
Extracting Knowledge from Web Text with
Monte Carlo Tree Search

Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li
Cognitive Computing Lab

Baidu Research
No.10 Xibeiwang East Road, Beijing, China
10900 NE 8th St. Bellevue, WA 98004, USA

gla68@sfu.ca, {lixu13,v_wangjiakang,sunmingming01,liping11}@baidu.com

ABSTRACT
To extract knowledge from general web text, it requires to build a
domain-independent extractor that scales to the entire web corpus.
This task is known as Open Information Extraction (OIE). This paper
proposes to apply Monte-Carlo Tree Search (MCTS) to accomplish
OIE. To achieve this goal, we define a Markov Decision Process for
OIE and build a simulator to learn the reward signals, which provides
a complete reinforcement learning framework for MCTS. Using this
framework, MCTS explores candidate words (and symbols) under
the guidance of a pre-trained Sequence-to-Sequence (Seq2Seq) pre-
dictor and generates abundant exploration samples during training.
We apply the exploration samples to update the reward simulator
and the predictor, based on which we implement another MCTS to
search the optimal predictions during inference. Empirical evalua-
tion demonstrates that the MCTS inference substantially improves
the accuracy of prediction (more than 10%) and achieves a leading
performance over other state-of-the-art comparison models.

ACM Reference Format:
Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li. 2020. Extracting
Knowledge from Web Text with Monte Carlo Tree Search. In Proceedings
of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3366423.3380010

1 INTRODUCTION
The rapidly-increasing Internet users generate a growing amount of
text data every day. Those text data (e.g., news, tweets or blogs) con-
tain abundant information and meaningful knowledge on various do-
mains. To utilize the large amount of information from the web text,
we would like to build an unlexicalized, domain-independent extrac-
tor that scales to the diversity and size of the Web corpus [2, 25, 26].
Among all the topics studied in recent years, Open Information
Extraction (OIE) is essentially the most relevant task that satisfies
the above specifications. OIE requires generating structured repre-
sentations of information from unstructured knowledge implicit in
natural language sentences. Figure 1 presents an example of OIE. An
OIE extractor should directly distill natural language texts into facts
(entity-relation tuples) without human involvement. The extracted
facts can be applied as the source data of many data mining tasks

This paper is published under the Creative Commons Attribution 4.0 International (CC-
BY 4.0) license. Authors reserve their rights to disseminate the work on their personal
and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380010

Figure 1: An example of OIE. Given a source sentence, we gen-
erate a sequence of facts (F1, F2, F3). A fact is consisted of sub-
ject, relation and object. We use parentheses to separate facts
and $ to denote different components of a fact. Both the sym-
bols (e.g., $) and the words are required to be predicted.

and fuel countless downstream applications [11, 13, 16], including
question & answering, text summarization, word analogy, etc.

Traditional OIE works commonly apply the pattern matching tech-
niques [2, 7, 18] to locate the components of a fact, but pre-defined
matching rules are difficult to generalize across different domains.
To tackle this problem, a recent work [26] learned an end-to-end
extractor which directly generates a sequence of facts from a source
sentence. Based on the Seq2Seq model, their extractor applies the
recurrent encoder-decoder model that iteratively predicts the words
and the symbols (e.g., ’$’ and ’(’ in Figure 1) of prediction sequences.
To enhance the performance, [25] deployed reinforcement learning
(RL) which defines a reward function and updates the extractor with
only sentence-reward pairs from the training dataset. The limita-
tion of [25, 26] is twofold: 1) the lack of exploration constrains the
model’s knowledge about different combinations of candidate words;
2) at each generation step, the traditional Seq2Seq predictor applies
either greedy or beam search to determine the predicted word, which
is likely to trap the solution into a local optimum.

This paper proposes to use Monte Carlo Tree Search (MCTS) [5]
to overcome the aforementioned limitation. By applying the rewards
and the prior probabilities from a sequence-to-sequence (Seq2Seq)
predictor, MCTS builds an action-state game tree, explores different
candidate words (and symbols) at every tree node, and guides the
tree search with a Predictor Upper Confidence Bound (PUCB). As an
effective heuristic, PUCB not only evaluates the currently predicted
words but also looks ahead to the end of prediction, which effectively
prevents local optimum and substantially boosts searching quality.

However, to extend the MCTS solution to OIE tasks, we would
have to deal with multiple challenges: 1) MCTS solutions are built on
the Markov Decision Process (MDP) whereas none of the previous

https://doi.org/10.1145/3366423.3380010
https://doi.org/10.1145/3366423.3380010

WWW ’20, April 20–24, 2020, Taipei Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li

works have defined an MDP for knowledge extraction problems.
2) MCTS uses rewards to guide the tree search, but the process of
sequence prediction does not explicitly return such a reward signal.
3) An OIE extractor should efficiently handle a large amount of web
text, but it is difficult for traditional parallel MCTS to finish actions
exploration and predictions generation within a reasonable time.

In this work, to resolve these challenges, we develop a novel RL
framework that incorporates the MCTS solution into the task of
OIE. The RL framework defines a similarity reward that encourages
the model to generate the facts resembling the ground-truth ones.
We also propose a novel reward simulator that dynamically evalu-
ates the predicted facts and continuously provides reward signals
to MCTS when the ground-truth labels are not available. During
training, MCTS explores the candidate words and symbols under the
guidance of a pre-trained Seq2Seq predictor and generates numerous
exploration samples, with which we update both the predictor and
the simulator. Based on the updated predictor and simulator, we
implement another MCTS during inference. To reduce the running
time, we propose a batched parallel MCTS, which makes our model
run nearly 20 times faster than traditional parallel MCTS. Empirical
evaluation shows the MCTS inference achieves a significantly higher
accuracy (more than 10%) than state-of-the-art models.

The main contributions of this paper are summarized as follows:
• To our best knowledge, this is the first work that applies MCTS to

solving the knowledge extraction problem;
• We propose a reward simulator to generate rewards for MCTS;
• We develop an RL framework for the task of OIE which enables

MCTS to search for the optimal prediction sequence during infer-
ence and largely improves the prediction accuracy.

2 RELATED WORKS
Open Information Extraction (OIE) [2] defines a domain-independent
task of extracting facts (entity and relation tuples) from the natu-
ral language sentences (e.g., news or blogs), in contrast with the
Close Information Extraction (CIE) which identifies instances from
a fixed and finite set of corpus [17, 32]. Traditional OIE solutions
often construct their handcrafted heuristics to locate the facts (e.g.,
OpenIE-v4 system defined two independent extractors: 1) SRLIE
to find verb-based relations [4] and 2) ReNoun to extract nominal
attributes [31]). The existing extraction models mainly apply pat-
tern matching techniques [2, 4, 31]. The handcrafted heuristics and
the pattern matching methods, however, have limited generalization
ability across different domains.

To tackle the problem, some recent OIE works have built deep
recurrent models to capture features from source sentences and itera-
tively generate a fact (or its labels) word-by-word. For instance, Sun
et al. [26] built an end-to-end OIE extractor based on the Seq2Seq
predictor [27], by directly transferring the input source sentence into
a prediction sequence containing a list of facts. Sun et al. [25] further
improved the performance of Seq2Seq predictors with reinforce al-
gorithm [19], which computes a reward signal and updates the model
with ⟨sequence, rewards⟩ pairs. However, their training data are lim-
ited to the existing samples in the dataset. Without exploring other
possible predictions, the reinforce method achieves only limited
improvement over the Seq2Seq extractor. More recently, [15] pro-
posed a Confidence Exploration for OIE without learning a reward
function, ie., their method explores only during training.

Monte-Carlo Tree Search (MCTS) [5] is an iterative heuristic
search algorithm that explores different actions and searches for the
optimal sequence of decisions. The exploring and searching ability
has benefited many tasks under game environment [22, 23] (e.g., Go),
which requires a massive number of simulations to determine the
optimal move. To improve the searching efficiency and efficacy, [21]
proposed the Predictor Upper Confidence Bound (PUCB), which
guides MCTS with the prior probabilities from a pre-trained predic-
tor. Another technique of reducing the running time is parallelization:
Chaslot et al. [3] introduced a parallel MCTS implemented with a
multi-thread program, but this parallel framework is only applicable
to the traditional MCTS without interacting with a predictor.

3 TASK FORMULATION AND APPROACH
This section introduces our approach to formulating OIE as a se-
quence prediction task and developing a reinforcement learning (RL)
framework for MCTS.

3.1 OIE as a Sequence Prediction Task
We accomplish the OIE task in the manner of sequence prediction [1,
14, 26]. The first step is dividing the natural language text into source
sentences. Given a source sentenceX , our model iteratively generates
a prediction sequence Ŷ of T items: Ŷ1...T = {ŷ1, ŷ2, · · · , ŷT }. Each
item ŷt can be a word or a symbol (e.g., ’$’ and ’(’ in Figure 1) that
marks the predicted facts. A predicted fact F̂ is a sub-sequence of
prediction Ŷ : F = {ŷt , · · · , ŷt+γ } and t + γ < T . F contains both
the words recording entity-relations and the symbols that mark the
structure of this fact. The order of facts within a prediction sequence
has not been considered during evaluation.

3.2 Construct Markov Model for OIE
We define a Markov Decision Process (MDP) for the task of se-
quence prediction. At inference step t , the state st of MDP contains
both the source sentence X and the up-to-now predictions Ŷ1..t−1.
The action at is the next item (word or symbol) to be predicted (ŷt),
which is selected according to the estimated probability distribu-
tion Pr(ŷt |X , Ŷ1..t−1) for all candidate words and symbols. After
determining at , our agent reaches the next states st+1= ⟨X , Ŷ1..t ⟩.
During this transition, the Markov property is strictly preserved as
⟨X , Ŷ1..t ⟩ records all previous knowledge (often with a recurrent
network). However, one difficulty of building a complete MDP is
that the predictions do not explicitly provide a reward signal. We
discuss this phenomenon and provide our solution in the following.

3.3 Complete the Environment with Rewards
Unlike game environments that directly return reward signals, our
OIE task does not explicitly provide such a signal, so we define an
OIE reward and introduce our approach to computing it.

Our OIE reward rt is the similarity score Sim between pre-
dicted facts and ground-truth facts. At inference step t , rt is com-
pute by: 1) given a prediction sequence Ŷ1..t (contains NP pre-
dicted facts {F̂1, ..., F̂NP }) and a target sequence Y ∗ (contains NG
ground-truth facts {F ∗1 , ..., F

∗
NG
}), we match each predicted fact

with a ground-truth fact by finding an optimal assignment that
maximizes their matching similarity. The matched fact pairs are

Extracting Knowledge from Web Text with Monte Carlo Tree Search WWW ’20, April 20–24, 2020, Taipei

{⟨F̂i , F
∗
j ⟩l }

min(Np,NG)

l=1 . 2) The similarity score between the predic-
tion sequence and the target sequence is defined as the similarity of

matched facts: Sim(Ŷ1..t ,Y ∗) =
∑min(Np,NG)

l=1 ð((F̂i , F
∗
j)l), where ð

denotes the Gestalt Pattern Matching [20]. It is a string-matching
algorithms for determining the similarity of two strings. The essence
of similarity score agrees with the goal of OIE, which is extracting
the most complete and accurate facts that resemble the ground-
truth ones. To maximize Sim(Ŷ1..t ,Y ∗), the agent adjusts its policy
and learns how to generate the prediction sequences containing the
ground-truth facts. However, a limitation of our similarity function is
its requirement of target sequences (available only during training).
During inference, the target sequences (Y ∗) are unknown, which hin-
ders the reward computation. To resolve this problem, we introduce a
novel reward simulator S (Section 4.1) that learns with the similarity
function and generates rewards with only Ŷ1..t and X1...M .

3.4 Our Approach: An RL Framework for MCTS
We introduce our RL framework that enables MCTS to find the opti-
mal prediction sequence for the task of OIE. Figure 2 illustrates our
RL framework where we incorporate MCTS into both the training
and the inference procedures to generate the prediction sequence Ŷ .

Figure 2: The RL framework for the task of OIE.

During training, we input the training data ⟨X ,Y ∗⟩ and a pre-
trained Seq2Seq predictor P0 into the parallel MCTS. MCTS gener-
ates numerous exploration sequences and their rewards, with which
we update the predictor and learn a reward simulator S. During in-
ference, given only the source sentences (without target sequences),
MCTS uses the rewards from the updated simulator and probabilities
from the updated predictor to guide the tree search and generate the
prediction sequences Ŷ . This framework enables our model to take
advantage of the exploration ability of MCTS during training and
efficiently search for the optimal predictions during inference. The
learning details of both procedures are introduced in Section 5.

4 MODEL
This section introduces three main elements of the RL framework,
including a reward simulator, a Seq2Seq predictor, and MCTS.

4.1 Reward Simulator
We introduce a novel reward simulator that evaluates current predic-
tions and generates rewards when target sequences are not available.
The reward simulator is a key component of a complete RL environ-
ment for OIE, especially under the industrial circumstance where
our model is required to generate predictions without knowing the

target sequences Y ∗. To achieve this goal, given a source sentence
X and a prediction sequence Ŷ1...t containing Np facts {F̂i }

Np
i=1, the

reward simulator S should dynamically determine whether the ex-
tracted facts record the complete and correct information in X . To
implement such a simulator, we design a two-tower neural structure
which separately fits a fact and a source sentence (Figure 3). Both
towers apply bi-directional LSTM to extract sequential features. The
features are merged to the output layer which generates a score
S(X , F̂i) for the fact. The summation of the scores for every facts is
the simulated reward of a prediction sequence: rt =

∑Np
i=1 S(X , F̂i).

Figure 3: Model structure of our reward simulator.

To learn an accurate simulation reward, we utilize the training data
(ground-truth facts are available) and apply the real similarity score
ð(F̂i , F

∗
j) to supervise the training of simulator by the L2-norm loss

function (Formula (3)). This reward simulator offers an alternative
approach to learning a reward signal when it is hard to explicitly
compute a reward for the sequence prediction problem.

4.2 Seq2Seq Predictor
The Seq2Seq model [26, 27] uses an encoder to fit the input sen-
tences and a decoder to generate the prediction sequences. Both the
encoder and the decoder apply a bidirectional Gated Recurrent Units
(GRU) layer to capture sequential relations between words. Follow-
ing [26], we build an end-to-end Seq2Seq predictor which directly
generates a prediction sequence Ŷ (which contains extracted facts
{F̂1, F̂2, · · · , F̂NP }) when given a source sentence X . At inference
step t , the decoder produces a probability distribution of the can-
didate words and symbols: Pr(yt |y1, · · · ,yt−1; ct) = д(ht−1,ϕt , ct),
where ht−1 and ϕt are the hidden states from the GRU encoder
and the GRU decoder respectively, д is the word generation model,
and ct is the dynamic context vector. The decoder implements the
generation model д with the copy mechanism [10] which generates a
prediction ŷt by either copying words from the input sentence X or
selecting symbols from a set of pre-defined markers (e.g., ’$’). This
design satisfies the specification of OIE, which requires: 1) extracting
meaningful information from source sentences (by copying words);
and 2) reconstituting the words with a pre-defined format (defined
with the symbols). The dynamic context vector ct implements the
coverage mechanism [30]. It applies an additional coverage vector
for every word in source sentences to remember their individual
attention history, which prevents information loss or redundancy in
prediction sequences.

WWW ’20, April 20–24, 2020, Taipei Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li

Figure 4: The parallel implementation of MCTS for OIE. After selection, we batch N (batch size)∗ M (play number) states from the
leaf nodes before inputting them to the predictor. The predictor generates the exploration sequences with policy roll-out. We evaluate
the sentences with the similarity function (Sim(Ŷ1..t ,Y ∗)) and the reward simulator (S) during training and inference respectively. To
complete N ∗M plays, our method requires only one interaction with the neural model, and thus effectively accelerates MCTS.

4.3 MCTS
In this section, we introduce MCTS based on the Seq2Seq predic-
tor [23] and our approach to accelerating MCTS with parallelization.

4.3.1 Predictor MCTS. MCTS is mainly about building and up-
dating a game tree where nodes denote the states st=⟨X , Ỹ1..t−1⟩
and edges represent the actions to be explored at=⟨ỹ⟩. Each edge
also records a visit count N (st ,at), an action-value Q(st ,at), and
the prior probability Pr0(at |st) from a pre-trained Seq2Seq predictor
P. Based on the game tree, we run the tree search by iteratively im-
plementing a play including four phases: 1) Selection: select actions
at according to a Predictor Upper Confidence Bound (PUCB) and
traverse the tree from root to a leaf node. PUCB is defined as:

at = argmax
a

[
Q(st ,a) + cpuctPr0(st ,a)

√∑
b N (s,b)

1 + N (st ,a)

]
, (1)

where Pr0(st ,a) holds the prior probabilities from a pre-trained pre-
dictor P0 and cpuct controls the scale of exploration. This search
control strategy initially prefers actions with high prior probability
and low visit count, but asymptotically prefers actions with high
action value [23]. 2) Evaluation: evaluate the sequences of actions
selected along the tree traversal and compute the reward rt . 3) Ex-
pansion: expand the leave node with K child nodes that contain
the actions with top-k prior probabilities. 4) backup: increment the
visit count N (st ,at) and update the action-values Q(st ,at) (the ex-
pected cumulative future rewards [28] that look ahead to the end of
predictions) on all the traversed edges.

Figure 5: An example of move from the root node.

After implementing M (play number) plays, we make a move from
the root node by sampling an action according to the distribution of
visit number: â ∽ π (a |sroot), because visit numbers are proportional
to the action optimality (computed by PUCB during tree search).
After determining the predicted action â, we move the root to the
child node through the edge recording the action (see Figure 5). After

moving, the next play will start from the new root. We iteratively
implement the move T times until we generate a final prediction
sequence Ŷ1· · ·T = {â1, â2, · · · , âT }.

4.3.2 Parallelize MCTS. To improve the running efficiency, we
propose a batching update to the parallel implementation of MCTS .
Previous works on parallel MCTS algorithms [3] perform the par-
allel tree searches in separate threads. During running, each thread
interacts with the Seq2Seq predictor and the reward simulator inde-
pendently, which undermines the advantage of highly parallel matrix
computation implemented in GPU [9]. As evidence, our experiment
(Table 3) shows the running time of the evaluation phase (where
MCTS interacts with the neural models) dominates others for the
traditional parallel MCTS. To overcome this limitation, we merge
the selected states from individual threads and batch the inputs be-
fore computing prior probabilities and rewards. After evaluation,
those values are distributed to the parallel threads. This updating
significantly reduces the number of interactions, and thus improves
the algorithm efficiency. We show an example in Figure 4.

5 LEARNING
This section introduces our learning method that incorporates MCTS
into both the training and the inference procedures.

5.1 Training Procedure
The goal of training is 1) updating the pre-trained Seq2Seq predictor
P0 and 2) learning a reward simulator Ŝ. We apply the Reinforce
algorithm [19] to update the Seq2Seq predictor, but unlike previous
works [26] applying only sentences and rewards pairs from training
dataset, our MCTS generates and evaluates numerous exploration
sequences Ỹ e during the tree search. The exploration sequences
⟨X , Ỹ e ⟩ along with the reward signals re = Sim(Ỹ e ,Y ∗) record the
searching information of MCTS and significantly expand the training
samples. The parameters of the Seq2Seq predictor P are updated by:

θP ← θP +
d

dθP

[N∑
n=1

ren log Pr(Ỹn
e
|Xn)

]
(2)

For the reward simulator S, it is trained to measure if the exploration
sequences Ỹ e={F̃ e1 , ..., F̃

e
Np
} manage to capture the facts hidden in

source sentence X , so we update the simulator parameters with the

Extracting Knowledge from Web Text with Monte Carlo Tree Search WWW ’20, April 20–24, 2020, Taipei

same exploration samples by:

θS ← θS −
d

dθS

N∑
n=1

Np∑
i=1

[
ð(F ∗i,n , F̃

e
i,n) − S(Xn , F̃

e
i,n)

]2
(3)

where F ∗i,n and F̃ ei,n are facts in target sequences and exploration
sequences, N is the batch size, Np is the number of predicted fact
and Gestalt Pattern Matching ð measures string similarity.

5.2 Inference Procedure
During the inference procedure, given an input sentence, we imple-
ment another to search the prediction sequences, under the guidance
of the updated predictor P̂ and reward simulator Ŝ from training.
Unlike previous learning-based sequence prediction models [19, 26]
which determine predictions by directly applying a simple heuris-
tic search algorithm (e.g., beam search) on the output probabilities,
our algorithm utilizes reward signals, and the reinforcement learn-
ing method in MCTS guarantees that each predicted item (word
or symbol) will look ahead to the end of prediction and has the
largest expected cumulative rewards [28]. Our experiment results (ta-
ble 1) also indicate that the beam search cannot achieve comparable
performance with MCTS even if we use a large beam size.

6 EMPIRICAL EVALUATION
This section studies the performance of MCTS by evaluating the
predicted facts and measuring the running efficiency.

6.1 Experiment Setting
6.1.1 Dataset: A recent survey for OIE [18] provided a detailed
investigation over the available datasets. We find the most commonly
applied datasets are WEB, WIKI, NYT, and PENN, which record
sentences from web text, Wikipedia, New York Times Corpus, and
Penn Treebank respectively. The datasets, however, record only less
than 500 source sentences [6]. The lack of training data makes our
models overfit the sentences, as our preliminary experiments show.

In this paper, we apply a recently proposed SAOKE dataset 1

which contains over 47,000 source-target sequences ⟨X ,Y ⟩ pair
from Baike, one of the largest web-based encyclopedias. Unlike
many system-labeling datasets (e.g., OIE 2016 [24]) that utilize out-
puts from pattern-matching systems to supervise training, SAOKE
contains manually labeled ground-truth facts from crowd-sourcing.
The facts are extractions from human professionals, and thus more
accurately present the information of source sentences.
6.1.2 Running Settings: We split the SAOKE dataset, containing
47,000 source sentences and target sequences, into training (80%),
validation(10%) and testing(10%) set. To simulate the practical OIE
environment, we hide the target sequences from models during
inference. The expansion number K is set to 3, with which our pre-
liminary experiment shows a satisfactory performance. Our method
is implemented with the PaddlePaddle2 deep learning platform.
6.1.3 Comparison Methods: We compare two traditional OIE
models based on pattern matching techniques. The first model CORE
[29] is a system that selects entity-relation triples by matching a se-
ries of intermediate NLP components, including word segmentation,

1http://ai.baidu.com/broad/subordinate?dataset=saoke
2https://www.paddlepaddle.org.cn

syntactic parsing, and rules extraction. The second model [12] builds
an unsupervised OIE extractor based on Dependency Semantic Nor-
mal Forms (DSNF). Compared to CORE, this model imposes no
restrictions on the relative positions among entities and relationships.

We also compare several more advanced end-to-end extractors:
Logician [26] is a Seq2Seq predictor designed for the OIE task.
It applies target sequences to supervise the model training with
the teacher-forcing technique. To improve the model performance,
Ranzato et al. [19] proposed a reinforce algorithm for the sequence
prediction tasks. They refined the model with only samples and their
expected rewards from training data. A continuing work [25] defines
an Open-Domain Information Narration (OIN) task which transfers
the extracted facts back to a source sentence. Their model assembles
both the OIE agent and the OIN agent into a “dual” system, and
utilizes the dual structure as a reinforcement learning paradigm.

Besides the existing baseline methods, we also investigate the
impact of inference strategies. We perform a beam search on the
updated Seq2Seq predictor P̂ from training procedure (denoted by
MCTS@Train) and infer the final predictions (denoted by Beam@Infer).
This comparison method (MCTS@Train + Beam@Infer) enables us
to study the effect of replacing MCTS inference with a beam search.
We compare it with our approach: MCTS@Train + MCTS@Infer.

6.2 Performance Evaluation
This experiment studies the accuracy of extracted facts. We evaluate
the facts by their similarity with the ground-truth facts. The extracted
facts are labeled as “true” if their relations, subjects, and objects are
the same as that from the ground-truth facts. Given these labels, we
compute the quantification metrics including precision (P), recall (R)
and F1-score. The performances of our approach and comparison
methods are reported in Table 1. For the models applying beam
search, we experiment with both a common beam size (B = 3) and a
large beam size (B = 50) to study the impact of search scale.

Table 1: Evaluation results for the predicted facts.

Training Data Testing Data
P R F1 P R F1

DSNF 0.126 0.100 0.170 0.220 0.112 0.148
CORE 0.348 0.183 0.240 0.400 0.1760 0.232

Logician(B = 3) 0.560 0.478 0.515 0.469 0.400 0.432
Reinforce(B = 3) 0.580 0.460 0.513 0.487 0.410 0.445

Dual(B=3) 0.594 0.499 0.543 0.494 0.426 0.457
Logician(B = 50) 0.555 0.491 0.521 0.466 0.407 0.435
Reinforce(B = 50) 0.583 0.460 0.514 0.485 0.416 0.448

Dual(B = 50) 0.594 0.501 0.544 0.498 0.422 0.457
MCTS@Train +
Beam@Infer(B = 3) 0.573 0.475 0.519 0.518 0.425 0.467

MCTS@Train +
Beam@Infer(B = 50) 0.586 0.473 0.523 0.519 0.422 0.465

MCTS@Train +
MCTS@Infer (Ours) 0.690 0.582 0.632 0.611 0.506 0.554

From the results, we can see that the pattern matching methods
(DSNF and CORE) achieve only limited performance, especially for
the recall metric. It is caused by a large number of unmatched facts
during extraction, which proves that the pre-defined rules or schemas
fail to generalize to all the natural language corpus. Compared to
them, the end-to-end model Logician manages to predict the facts

WWW ’20, April 20–24, 2020, Taipei Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li

with higher precision and recall. We also find that despite both
Reinforce and Dual can improve the performance of our Seq2Seq
model, but insufficient exploration inhibits the growth of accuracy.

Another crucial obseravation is that the updated predictor man-
ages to further improve the model performance for testing data
(see MCTS@Train+Beam@Infer) after training with the exploration
samples generated by MCTS. It’s because the MCTS effectively
explores the candidate words and symbols that are likely to appear
under different situations, and thus generates the exploration sen-
tences of high quality. As evidence, Figure 6 shows the rewards of
facts generated by MCTS are much larger than that from the Seq2Seq
predictor (logician). By combining the exploration samples with the
large scale tree search, our approach (MCTS@Train+MCTS@Infer)
achieves the best performance among all comparison methods.

Figure 6: Distribution of fact rewards from prediction sen-
tences. The numbers of source sentences are 1 (left) and 20
(right). Compared to Logician, MCTS explores more facts hav-
ing rewards that approximate 1 (the reward for ground-truth).

However, the success of MCTS does not simply imply a larger
scale of search will always help. For example, our results show that
the performance of the beam search cannot match that of MCTS
during inference even if we set a very large beam size (B = 50).
Unlike other search algorithms, MCTS benefits a lot from its under-
lying heuristic (PUCB) which not only balances the exploration and
exploitation (see Eq. (1)) but also enables our model to look ahead
to the end of predictions (with action-value Q).

6.3 Error Analysis
We summarize the prediction errors of our approach and analyze
the model limitation, which pinpoints the direction of improvement
for future work. Following [8], we randomly select 100 prediction
sequences generated by MCTS during inference and summarize the
error of predicted facts in Table 2.

Table 2: Prediction error by percentage.

Error Type Training Testing
Correct relation,incorrect subjects 28.1% 13.5%
Correct relation,incorrect objects 15.6% 24.3%

Incomplete/over-extracted relation 34.4% 32.4%
Incorrect relation category 12.5% 8.1%

Wrong relation 9.4% 16.2%
Other, include incorrect format 0% 5.4%

We find a large section of incorrect facts (over 40% for the training
set and 30% for the testing set) appears when our model manages

to extract the correct relations but predicts the wrong subjects or
objects. A typical example is the misuse of placeholder "_". When
the information in a source sentence is incomplete, the target fact
will use a "_" to mark the missing subject or object. It is hard for
our model to realize the missing information and generate a "_" in
the correct position. Another major type of error (over 30% for both
training and testing set) is incomplete or over-extracted relations. It
is difficult for our model to match the complete human knowledge.

6.4 Efficiency Evaluation
The running time is an important criterion for MCTS, as it con-
sumes significantly larger computing sources than the traditional
pattern match methods. In this experiment, we compare the running
time of our batched parallel MCTS against another two common
implementations of MCTS, including a single thread MCTS and a
traditional parallel MCTS [3]. To provide a detailed evaluation of
efficiency, we divide an entire play of MCTS into four main phases
including Selection, Expansion, Evaluation, and Backup (introduced
in Section 4.2) and study their individual running time.

Table 3: Total running time (by minutes). Num indicates the
number of source sentences and ∓ denotes the estimated time.

Model Num Selection Evaluation Expansion Backup

Single
MCTS

30 2.22 3020.74 0.07 1.60
60 4.38 5915.83∓ 0.11 3.12

120 8.98 12244.14∓ 0.22 7.69

Parallel
MCTS

30 0.03 440.31 0.00 0.04
60 0.06 780.82∓ 0.01 0.07

120 0.12 1590.77∓ 0.01 0.14

Batched Parallel
MCTS

30 0.06 22.61 0.00 0.04
60 0.13 37.00 0.01 0.11

120 0.28 78.98 0.02 0.37

Table 3 records the running time of extracting facts from different
numbers of source sentences (30, 60 and 120). An apparent obser-
vation is the parallel MCTS (both traditional and ours) processes
much faster than single thread MCTS. It is consistent with the results
in [3]. We also find the running time of the evaluation dominates
the other three phases. It is because interacting with deep model s
(the Seq2Seq predictor and the reward simulator) requires complex
GPU matrix computation and becomes rather time-consuming. This
phenomenon becomes more serious as we are handling more source
sentences together. To alleviates the problem, our approach merges
the individual threads and batches the select samples before evalua-
tions, which significantly reduces the increase of running time as the
model is required to process a larger number of source sentences.

7 CONCLUSION
This paper introduces an RL framework that enables MCTS to search
the optimal prediction for the task of OIE. Under this framework,
MCTS efficaciously explores the action spaces with the guidance
of a pre-trained Seq2Seq model during training. We apply the ex-
plorations samples to update the predictor and the simulator. During
inference, we launch another MCTS to search for the optimal predic-
tions with the updated predictor and simulator. Empirical evaluation
demonstrates that our approach achieves a significant higher predic-
tion accuracy and running efficiency over other comparison methods.

Extracting Knowledge from Web Text with Monte Carlo Tree Search WWW ’20, April 20–24, 2020, Taipei

REFERENCES
[1] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe,

Joelle Pineau, Aaron C. Courville, and Yoshua Bengio. 2017. An Actor-Critic
Algorithm for Sequence Prediction. In Proceedings of the 5th International Con-
ference on Learning Representations (ICLR). Toulon, France.

[2] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew Broadhead,
and Oren Etzioni. 2007. Open Information Extraction from the Web. In Proceed-
ings of the 20th International Joint Conference on Artificial Intelligence (IJCAI).
Hyderabad, India, 2670–2676.

[3] Guillaume Chaslot, Mark H. M. Winands, and H. Jaap van den Herik. [n.d.].
Parallel Monte-Carlo Tree Search. In Proceedings of 6th International Conference
on Computers and Games (CG).

[4] Janara Christensen, Mausam, Stephen Soderland, and Oren Etzioni. 2011. An
Analysis of Open Information Extraction Based on Semantic Role Labeling. In
Proceedings of the 6th International Conference on Knowledge Capture (K-CAP).
Banff, Alberta, Canada, 113–120.

[5] Rémi Coulom. 2006. Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In Proceedings of the 5th International Conference on Computers
and Games (CG). Turin, Italy, 72–83.

[6] Filipe de Sá Mesquita, Jordan Schmidek, and Denilson Barbosa. 2013. Effec-
tiveness and Efficiency of Open Relation Extraction. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Seattle, WA, 447–457.

[7] Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and Mausam.
2011. Open Information Extraction: The Second Generation. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI). Barcelona,
Spain, 3–10.

[8] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. 2014. Open Question
Answering over Curated and Extracted Knowledge Bases. In The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD). New York, NY, 1156–1165.

[9] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. 2004. Understanding
the efficiency of GPU algorithms for matrix-matrix multiplication. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware
2004. Grenoble, France, 133–137.

[10] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016. Incorporating
Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (ACL).
Berlin, Germany.

[11] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. 2019. Knowledge
Graph Embedding Based Question Answering. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining (WSDM). Melbourne,
Australia, 105–113.

[12] Shengbin Jia, Shijia E, Maozhen Li, and Yang Xiang. 2018. Chinese Open
Relation Extraction and Knowledge Base Establishment. ACM Trans. Asian &
Low-Resource Lang. Inf. Process. 17, 3 (2018), 15:1–15:22.

[13] Dingcheng Li, Siamak Zamani, Jingyuan Zhang, and Ping Li. 2019. Integration
of Knowledge Graph Embedding Into Topic Modeling with Hierarchical Dirichlet
Process. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(NNAACL-HLT). Minneapolis, MN, 940–950.

[14] Xu Li, Mingming Sun, and Ping Li. 2019. Multi-Agent Discussion Mechanism for
Natural Language Generation. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI). Honolulu, Hawaii, 6096–6103.

[15] Guiliang Liu, Xu Li, Miningming Sun, and Ping Li. 2020. An Advantage Actor-
Critic Algorithm with Confidence Exploration for Open Information Extraction. In
Proceedings of the 2020 SIAM International Conference on Data Mining (SDM).
Cincinnati, Ohio.

[16] Mausam. 2016. Open Information Extraction Systems and Downstream Appli-
cations. In Proceedings of the Twenty-Fifth International Joint Conference on

Artificial Intelligence (IJCAI). New York, NY, 4074–4077.
[17] Makoto Miwa and Mohit Bansal. 2016. End-to-End Relation Extraction using

LSTMs on Sequences and Tree Structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (ACL). Berlin, Germany.

[18] Christina Niklaus, Matthias Cetto, André Freitas, and Siegfried Handschuh. 2018.
A Survey on Open Information Extraction. In Proceedings of the 27th International
Conference on Computational Linguistics (COLING). Santa Fe, New Mexico,
3866–3878.

[19] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
2016. Sequence Level Training with Recurrent Neural Networks. In Proceedings
of the 4th International Conference on Learning Representations (ICLR). San
Juan, Puerto Rico.

[20] John W Ratcliff and David E Metzener. 1988. Pattern Matching the Gestalt
Approach. Dr Dobbs Journal 13, 7 (1988), 46.

[21] Christopher D. Rosin. 2010. Multi-armed bandits with episode context. In In-
ternational Symposium on Artificial Intelligence and Mathematics (ISAIM). Fort
Lauderdale, FL.

[22] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game of
Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[23] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without
human knowledge. Nature 550, 7676 (2017), 354.

[24] Gabriel Stanovsky and Ido Dagan. 2016. Creating a Large Benchmark for Open
Information Extraction. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Austin, TX, 2300–2305.

[25] Mingming Sun, Xu Li, and Ping Li. 2018. Logician and Orator: Learning from
the Duality between Language and Knowledge in Open Domain. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Brussels, Belgium, 2119–2130.

[26] Mingming Sun, Xu Li, Xin Wang, Miao Fan, Yue Feng, and Ping Li. 2018.
Logician: A Unified End-to-End Neural Approach for Open-Domain Information
Extraction. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining (WSDM). Marina Del Rey, CA, 556–564.

[27] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems (NIPS). Montreal, Canada, 3104–3112.

[28] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[29] Yuen-Hsien Tseng, Lung-Hao Lee, Shu-Yen Lin, Bo-Shun Liao, Mei-Jun Liu,
Hsin-Hsi Chen, Oren Etzioni, and Anthony Fader. 2014. Chinese Open Relation
Extraction for Knowledge Acquisition. In Proceedings of the 14th Conference of
the European Chapter of the Association for Computational Linguistics (EACL).
Gothenburg, Sweden, 12–16.

[30] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Model-
ing Coverage for Neural Machine Translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (ACL). Berlin, Germany.

[31] Mohamed Yahya, Steven Whang, Rahul Gupta, and Alon Y. Halevy. 2014. Re-
Noun: Fact Extraction for Nominal Attributes. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). Doha,
Qatar, 325–335.

[32] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. 2002. Kernel Methods
for Relation Extraction. In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, (EMNLP). Philadelphia, Pennsylvania.

	Abstract
	1 Introduction
	2 Related Works
	3 Task Formulation and Approach
	3.1 OIE as a Sequence Prediction Task
	3.2 Construct Markov Model for OIE
	3.3 Complete the Environment with Rewards
	3.4 Our Approach: An RL Framework for MCTS

	4 Model
	4.1 Reward Simulator
	4.2 Seq2Seq Predictor
	4.3 MCTS

	5 Learning
	5.1 Training Procedure
	5.2 Inference Procedure

	6 Empirical Evaluation
	6.1 Experiment Setting
	6.2 Performance Evaluation
	6.3 Error Analysis
	6.4 Efficiency Evaluation

	7 Conclusion
	References

