1 6=i2

|ci1ci2 |
√

Var (Xi1) ·Var (Xi2)

≤

∣∣∣∣∣∣
∑
i

c2
i +

∑
i1 6=i2

|ci1ci2 |

∣∣∣∣∣∣ ·max
j

Var (Xj)

=

(∑
i

|ci|

)2

max
j

Var (Xj) ,

where the second step follows by the covariance inequality.

This lemma, together with the relation between f(i+1) and f(i), yields that

Var

(
f(i+1)((x, y; i))

∣∣∣∣Xi = zi, X
′
i = z′i

)
≤

(
ũi∑
u=0

∣∣huzi−u∣∣+ 1

)2

max
z∈R

Var
(
f(i) ((x, y; z, i))

)
.

The next lemma further bounds the value of
∑ũi

u=0

∣∣huzi−u∣∣.
Lemma 20 For any a ≥ 2.5, r ≥ 1, and ũ, z ≥ 0,

ũ∑
u=0

∣∣huz−u∣∣ ≤ ear − 1.

Proof By the definition of hu· and assumption a ≥ 2.5,
ũi∑
u=0

∣∣huz−u∣∣ (a)
=

ũ∧z∑
u=0

au(a− 1)z−u
(
z

u

)
Pr (Poi(r) > z + u)

(b)
= e−r

ũ∧z∑
u=0

au(a− 1)z−u
(
z

u

) ∑
j>z+u

rj

j!

(c)

≤ e−r

a

ũ∧z∑
u=0

1

au

(
z

u

) ∑
j>z+u

(ar)j

j!

(d)

≤ e−r

a

∑
j>z

(ar)j

j!

(
ũ∧z∑
u=0

1

au

(
z

u

))
(e)

≤ e−r

a

∑
j>z

(ar)j

j!

(
1 +

1

a

)z
(f)

≤ e−r

a

∑
j>z

((a+ 1)r)j

j!

(g)

≤ e−r

a
e(a+1)r

(h)

≤ ear − 1,
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where (a) follows by the definition of hu· ; (b) follows by Pr (Poi(r)>z + u) = e−r
∑

j>z+u r
j/j!;

(c) follows by az
∑

j>z+u r
j/j! ≤

∑
j>z+u (ar)j/j!; (d) follows by adding positive terms and re-

organizing them; (e) follows by the binomial theorem; (f) follows by (ar)j(1+1/a)z ≤ ((a+1)r)j

for j > z; (g) follows by the expansion of ex; (h) follows by ex/2.5 ≤ ex − 1,∀x ≥ 2.5.

Assume that ai ≥ 2.5 and ri ≥ 10(ai−1), then eairi > 1. Consolidating the previous results yields

Var
(
f(i+1)((x, y; i)

)
≤ e2airi ·

(
6τ2
i xi
ni

+ max
z∈R

Var
(
f(i) ((x, y; z, i))

))
.

In addition, for the special case of i = 1, we note that

f(2)((x, y; 1)) = Ĥv1

(
f((x, y; ·, 1)), X1, X

′
1

)
,

which, together with Lemma 18, implies

max
z∈R

Var
(
f(2)((x, y; z, 2))

)
≤
(
6τ2

1 e
2a1r1

) x1

n1
.

Mathematical induction combines the last two inequalities and yields that

• For every i ∈ [d], we have an upper bound bi on Var
(
f(i+1)((x, y; i)

)
that depends on (x)

through only x1, . . . , xi.

• The upper-bound sequence {bi}di=1 satisfies b1 =
(
2.1τ2

1 e
2a1r1

)
x1/n1 and the recurrent re-

lation

bi ≤ e2airi

(
6τ2
i xi
ni

+ bi−1

)
, ∀i ≥ 2.

Dividing both sides by ci :=
∏i
t=1 e

2atrt , we can rewrite the recurrent relation as

bi
ci
≤ 6τ2

i xi
nici−1

+
bi−1

ci−1
.

Note that b1/c1 = 6τ2
1x1/n1. The above inequality implies

bd
cd
≤

d∑
i=2

6τ2
i xi

nici−1
+

6τ2
1x1

n1
⇐⇒ Var

(
f(d+1)((x)

)
≤

d∑
i=2

6τ2
i xi
ni

d∏
t=i

e2atrt +
6τ2

1x1

n1

d∏
t=1

e2atrt .

For simplicity, we adopt the following variance upper bound.

Var
(
f(d+1)(x)

)
≤

d∑
i=1

6τ2
i xi
ni

exp

(
2

d∑
t=i

atrt

)
.
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Bounding the variance of the general estimator The quantity of interest is

∑
j∈[k]

E
Ni,j∼Poi(mipi(j))

[
fj

((
Ni,j

mi

)d
i=1

)]
=
∑
j∈[k]

fj,d+1(p(j)).

Following the above derivations, we approximate this quantity by

f(d+1)(p) :=
∑
j∈[k]

fj,(d+1)(p(j)).

Due to Poisson sampling, the empirical counts Ni,j are mutually independent. The variance of
estimator, given the last inequality, is at most

Var
(
f(d+1)(p)

)
=
∑
j∈[k]

Var
(
fj,(d+1)(p(j))

)
≤ 6

d∑
i=1

τ2
i

ni
exp

(
2

d∑
t=i

atrt

)
.

Appendix J. Special Case: ni’s are Equal

In this section we consider the special case where ni’s are equal. We use the same hyper-parameters
for all the distributions and suppress the indices in their expressions, i.e., we write r instead of
ri. Then by the results in Section H and above, our proposed estimator f(d+1)(p) (defined above)
admits an absolute bias bound of∣∣∣E[f(d+1)(p)]− E[fE({Xmi

i }
d
i=1)]

∣∣∣ ≤ 3.9d√
τ
,

and a variance bound of

Var
(
f(d+1)(p)

)
≤ 6

τ2

n

d∑
i=1

exp (2(d− i+ 1)ar) =
6τ2

1− e−2ar
· e

2ard − 1

n
,

given that a ≥ 2.5, τ ≥ 1, ũ = 2.5aτ , 3d ≤ er/4, and r ≥ 5(ũ+ 1)∨ 10(a− 1). For simplicity, we
choose r = 15aτ . Then the variance bound vanishes at a rate of Oτ (n−1/6) if

2ard = 30a2τd ≤ 5

6
log n ⇐⇒ 6a

√
τd ≤

√
log n =⇒ τ = O(log n).

Through Chebyshev’s inequality, we combine these results and establish Theorem 1.

Theorem 1 For any a ≥ 2.5, τ ≥ 1, if 2 log d
τ ≤ 6a ≤

√
logn
τd ,

Pr

(∣∣∣f(d+1)(p)− E
[
fE({Xm

i }di=1)
]∣∣∣ ≥ 4d√

τ

)
= Õ

(
1

n1/6

)
.
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Appendix K. Inferring High-Dimensional Independence

Let d ∈ Z+ be a dimension parameter and let k := (k1, . . . , kd) be a vector of alphabet sizes.
Denote by ∆ki the collection of distributions (marginals) over [ki] := {1, . . . , ki}. Let p :=

(p1, . . . , pd) be a tuple of distributions in ∆×k :=
∏d
i=1 ∆ki , and for each j := (j1, . . . , jd) ∈ [k] :=∏d

i=1[ki], denote by p(j) := (p1(j1), . . . , pd(jd)) the vector of the corresponding probabilities.
Unlike the previous setting, we denote by ∆k the collection of distributions over [k] and consider a
unknown distribution p̃ ∈ ∆k.

Denote by p× ∈ ∆k the product distribution of pi’s, i.e., p×(j) =
∏d
i=1 pi(ji). We want to

estimate, using independent samples from p̃ and pi’s,

`1
(
p̃, p×

)
:=
∑
j∈[k]

∣∣p̃(j)− p×(j)
∣∣ =

∑
j∈[k]

∣∣∣∣∣p̃(j)−
d∏
i=1

pi(ji)

∣∣∣∣∣ ,
the `1 distance between p̃ and the product distribution p×. This defines the basic problem of tolerant
high-dimensional independence testing. Note that the property is generally not covered (not addi-
tive) by the previous results unless d=1 as each pi(ji) appears

∏
t6=i kt times on the right-hand side.

First we show that `1 (p̃, p×) is 1-Lipschitz with respect to each of its arguments if we fix the
remaining ones. Clearly, the property is 1-Lipschitz with respect to each p̃(j). By symmetry, it
suffices to consider the Lipschitzness for a particular pi(ji), for which the desired result follows by∣∣∣∣∣∣
∑

j′:j′i=ji

∣∣∣∣∣∣p̃(j′)− pi(j′i)
∏
t6=i

pt(j
′
t)

∣∣∣∣∣∣−
∣∣∣∣∣∣p̃(j′)− (pi(j

′
i) + z)

∏
t6=i

pt(j
′
t)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ z

∑
j′:j′i=ji

∏
t6=i

pt(j
′
t)= z,

for any real number z in the unit interval.
For every i ∈ [d], we denote the following quantities. Let ni be a sampling parameter, let

ai be an amplification parameter, and let YMi
i ∼ pi be a sample of size Mi ∼ Poi(mi) where

mi := ai · ni. For each ji ∈ [ki], denote by Mi,ji the number of times symbol ji appearing in YMi
i .

Slightly abusing the notation, we write Mji instead of Mi,ji . Analogously, for distribution p̃ and
any symbol j ∈ [k], we denote ñ, ã, m̃, Ỹ M̃ , and M̃j in a similar manner.

For any (x) ∈ [0, 1]d and y ∈ [0, 1], define a function

f((x), y) :=

∣∣∣∣∣y −
d∏
t=1

xi

∣∣∣∣∣− y −
d∏
t=1

xi

and extend it by constants for input values larger than 1. Similar to the formulation in the previous
sections, we consider approximating the expected value of the empirical estimator

`E1

({
YMi
i

}d
i=1

, Ỹ M̃

)
:=
∑
j∈[k]

f

((
Mji

mi

)d
i=1

,
M̃j

m̃

)
.

For each index i ∈ [d+ 1], we denote S̃i := Sm1 ◦ . . . ◦Smi−1 and L̃i := Lvi ◦ . . . ◦Lvd , and write

fi ((x), y) = Sm̃ ◦ S̃i ◦ L̃i [f ] ((x), y),
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where the linear operator Sm̃ applies to the last coordinate of f , and Smt and Lvt apply to the t-th
coordinate of f , for all t ∈ [d]. Then, we can write the expectation of the empirical estimator as

E
[
`E1

({
YMi
i

}d
i=1

, Ỹ M̃

)]
= f̃(p, p̃) :=

∑
j∈[k]

fd+1 (p(j), p̃(j)) .

Clearly, function f is 1-Lipschitz with respect to each of its arguments. By Lemma 15,

f0((x), y) := S−1
m̃ [f1]((x), y) = L̃1 [f ] ((x), y) = Lv1 ◦ . . . ◦ Lvd [f ] ((x), y)

is e4/9-Lipschitz with respect to y under the conditions specified therein. For some vector ṽ of
parameters to be determined later, we denote f−1((x), y) := Lṽ [f0((x), ·), y], and approximate the
expectation of the empirical estimator using an unbiased estimator (Section K.2) of

f̂(p, p̃) :=
∑
j∈[k]

f−1 (p(j), p̃(j)) .

K.1. Bias Analysis

We naturally bound the bias of this estimator by

∣∣∣f̂(p, p̃)− f̃(p, p̃)
∣∣∣ ≤

∣∣∣∣∣∣
∑
j∈[k]

(f−1 (p(j), p̃(j))− fd+1 (p(j), p̃(j)))

∣∣∣∣∣∣
≤
∑
j∈[k]

|f−1 (p(j), p̃(j))− f1 (p(j), p̃(j))|

+

d∑
i=1

∣∣∣∣∣∣
∑
j∈[k]

fi (p(j), p̃(j))− fi+1 (p(j), p̃(j))

∣∣∣∣∣∣ ,
where both steps follow by the triangle inequality. Note that f1 = Sm̃[f0] and f−1 = Lv[f0].
Hence, for v satisfying the conditions in Lemma 12, the first term on the right-hand side is at most

∑
j∈[k]

|Sm̃[f0] (p(j), p̃(j))− Lṽ[f0] (p(j), p̃(j))|
(a)

≤
∑
j∈[k]

5e4/9

2
√
τ̃
· p̃(j)

(b)
<

4√
τ̃
,

where (a) follows by Lemma 12 and the fact that f0((x), y) is e4/9-Lipschitz with respect to y; and
(b) follows by

∑
j∈[k] p̃(j) = 1 and 5e4/9 < 8.
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For the second term on the right-hand side, by symmetry, we need to consider only∣∣∣∣∣∣
∑
j∈[k]

fi (p(j), p̃(j))− fi+1 (p(j), p̃(j))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[k]

Sm̃ ◦ S̃i ◦ L̃i [f ] ((x), y)− Sm̃ ◦ S̃i+1 ◦ L̃i+1 [f ] ((x), y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[k]

(Lvi − Smi) ◦ Sm̃ ◦ S̃i ◦ L̃i+1 [f ] (p(j), p̃(j))

∣∣∣∣∣∣
≤
∑
t∈[ki]

∣∣∣∣∣∣(Lvi − Smi)

∑
j:ji=t

Sm̃ ◦ S̃i ◦ L̃i+1 [f ] ((p(j); ·, i), p̃(j)) , pi(t)

∣∣∣∣∣∣ .
Fixing p and p̃, for any i ∈ [d] and t ∈ [ki], we define gi,t as a real function satisfying

gi,t(z; p, p̃) =
∑
j:ji=t

Sm̃ ◦ S̃i ◦ L̃i+1 [f ] ((p(j); z, i), p̃(j)) .

Then, we can write the previous upper bound as
∑

t∈[ki]
|(Lvi − Smi) [gi,t(· ; p, p̃), pi(t)]|. The

following lemma shows that gi,t(z; p, p̃) is e4/9-Lipschitz when viewed as a function of z.

Lemma 21 ∀i ∈ [d], t ∈ [ki], p, and p̃, if 3d ≤ eri/4,∀i, then gi,t(z; p, p̃) is e4/9-Lipschitz in z.

Proof Let π : Rd → R be a function satisfying π((x)) =
∏d
i=1 xi, ∀(x) ∈ [0, 1]d and extend it by

constants for values larger than 1. For notational convenience, write fy((x)) := f((x), y). Then,
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for any z1, z2 ∈ [0, 1], the function values differ by

Bi,t(z1, z2; p, p̃) := |gi,t(z1; p, p̃)− gi,t(z2; p, p̃)|

(a)
=

∣∣∣∣∣∣
∑
j:ji=t

Sm̃ ◦ S̃i ◦ L̃i+1 [((x), y)→ (fy((x; z1)i)− fy((x; z2)i))] ((p(j)), p̃(j))

∣∣∣∣∣∣
(b)

≤

∣∣∣∣∣∣
∑
j:ji=t

Sm̃ ◦ S̃i ◦
∣∣∣L̃i+1

∣∣∣ [((x), y)→ |fy((x; z1)i)−fy((x; z2)i)|] ((p(j)), p̃(j))

∣∣∣∣∣∣
(c)

≤

∣∣∣∣∣∣
∑
j:ji=t

Sm̃ ◦ S̃i ◦
∣∣∣L̃i+1

∣∣∣ [((x), y)→ |π((x; z1)i)− π((x; z2)i)|] ((p(j)), p̃(j))

∣∣∣∣∣∣
(d)
= |z1 − z2| ·

∣∣∣∣∣∣
∑
j:ji=t

S̃i ◦
∣∣∣L̃i+1

∣∣∣
(x)→

∏
i′ 6=i

(xi′ ∧ 1)

 (p(j))

∣∣∣∣∣∣
(e)

≤ |z1 − z2| ·

∣∣∣∣∣∣
∑
j:ji=t

S̃i ◦
∣∣∣L̃i+1

∣∣∣
(x)→

∏
i′ 6=i

xi′

 (p(j))

∣∣∣∣∣∣
(f)
= |z1 − z2| ·

∣∣∣∣∣∣
∑
j:ji=t

∣∣Lvi+1

∣∣ ◦ . . . ◦ |Lvd | ◦

Sm1 ◦ . . . ◦ Smi−1

(x)→
∏
i′ 6=i

xi′

 (p(j))

∣∣∣∣∣∣
(g)
= |z1 − z2| ·

∣∣∣∣∣∣
∑
j:ji=t

(∏
i′<i

pi(ji′)

)∣∣Lvi+1

∣∣ ◦ . . . ◦ |Lvd |

[
(x)→

∏
i′>i

xi′

]
(p(j))

∣∣∣∣∣∣
(h)
= |z1 − z2| ·

∣∣∣∣∣∣
∑

ji′∈[ki′ ],∀i′>i

∏
i′′>i

∣∣∣Lvi′′+1

∣∣∣ [I] (pi′′+1(ji′′+1))

∣∣∣∣∣∣
(i)

≤ |z1 − z2| ·

∣∣∣∣∣∣
∑

ji′∈[ki′ ],∀i′>i

∏
i′′>i

((
1 +

2

3
e−ri′′/4

)
· pi′′(ji′′)

)∣∣∣∣∣∣
(j)
= |z1 − z2| ·

∏
i′>i

(
1 +

2

3
e−ri′/4

) ∑
ji′∈[ki′ ],∀i′>i

∏
i′′>i

pi′′(ji′′)

(k)
= |z1 − z2| ·

∏
i′>i

(
1 +

2

3
e−ri′/4

)
(l)

≤ |z1 − z2| · e4/9,

where (a) follows by the linearity of linear operators; (b) follows by the triangle inequality and
definition of |L̃i+1|; (c) follows by the inequality |fy((x; z1)i) − fy((x; z2)i)| ≤ π((x; z1)i) −
π((x; z2)i); (d) follows by factorizing out |z1−z2|; (e) follows by

∏
i′ 6=i(xi′∧1) ≤

∏
i′ 6=i xi′ where

a∧ b := min{a, b}; (f) follows by the definition of S̃i; (g) follows by the fact that the operator Smt
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preserves the identity function over [0, 1] (Lemma 15); (h) follows by summing up
∏
i′<i pi(ji′)

over all the possible indices; (i) again follows by Lemma 15; (j) follows by re-organizing terms;
(k) follows by summing up

∏
i′′>i pi′′(ji′′); and (l) follows by 3d ≤ eri/4, ∀i.

Combining this with Lemma 12 and the 4/
√
τ̃ bound above yields∣∣∣f̂(p, p̃)− f̃(p, p̃)

∣∣∣ ≤ 4√
τ̃

+
∑
i∈[d]

∑
t∈[ki]

|(Lvi − Smi) [gi,t(· ; p, p̃), pi(t)]| ≤
4√
τ̃

+
∑
i∈[d]

4
√
τi
.

K.2. Deviation Analysis

Fix y ≥ 0 and recall that fy((x)) = f((x), y). Beginning with the function fy, we denote a
sequence of functions over D := [0, 1]d × N2d as follows. For every g ∈ R (D) and i ∈ [d], let
Ĥi : R (D)→ R (D) be a linear operator satisfying

Ĥi[g]((x), (z)) := 1z2i≤τi

ũi∑
ui=0

huiz2i−1−ui g

((
x;
ui
mi

)
i

, (z)

)
+ (1− 1z2i≤τi1z2i−1≤5τi) g

((
x;
z2i−1

ni

)
i

, (z)

)
.

For any vectors (x) ∈ [0, 1]d and (z) ∈ N2d, let

f(y,0)((x), (z)) := fy((x), (z)) := fy((x)),

and for every i ∈ [d], let
f(y,i) := Ĥi

[
f(y,i−1)

]
.

It is clear from the construction that f(y,d)((x), (z)) corresponds to a particular instantiation of our
estimator. In the following, we show that this function is not sensitive to changes in its input values.
We bound the mean deviation probability of our estimator through the well-known McDiarmid’s
inequality (McDiarmid, 1989; Hao and Orlitsky, 2019a), which we state below for completeness.

Lemma 22 Let Y1, . . . , Ym be independent random variables taking values in rangesR1, . . . , Rm,
and let F : R1 × . . .× Rm → C with the property that if one freezes all but the wth coordinate of
F (y1, . . . , ym) for some 1 ≤ w ≤ m, then F fluctuates only by most cw > 0, thus

|F (y1, . . . , yw−1, yw, yw+1, . . . , ym)− F (y1, . . . , yw−1, y
′
w, yw+1, . . . , ym)| ≤ cw

for all yj ∈ Rj and y′w ∈ Rw for 1 ≤ j ≤ m. Then for any λ > 0, one has

Pr(|F (Y )− E[F (Y )]| ≥ λσ) ≤ C exp(−cλ2)

for some absolute constants C, c > 0, where σ2 :=
∑m

j=1 c
2
j .

Lemma 23 If the corresponding hyper-parameters of f(·,d) satisfies the conditions in Lemma 12,

∣∣f(y,d)((x), (z; z1 + 1)1)− f(y,d)((x), (z))
∣∣ ≤ a1

n1

(
d∏
i=2

zi
ni

)
e1.5

∑d
i=1 airi .

The same inequality holds if we replace (z; z1 + 1)1 by (z; zd+1 + 1)d+1.
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Proof For simplicity, suppress y in the sub-script. Increasing z1 by 1 changes the value of f(d) by

Sf ((x), (z)) := |f(d)((x), (z; z1 + 1)1)− f(d)((x), (z))|
(a)
=
∣∣∣Ĥd ◦ . . . ◦ Ĥ2[f(1)]((x), (z; z1 + 1)1)− Ĥd ◦ . . . ◦ Ĥ2[f(1)]((x), (z))

∣∣∣
(b)
=
∣∣∣Ĥd ◦ . . . ◦ Ĥ2

[
(x′, z′)→

(
f(1)((x

′), (z′; z′1 + 1)1)−f(1)((x
′), (z′))

)]
((x), (z))

∣∣∣
(c)

≤
∣∣∣Ĥd

∣∣∣ ◦ . . . ◦ ∣∣∣Ĥ2

∣∣∣ [(x′, z′)→ ∣∣f(1)((x
′), (z′; z′1 + 1)1)−f(1)((x

′), (z′))
∣∣] ((x), (z))

(d)

≤
∣∣∣Ĥd

∣∣∣ ◦ . . . ◦ ∣∣∣Ĥ2

∣∣∣ [(x′, z′)→
ũ1∑
u1=0

∣∣∣hu1z′1+1−u1 − h
u1
z′1−u1

∣∣∣ · ∣∣∣∣fy ((x′; u1

m1

)
1

)∣∣∣∣
+

∣∣∣∣fy ((x′; z′1 + 1

n1

)
1

)
− fy

((
x′;

z′1
n1

)
1

)∣∣∣∣+

∣∣∣∣fy ((x′; 5τ1

n1

)
1

)∣∣∣∣] ((x), (z))

(e)

≤
∣∣∣Ĥd

∣∣∣ ◦ . . . ◦ ∣∣∣Ĥ2

∣∣∣ [(x′, z′)→ 1

n1

(
2

a2
1

ea1r1 ũ1 + 1 + 5τ1

) d∏
i=2

x′i

]
((x), (z))

(f)
=

1

n1

(
2

a2
1

ea1r1 ũ1 + 1 + 5τ1

) d∏
i=2

∣∣∣Ĥi

∣∣∣ [((x′), (z′))→ x′i]((x), (z))

(g)

≤ 1

n1

(
ea1r1 ũ1

2

) d∏
i=2

(
ũi∑
ui=0

|huizi−ui | ·
ui
mi

+
zi
ni

)
(h)

≤ 1

n1

(
ea1r1 ũ1

2

) d∏
i=2

(
zi
ni

((
ũi∑
u=0

|huizi−ui | ·
ui
ai

)
+ 1

))
(i)

≤ 1

n1

(
ea1r1 ũ1

2

) d∏
i=2

zi
ni

(
eairi ũi
a2
i

+ 1

)
(j)

≤ a1

n1

(
d∏
i=2

zi
ni

)(
d∏
i=1

eairi ũi
2ai

)
(k)

≤ a1

n1

(
d∏
i=2

zi
ni

)
e1.5

∑d
i=1 airi ,

where (a) follows by the definition of f(d); (b) follows by the linearity of linear operators; (c)
follows by the triangle inequality; (d) follows by applying the triangle inequality to each component
of f(1); (e) follows by Lemma 20 and the definition of fy(·); (f) again follows by the linearity of
linear operators; (g) follows by the conditions on the hyper-parameters; (h) follows by huizi−ui = 0
for zi = 0 and mi = niai; (i) follows by a simple variant of Lemma 20; (j) and (k) follow by
re-organizing the terms and some simple inequalities on the hyper-parameters.

Write f(y,d)((x), (z)) as f(y,d)((z)) since it is a constant function with respect to (x). Further
fix (z) and view f(y,d)((z)) as a function of y. Analogous to the previous construction, we define a
linear operator H̃ : R([0, 1]× N2)→ R([0, 1]× N2) as

H̃
[
f(·,d)((z))

]
(z̃1, z̃2) := Ĥṽ

(
f(·,d)((z)), z̃1, z̃2

)
.
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Given empirical counts Ñj and Nji , and their i.i.d. copies Ñ ′j and N ′ji , our unbiased estimator for
the quantity of interest f̂(p, p̃) :=

∑
j∈[k] f−1 (p(j), p̃(j)) is

Î
(

(Nji , N
′
ji)

d
i=1, Ñj , Ñ

′
j

)
:=
∑
j∈[k]

Ĥṽ

(
f(·,d)((Nji , N

′
ji)

d
i=1), Ñj , Ñ

′
j

)
.

The next lemma bounds the magnitude of any component of this estimator in terms of its inputs.

Lemma 24 If the corresponding hyper-parameters of f(·,d) satisfies the conditions in Lemma 12,∣∣∣H̃ [f(·,d)((z))
]

(z̃1, z̃2)
∣∣∣ ≤ ũ · z̃1

ñ
eãr̃ · e

∑d
i=1 airi ,

and ∣∣∣H̃ [f(·,d)((z))
]

(z̃1 + 1, z̃2)− H̃
[
f(·,d)((z))

]
(z̃1, z̃2)

∣∣∣ ≤ ũ

ñ
eãr̃ · e

∑d
i=1 airi .

Proof The proofs for these upper bounds are similar. Hence we prove only the first upper-bound
inequality below. The second inequality follows by the same reasoning and that in Lemma 23.∣∣∣H̃ [f(·,d)((z))

]
(z̃1, z̃2)

∣∣∣ (a)
=
∣∣∣H̃[Ĥd ◦ . . . ◦ Ĥ1[f·]((x), (z))](z̃1, z̃2)

∣∣∣
(b)
=
∣∣∣Ĥd ◦ . . . ◦ Ĥ1

[
H̃[f·](z̃1, z̃2)

]
((x), (z))

∣∣∣
(c)

≤ |Ĥd| ◦ . . . ◦ |Ĥ1|
[
|H̃|[f·](z̃1, z̃2)

]
((x), (z))

(d)

≤ |Ĥd| ◦ . . . ◦ |Ĥ1|

[
ũ∑
u=0

|huz̃1−u||fu/m̃|+ |fz̃1/ñ|

]
((x), (z))

(e)

≤ |Ĥd| ◦ . . . ◦ |Ĥ1|
[
1z̃1>0 ·

eãr̃ũ

ñã2
+
z̃1

ñ

]
((x), (z))

(f)

≤
(
1z̃1>0 ·

eãr̃ũ

ñã2
+
z̃1

ñ

)
|Ĥd| ◦ . . . ◦ |Ĥ1|

[
((x′), (z′))→ 1

]
((x), (z))

(g)

≤
(
1z̃1>0 ·

eãr̃ũ

ñã2
+
z̃1

ñ

) d∏
i=1

eairi

(h)

≤ ũ · z̃1

ñ
eãr̃ · e

∑d
i=1 airi ,

where (a) follows by the definition of f(·,d); (b) follows by the linearity of linear operators; (c)
follows by the triangle inequality; (d) follows by applying the triangle inequality to each component
of f·; (e) follows by Lemma 20 and fy(·) ≤ y; (f) follows by re-organizing the terms; (g) follows
by the linearity of linear operators and pairing each operator |Ĥi| with the corresponding argument;
(h) follows by simple algebra.

Consequently, we can bound the estimator’s magnitude by∣∣∣Î ((Nji , N
′
ji)

d
i=1, Ñj , Ñ

′
j

)∣∣∣ ≤∑
j∈[k]

ũ · Ñj

ñ
eãr̃ · e

∑d
i=1 airi = ũ · Ñ

ñ
eãr̃ · e

∑d
i=1 airi .

51



MULTI-DISTRIBUTION PROPERTY ESTIMATION

Assume that 2ũ · eãr̃ · e
∑d
i=1 airi ≤ ñ. We modify the estimator slightly by replacing the sam-

ple sizes Ni, N ′i , Ñ , and Ñ ′ with min{Ni, 2ni}, min{N ′i , 2ni}, min{Ñ , 2ñ}, and min{Ñ ′, 2ñ},
respectively. Note that this step is just used to simply the proof. Below we denote this modified
estimator by Î

?
.

Suppressing the inputs in expressions, this modification changes the estimator’s expectation by∣∣∣E[Î
?
]− E[Î]

∣∣∣ (a)

≤
∣∣∣E [Î? − Î |Ñ ≤ 2ñ

]∣∣∣+
∣∣∣E [(Î? − Î)1Ñ>2ñ

]∣∣∣
(b)

≤
∣∣∣E [Î? − Î |Ñ ≤ 2ñ

]∣∣∣+ E
[
1 · 1Ñ>2ñ

]
+ E

[
Ñ

2ñ
· 1Ñ>2ñ

]
(c)
=
∣∣∣E [Î?|Ñ ≤ 2ñ

]
− E

[
Î |Ñ ≤ 2ñ

]∣∣∣+ E
[
1Ñ>2ñ

]
+ E

[
Ñ

2ñ
· 1Ñ>2ñ

]
(d)
=

∣∣∣∣E [(Î? − Î) · 1∃i,Ni∨N ′i>2ni |Ñ ≤ 2ñ
]

+ E
[
(Î
? − Î) · 1∀i,Ni,N ′i≤2ni |Ñ ≤ 2ñ

] ∣∣∣∣
+ E

[
1Ñ>2ñ

]
+

ñ

2ñ
E
[
1Ñ≥2ñ

]
(e)
=
∣∣∣E [(Î? − Î) · 1∃i,Ni∨N ′i>2ni |Ñ ≤ 2ñ

]∣∣∣+ E
[
1Ñ>2ñ

]
+

1

2
E
[
1Ñ≥2ñ

]
(f)

≤
∣∣∣E [2 · 1∃i,Ni∨N ′i>2ni |Ñ ≤ 2ñ

]∣∣∣+
3

2
E
[
1Ñ≥2ñ

]
(g)
= 2E

[
1∃i,Ni∨N ′i>2ni

]
+

3

2
E
[
1Ñ≥2ñ

]
(h)

≤ 4
∑
i∈[d]

E [1Ni>2ni ] +
3

2
E
[
1Ñ≥2ñ

]
(i)

≤ 3

2
e−3ñ/8 + 4

∑
i∈[d]

e−3ni/8,

where (a) follows by the law of total expectation; (b) follows by the previous bound on the esti-
mators’ values and 2ũ · eãr̃ · e

∑d
i=1 airi ≤ ñ; (c) follows by the linearity of linear operators; (d)

follows by the law of total expectation; (e) follows by the fact that if ∀i,Ni, N
′
i ≤ 2ni, then the

two estimators coincide; (f) follows by the same reasoning as in (b); (g) follows by the fact that
Ñ and Ni, N

′
i are independent; (h) follows by the union bound and the fact that Ni and N ′i are

independent; (i) follows by the Chernoff bound for Poisson random variables.
The above argument shows that the modified estimator Î

?
has a bias nearly the same as the

original estimator Î . Next, we show that the modified estimator is not sensitive to changes in
its input values. Due to independence, the following two sampling schemes are equivalent: (1)
choose the sample size, e.g., n?i := min{Ni, 2ni}, and draw this many sample points from the
corresponding distribution, e.g., Xn?i

i ∼ pi ∈ ∆ki ; (2) select the maximum possible sample size,
e.g., 2ni, draw this many sample points from the corresponding distribution, e.g.,X2ni

i ∼ pi ∈ ∆ki ,
and truncate this sample at a random location picked according to the associated Poisson random
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variable, e.g.,Ni ∼ Poi(ni). Hence, Î? is an estimator taking as its inputs the following independent
random variables: {X2ni

i }di=1, {(X ′)2ni
i }di=1, X̃2ñ, (X̃ ′)2ñ, {Ni}di=1, {N ′i}di=1, Ñ , and Ñ ′.

Note that the total number of independent random variables corresponding to p̃ and each distri-
bution pi is at most

ñ? := 4ñ+ 2 and n?i := 4ni + 2,

respectively. By Lemma 23, changing a sample point in X2ni′
i′ , (X ′)

2ni′
i′ , Ni′ , or N ′i′ changes the

estimator’s value by at most 2 multiplied by

ai′

ni′
eãr̃ · e1.5

∑d
i=1 airi

∑
j∈[k]

∏
i 6=i′

Nji

ni

 =
ai′

ni′
eãr̃ · e1.5

∑d
i=1 airi

∏
i 6=i′

 ∑
ji∈[ki]

(
Nji

ni

)
≤ ai′

ni′
eãr̃ · e1.5

∑d
i=1 airi

∏
i 6=i′

(
2ni
ni

)
=
ai′

ni′
· 2d · eãr̃+1.5

∑d
i=1 airi .

Let c?i′ denote the value of the last quantity multiplied by 2. Analogously, by Lemma 24, changing
a sample point in X̃2ñ, (X̃ ′)2ñ, Ñ , or Ñ ′ changes the estimator’s value by at most 2 multiplied by

ũ

ñ
eãr̃ · e

∑d
i=1 airi =

ũ

ñ
eãr̃+

∑d
i=1 airi .

Let c̃? denote the value of the last quantity multiplied by 2. Let S̃ := {X̃2ñ, (X̃ ′)2ñ, Ñ , Ñ ′},
S0 := ∅, and Si := {{X2nt

t }it=1, {(X ′)
2nt
t }it=1, {Nt}it=1, {N ′t}it=1}. Combined with McDiarmid’s

inequality (Lemma 22) and union bound, these deviation upper bounds yield

Pr
(∣∣∣Î? − E[Î

?
]
∣∣∣ ≥ ε) ≤ Pr

(∣∣∣I − ES̃ [Î
?
]
∣∣∣+

d∑
i=1

∣∣∣ES̃,Si−1
[Î
?
]− ES̃,Si [Î

?
]
∣∣∣ ≥ ε)

≤ Pr
(∣∣∣I − ES̃ [Î

?
]
∣∣∣ ≥ ε)+

d∑
i=1

Pr
(∣∣∣ES̃,Si−1

[Î
?
]− ES̃,Si [Î

?
]
∣∣∣ ≥ ε)

≤ 2 exp

(
− 2ε2

ñ?(c̃?)2

)
+ 2

d∑
i=1

exp

(
− 2ε2

n?i (c
?
i )

2

)
, ∀ε ≥ 0.

Let ε := 1√
τ̃

+
∑

i∈[d]
1√
τi

. The above probability bound vanishes at a super-linear rate if

c̃? ≤ ε

(ñ?)0.6
⇐⇒ 2 · ũ

ñ
eãr̃+

∑d
i=1 airi ≤

1√
τ̃

+
∑

i∈[d]
1√
τi

(4ñ+ 2)0.6 ,

and for all i ∈ [d],

c?i ≤
ε

(n?i )
0.6
⇐⇒ 2 · ai

ni
· 2d · eãr̃+1.5

∑d
i=1 airi ≤

1√
τ̃

+
∑

i∈[d]
1√
τi

(4ni + 2)0.6 .

To summarize, by the triangle inequality, with an error probability of at most

δ? := 2 exp
(
−2(4ñ+ 2)0.2

)
+ 2

d∑
i=1

exp
(
−2(4ni + 2)0.2

)
,
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the estimator estimates f̃(p, p̃) =
∑

j∈[k] f−1 (p(j), p̃(j)), for any p, p̃, to an additive error of

ε? := 2ε+
∣∣∣f̂(p, p̃)− f̃(p, p̃)

∣∣∣ ≤3

2
e−3ñ/8 + 4

∑
i∈[d]

e−3ni/8 +
5√
τ̃

+
∑
i∈[d]

5
√
τi

≤ 6√
τ̃

+
∑
i∈[d]

6
√
τi
,

where the last step follows by the assumptions 3e−3ñ/8 ≤ 2/
√
τ̃ and 4e−3ni/8 ≤ 1/

√
τi, ∀i ∈ [d].

Appendix L. Special Case: ki’s Are Not Too Different

In this section we consider the special case where ki’s are not too different. Our objective is to
provide a proof sketch for Theorem 4, which we restate below.

Theorem 4 Assume that c1 log k0 ≤ log ki ≤ c2 log k0,∀i ∈ [d], for some k0 and absolute con-
stants c1, c2 > 0. Then for any parameters ε > 0 and d ∈ Z+, sufficiently large k0, and distributions

p̃ ∈ ∆[k] and p ∈ ∆k, if ñ = Ω

(
(
∏
i ki)d

1/2

√
log(

∏
i ki)ε

3

)
and ni = Ω

(
kid

7/2
√

log kiε3

)
, ∀i ∈ [d],

Pr
Y ñ∼p̃,Xn∼p

(∣∣∣f̂(Y ñ, Xn)− `1
(
p̃, p×

)∣∣∣ ≥ ε) = Õ
(

1

ñ1/6

)
.

Let a0 := ã, τ0 := τ̃ , ũ0 := ũ, r0 := r̃ and {ai, τi, ũi, ri}i∈[d] be the hyper-parameters of our
estimator described in the last section. Let bde := {0, 1, . . . , d}. Basically, for the results in the last
section to hold, we need to ensure that

ai ≥ 2.5, τi ≥ 1, ũi ≥ 2.5aiτi, and ri ≥ 5(ũi + 1) ∨ 10(ai − 1), ∀i ∈ bde .

For our purpose, we can set ũi = 2.5aiτi and ri = 15aiτi. Given sampling parameters ñ and ni’s,
let m̃ := ãñ and m := (mi)i∈[d] := (aini)i∈[d] be the amplified sample sizes. Denote by p̆ and p̂
the empirical distribution of the independent samples Y m̃ ∼ p̃ and Xm ∼ p, respectively.

By the empirical-estimator bias bound in Section E,∣∣`1 (p̃, p×)− E[`1
(
p̆, p̂×

)
]
∣∣ ≤√∏i ki

m̃
+

d∑
i=1

√
ki
mi
.

Hence, for the sampling parameters ñ, ni’s satisfying the conditions stated in Theorem 4, if we set
ã = Θ(ε

√
log(

∏
i ki)/d) and ai = Θ(ε

√
log ki/d

3/2), where the asymptotic notation hides some
sufficiently large absolute constants,∣∣`1 (p̃, p×)− E[`1

(
p̆, p̂×

)
]
∣∣ ≤ O(ε) +

d∑
i=1

O
(ε
d

)
= O(ε).

Next we relate our estimator to this larger-sample-size empirical estimator. Summarizing the results
established in the last section, the theorem below characterizes the performance of our estimator.
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Theorem 5 For hyper-parameters satisfying the conditions stated above, if further,

2 · ũ
ñ
eãr̃+

∑d
i=1 airi ≤

1√
τ̃

+
∑

i∈[d]
1√
τi

(4ñ+ 2)0.6

and

2 · ai
ni
· 2d · eãr̃+1.5

∑d
i=1 airi ≤

1√
τ̃

+
∑

i∈[d]
1√
τi

(4ni + 2)0.6 , ∀i ∈ [d],

then with high probability, the proposed estimator closely approximates the empirical estimator
with sampling parameters m̃ and m̃i, i ∈ [d]. Specifically,

Pr
Y ñ∼p̃,Xn∼p

∣∣∣f̂(Y ñ, Xn)−E[`1
(
p̆, p̂×

)
]
∣∣∣≥ 6√

τ̃
+
∑
i∈[d]

6
√
τi

≤2e−2(4ñ+2)0.2+2
d∑
i=1

e−2(4ni+2)0.2 .

Consider parameter settings in the above theorem. For the Θ(1/
√
τ̃ +

∑
i∈[d] 1/

√
τi) deviation

with respect to E[`1 (p̆, p̂×)] to be Θ(ε), we can simply set τ̃ = Θ(1/ε2) and τi = Θ(d2/ε2), where
the asymptotic notation hides some sufficiently small absolute constants.

Combined with the conditions stated in Theorem 4, our choice of hyper-parameters leads to

ãr̃ + 1.5

d∑
i=1

airi = 15(ã2τ̃ + 1.5

d∑
i=1

a2
i τi) = Θ(log(

∏
i

ki)/d+
∑
i∈[d]

log(ki)/d) = Θ(log k0),

where for sufficiently large k0, we can make the absolute constant hidden in the asymptotic notation
arbitrarily small (say, smaller than 0.1) by choosing the aforementioned absolute constants properly.

Note that the above derivation also implies that ũ, ai ≤ ãr̃ ≤ Θ(log k0). Hence for the condi-
tions in Theorem 5 to be satisfied, it suffices to have

Θ

(
log k0

ñ0.4
e0.1 log k0

)
≤ Θ(ε) and Θ

(
2d log k0

n0.4
i

e0.1 log k0

)
≤ Θ(ε).

By the assumptions in Theorem 4, we have ñ, ni ≥ Ω̃(k0) for all i ∈ [d]. Choosing sufficiently
large k0 ensures that both inequalities hold and thus completes the proof.

Appendix M. Other Proofs Omitted From the Above

Lemma 9 For any λ, τ ≥ 0, a ≥ 2.5, and u ≥ 2.5aτ ,

Pr(Poi(aλ) ≥ u) · Pr(Poi(λ) ≤ τ) ≤ exp

(
−3

8
τ

)
.

Proof According to the result in Chung and Lu (2017) (Chapter 2), for anyX ∼ Poi(µ) and x > 0,

Pr (X ≤ µ− x) ≤ e−x2/(2µ) and Pr (X ≥ µ+ x) ≤ e−
x2

2(µ+x/3) .
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Following these tail bounds, we split our analysis into three cases according to the value of λ.
If λ ≤ τ , then aλ ≤ aτ and it is therefore unlikely to have Poi(aλ) ≥ u ≥ 2.5aτ . More concretely,

Pr(Poi(aλ) ≥ u) ≤ exp

(
− (2.5aτ − aλ)2

2(aλ+ (2.5aτ − aλ)/3)

)
≤ exp

(
−3

4
aτ

)
≤ exp

(
−3

8
τ

)
.

If λ ≥ 2.5τ , then the probability of having Poi(λ) ≤ τ should be small,

Pr(Poi(λ) ≤ τ) ≤ exp

(
−(λ− τ)2

2λ

)
≤ exp

(
− 1.52

2 · 2.5
τ

)
≤ exp

(
−3

8
τ

)
.

Finally, we address the slightly more complex case of λ ∈ (τ, 2.5τ). For notational convenience,
we denote t := λ/τ , which belongs to (1, 2.5). We will also make use of a ≥ 2.5.

Pr(Poi(aλ) ≥ u) · Pr(Poi(λ) ≤ τ) ≤ exp

(
− (2.5aτ − aλ)2

2(aλ+ (2.5aτ − aλ)/3)

)
· exp

(
−(λ− τ)2

2λ

)
= exp

(
−3(2.5− t)2

5 + 4t
aτ − (t− 1)2

2t
τ

)
≤ exp

(
− inf
t∈(1,2.5)

(
7.5(2.5− t)2

5 + 4t
+

(t− 1)2

2t

)
· τ
)

≤ exp

(
−3

8
τ

)
.

This completes our proof of the lemma.

Lemma 11 For any λ, τ ≥ 0 and b > 1,

Pr(Poi(λ) ≤ τ) · Pr(Poi(λ) ≥ bτ) ≤ exp

(
−
(

(c(b)− 1)2

2c(b)
+

3(b− c(b))2

2(b+ 2c(b))

)
τ

)
,

where for

t(b) :=
(
−64− 528b2 − 8742b4 − 1331b6 + 54

√
5
√

64b4 + 528b6 + 5097b8 + 1331b10
)1/3

,

c(b) :=− b

4
+

1

2

√
{
b2

4
+

1

15

(
4 + 11b2

)
+

(
4 + 11b2

)2
30t(b)

+
t(b)

30

}

+
1

2

√
{
b2

2
+

2

15

(
4 + 11b2

)
−
(
4 + 11b2

)2
30t(b)

− t(b)

30

+

(
16b

5
− b3 +

2

5
b
(
−4− 11b2

)) / (
4
√
[
b2

4
+

1

15

(
4 + 11b2

)
+

(
4 + 11b2

)2
30t(b)

+
t(b)

30

])}
.
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Proof According to the result in Chung and Lu (2017) (Chapter 2), for anyX ∼ Poi(µ) and x > 0,

Pr (X ≤ µ− x) ≤ e−x2/(2µ) and Pr (X ≥ µ+ x) ≤ e−
x2

2(µ+x/3) .

Note that Pr(Poi(λ) ≤ τ) · Pr(Poi(λ) ≥ bτ) ≤ min {Pr(Poi(λ) ≤ τ), Pr(Poi(λ) ≥ bτ)}. We
consider three cases: λ ≤ τ , λ ≥ bτ , and λ = cτ where c ∈ (1, b).

If λ ≤ τ , we bound the desired probability by

Pr(Poi(λ) ≥ bτ) ≤ Pr(Poi(τ) ≥ bτ) ≤ exp

(
−3(b− 1)2

2(b+ 2)
τ

)
.

If λ ≥ bτ , we utilize the upper bound

Pr(Poi(λ) ≤ τ) ≤ Pr(Poi(bτ) ≤ τ) ≤ exp

(
−(b− 1)2

2b
τ

)
.

Note that for b > 1, we have 3/(b+ 2) > 1/b. Hence this upper bound is at least the previous one.
Finally, for λ = cτ where c ∈ (1, b),

Pr(Poi(cτ) ≤ τ) · Pr(Poi(cτ) ≥ bτ) ≤ exp

(
−(c− 1)2

2c
τ

)
· exp

(
−3(b− c)2

2(b+ 2c)
τ

)
≤ exp

(
−
(

(c− 1)2

2c
+

3(b− c)2

2(b+ 2c)

)
τ

)
Minimizing the expression on the right-hand side with respect to c yields the desired inequality.

Lemma 12 For any λ ≥ 0, b ≥ 5, and independent X ′, X ∼ Poi(λ),

E[1X′>τ1bX′≤X ] ≤ exp

(
−2

3
τ

)
.
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Proof Expand the left-hand-side expression,

E[1X′>τ1bX′≤X ]
(a)
=
∑
v>τ

∑
w≥bv

(
e−λ

λv

v!

)(
e−λ

λw

w!

)
(b)
= e−2λ

∑
v>τ

∑
w≥bv

λv+w

v!w!

(c)
= e−2λ

∑
v>τ

∑
w≥bv

λv+w

(v + w)!

(
v + w

v

)

(d)
= e−2λ

∑
v+w≥(b+1)(τ+1)

(2λ)v+w

(v + w)!

v+w
b+1∑

v′=τ+1

(
1

2

)v′ (1

2

)v+w−v′ (v + w

v′

)
(e)

≤ e−2λ
∑

v+w≥(b+1)(τ+1)

(2λ)v+w

(v + w)!
Pr

(
bin(v + w, 1/2) ≤ v + w

b+ 1

)
(f)

≤ e−2λ
∑

v+w≥(b+1)(τ+1)

(2λ)v+w

(v + w)!
exp

(
−
(
b− 1

b+ 1

)2 v + w

4

)
(g)

≤ e−2λ
∑

v+w≥(b+1)(τ+1)

(2λ)v+w

(v + w)!
exp

(
− (b− 1)2

4(b+ 1)
τ

)
(h)

≤ exp

(
−2

3
τ

) ∑
v+w≥(b+1)(τ+1)

e−2λ (2λ)v+w

(v + w)!

(i)
= exp

(
−2

3
τ

)
· Pr (Poi(2λ) ≥ (b+ 1)(τ + 1))

(j)

≤ exp

(
−2

3
τ

)
,

where (a), (b), (c), (i), and (j) follow by simple algebra; (d) follows by re-ordering the summation
operators and noticing that the sum is over w ≥ bv; (e) follows by noting that the last part in
the previous expression corresponds to a binomial tail probability; (f) follows by the Chernoff
bound for binomial random variables; (g) follows by the fact that the summation is over (v+w) ≥
(b+ 1)(τ + 1); (h) follows by the condition b ≥ 5.

Appendix N. Difference Between Two Empirical Estimators

We consider the difference between the empirical estimates under the Poisson and binomial sam-
pling models. The objective is to show that for a sufficiently smooth function, say f ∈ C [0, 1] that
is 1-Lipschitz, theses two sampling models achieve essentially the same level of performances.

Lemma 13 For any n ≥ 44, x ∈ [0, 1], and f that is 1-Lipschitz,

|Bn[f, x]− Sn[f, x]| ≤ 3x

n1/3
.
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Proof Let c be a parameter to be determined later. For any x ∈ [c/n, 1], we have

|Bn[f, x]− Sn[f, x]|
(a)

≤ |Bn[f, x]− f(x)|+ |f(x)− Sn[f, x]|
(b)

≤
∑
j≥0

∣∣∣∣f ( jn
)
− f(x)

∣∣∣∣ bin(n, x, j) +
∑
j≥0

∣∣∣∣f ( jn
)
− f(x)

∣∣∣∣Poi(nx, j)

(c)
=

1

n

∑
j≥0

|j − nx| bin(n, x, j) +
1

n

∑
j≥0

|j − nx|Poi(nx, j)

(d)
=

1

n
E

X∼bin(n,x)
|X − nx|+ 1

n
E

Y∼Poi(nx)
|Y − nx|

(e)

≤ 1

n

√
Var (bin(n, x)) +

1

n

√
Var (Poi(nx))

(f)

≤ 1

n

√
nx+

1

n

√
nx

(g)

≤ x

√
4

c
,

where (a) follows by the triangle inequality; (b) follows by the fact that both operators preserve
constant functions; (c) follows by the Lipschitzness of f ; (d) follows by the definition of absolute
mean deviation; (e) follows by Jensen’s inequality; (f) follows by standard results on variances of
Poisson and binomial random variables; (g) follows by the condition x ∈ [c/n, 1].

On the other hand, by the above reasoning, we can assume that f(0) = 0. For any x ∈ [0, c/n],

|Bn[f, x]− Sn[f, x]|
(a)

≤
∑
j≥0

|bin(n, x, j)− Poi(nx, j)| f
(
j

n

)
(b)
=
∑
j≤2c

|bin(n, x, j)− Poi(nx, j)| f
(
j

n

)

+
∑
j>2c

|bin(n, x, j)− Poi(nx, j)| f
(
j

n

)
(c)

≤ 2x

(
2c

n

)
+
∑
j>2c

|bin(n, x, j)− Poi(nx, j)|
(
j

n

)
(d)

≤ 2x

(
2c

n

)
+
∑
j>2c

bin(n, x, j)

(
j

n

)
+
∑
j>2c

Poi(nx, j)

(
j

n

)
(e)

≤ 2x

(
2c

n

)
+ xPr (bin(n− 1, x) ≥ 2c) + xPr (Poi(nx) ≥ 2c)

(f)

≤ 2x

(
2c

n

)
+ 2xe−0.38c

(g)

≤ x

(
5c

n

)
,

where (a) follows by the triangle inequality; (b) follows by decomposing the previous summation;
(c) follows by noting f(0) = 0, f is 1-Lipschitz, and thus f(j/n) ≤ j/n ≤ 2c/n for j ≤ 0; (d)
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follows by the triangle inequality; (e) follows by∑
j>2c

(
n

j

)
xj(1− x)n−j

j

n
=x

∑
j>2c

(
n− 1

j − 1

)
xj−1(1− x)(n−1)−(j−1)

≤xPr(bin(n− 1, x) ≥ 2c),

and ∑
j>2c

e−nx
(nx)j

j!

(
j

n

)
= x

∑
j>2c

e−nx
(nx)j−1

(j − 1)!
= xPr(Poi(nx) ≥ 2c);

(f) follows by x ∈ [0, c/n] and the Chernoff bound for Poisson random variables; (g) follows by
our choice of c (see below) and n ≥ 44.

Setting c = (4/25)1/3n2/3 and combining the inequalities above imply the desired bound.

As an immediate corollary, let f be a d-distribution property satisfying the Lipschitz condition.
For any sampling vector n = (n1, . . . , nd) and its Poissonized version N = (N1, . . . , Nd) where
Ni ∼ Poi(ni) are independent, the expected values of the corresponding empirical estimator differ
by only a fairly small quantity. Specifically, if ni ≥ 44,∀i,

E
Xn∼p

[
f̂E(Xn)

]
− E
Y N∼p

[
f̂E(Y N )

]
≤ 3

∑
i

n
−1/3
i ,

where we used the fact that both operators, Bernstein and Szász-Mirakyan, preserve Lipschitzness.
See Lemma 10 and Theorem 4.11 in Bustamante (2017) for a proof of this fact.
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