
Estimate the Implicit Likelihoods of GANs with Application to
Anomaly Detection

Shaogang Ren, Dingcheng Li, Zhixin Zhou, Ping Li

Cognitive Computing Lab

Baidu Research

10900 NE 8th St. Bellevue, WA 98004, USA

{shaogangren, lidingcheng, zhixinzhou, liping11}@baidu.com

ABSTRACT
The thriving of deep models and generative models provides ap-

proaches to model high dimensional distributions. Generative ad-

versarial networks (GANs) can approximate data distributions and

generate data samples from the learned data manifolds as well. In

this paper, we propose an approach to estimate the implicit likeli-

hoods of GAN models. A stable inverse function of the generator

can be learned with the help of a variance network of the generator.

The local variance of the sample distribution can be approximated

by the normalized distance in the latent space. Simulation studies

and likelihood testing on real-world data sets validate the proposed

algorithm, which outperforms several baseline methods in these

tasks. The proposed method has been further applied to anomaly

detection. Experiments show that the method can achieve state-of-

the-art anomaly detection performance on real-world data sets.

CCS CONCEPTS
•Theory of computation→Unsupervised learning and clus-
tering.

KEYWORDS
anomaly detection, generative adversarial networks, unsupervised

learning, density estimation

ACM Reference Format:
Shaogang Ren, Dingcheng Li, Zhixin Zhou, Ping Li. 2020. Estimate the

Implicit Likelihoods of GANs with Application to Anomaly Detection. In

Proceedings of TheWeb Conference 2020 (WWW ’20), April 20–24, 2020, Taipei.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380293

1 INTRODUCTION
Many real-world high dimensional data sets concentrate around

low dimensional unknown manifolds. Deep models provide new ap-

proaches to estimate the density of extreme high dimensional data.

Generativemodels, e.g., generative adversarial networks (GANs) [13],

can learn the distributions of high dimensional data sets and gener-

ate samples as well. GANs use the adversarial loss as their training

objective, which penalizes dissimilarity between the distribution of

the generated samples and the real samples. Given infinite approx-

imation power, the original GAN objectives aim to minimize the

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380293

Jensen-Shannon divergence between the real data distribution and

generated samples.

The generator in a GAN can be seen as a nonlinear paramet-

ric mapping д : Z → X from the low dimensional latent space

to the data manifold. With the realistic pictures generated with

GANs [6, 17], one can claim that a well regularized GAN models

can approximate the true data manifolds well. With good data mani-

fold approximations, people try to leverage the GANs to other tasks

beyond image generation, e.g., anomaly detection [1, 30], photo

style transformation [38], and text generation [34].

Due to the broad applications of GANs, it is important to mea-

sure the distribution likelihoods of any given samples. However,

GANs are implicit models, and it means the sample likelihoods

cannot be computed directly. The discriminator used in the GAN

is designed to classify the samples from true data distribution and

the samples from the generator. Thus the discriminator cannot es-

timate the likelihoods of the samples that do not belong to either

distributions. It is proved by [5] that there exists an inverse function

of the generator that can project samples in the sample space into

the latent space. [29] provide an approach to estimate the spectral

implicit density of generative models. However, this method does

not provide an qualitative way to estimate the likelihood of any

given samples. In this paper, we bring up a method that can learn

an inverse function of the generator of GAN models that preserve

the measurement consistence, and then apply the inverse function

to data sample likelihood estimation. In the following subsections,

we first review some manifold concepts for deep generative models,

and then we briefly introduce neural network models for density

estimation. In the last subsection, we present a short survey on the

application of generative models to anomaly detection.

1.1 Deep Generative Models as Manifolds
Recently, people have tried to apply manifold analysis to generative

models. For example, [22] improves GAN based semi-supervised

learning by adding manifold invariant into the classifier. The au-

thors of [33] try to perform geodesic clusteringwith deep generative

models. In [4], the authors add stochastic variables to the VAE gen-

erator. With the variance network, the metric estimation on the

data manifold can be improved. Mathematically, a deterministic

generative model x = д(z) can be seen as a surface model if the

generator д is sufficiently smooth.

Here, we briefly review the basic concepts on surfaces. A deep

generative model represents an embedding function, д : Z → X,

from a low-dimensional latent spaceZ ⊆ Rd to a submanifoldM ⊆

RD . Usually we have D ≫ d . We assume д is a smooth injective

mapping, so thatM is an embedded manifold. The Jacobian of д at

https://doi.org/10.1145/3366423.3380293
https://doi.org/10.1145/3366423.3380293

WWW ’20, April 20–24, 2020, Taipei Shaogang Ren, Dingcheng Li, Zhixin Zhou, Ping Li

z ∈ Z, Jд(z), provides a mapping from the tangent space at z ∈ Z

into the tangent space at x = д(z) ∈ X, i.e., Jд : TzZ → TxX. This

mapping is not surjective and the range of Jzд is restricted to the

tangent space of the manifold M at x = д(z), denoted as TxM.

Since GAN can generate realistic images, M is close to the true

data manifold, namelyMdata .

We represent the Riemannian metric as a symmetric, positive

definite matrix field, M(z), defined at each point z on the latent

coordinate space, Z. M(z) is given by the following formula:

M(z) = Jд(z)⊤Jд(z).

Given two tangent vectors u,v ∈ TzZ in coordinates, their inner

product is defined as ⟨u,v⟩ = u⊤M(z)v . Let us consider a smooth

curve γ : [a,b] → Z. This corresponds to a curve on the manifold,

д ◦γ (t) ∈ M. The arc length of γ is given by the following formula:

L(γ) =

∫ b

a

√
Ûγ (t)⊤Mγ (t) Ûγ (t)dt,

where Ûγ (t) is the first order derivative of γ at time t . For example,

with the explicit formula of geodesic distance, we can then apply

geodesic clustering on the data manifold [12, 33].

1.2 Change of Variable
When dim(Z) < dim(X), the change of variable theorem is known

in the context of geometric measure theory as the smooth coarea

formula [16, 20]. With the assumption that д is a topological em-

bedding from Z to the submanifoldM of X. It says that

pX(x) = pZ(д−1(x)) det

(
Jд(д−1(x))⊤Jд(д−1(x))

)− 1

2 ,

where we assume the prior distribution on the latent space pZ is

N (0, Id) throughout this paper. For x ∈ M, we have z = д−1(x),
and we obtain

log

(
pX(д(z))

)
= log

(
pZ(z)

)
−

1

2

log

(
det

(
Jд(z)⊤Jд(z)

))
. (1)

For a real-world data set, typically we would not know the true

tangent space dimension number of Mdata at a given data sample

x . People usually set d = dimZ larger than the TxMdata for all

x . This leads to the problem that Jд does not have a full rank, and

so does M(z). It means that it is impossible to directly apply Eq. (1)

with logarithm of zero determinant to estimate the sample density.

1.3 Density Estimation with Neural Networks
Along with the thriving of deep neural networks and GANs, a

variety of density estimation methods have been developed. The

MADE model [11] is proposed to estimate the likelihood values

with masked neural networks. RealNVP [8] and Glow [18] are gen-

erative models that can estimate samples’ likelihood values. Both

RealNVP and Glow employ reversible neural networks with special

Jacobian metric whose determinate can be easily calculated. Similar

to RealNVP and Glow, FFJord [14] is a generative model which can

yield sample likelihood values with free-form Jacobian reversible

neural network. FlowGAN [15] estimates data distribution by com-

bining maximum likelihood estimation (MLE) and adversarial loss.

The combination of MLE and adversarial loss may reduce the qual-

ity of generated samples. Most of these models use flow models

to avoid the singularity issues coming with GANs. However, us-

ing the same dimension number for both the latent space and the

data space space may violate the fact that most real-world data

sets are following distributions on low dimensional manifolds. As

discussed in previous subsections, GANs can approximate the real

data distribution in a more reasonable approach. In this paper, we

try to develop a method that can estimate the quantitative likeli-

hood or density values of data samples by leveraging the manifold

approximation power of GANs. Note that, even without likelihood

estimation, people already apply GANs to anomaly detection. We

will also apply our GAN likelihood estimation method to anomaly

detection and demonstrate its effectiveness by comparing with ex-

isting anomaly detection methods. A review on anomaly detection

with generative models is given in the next subsection.

1.4 Anomaly Detection with Generative Models
Generative models have been taken as effective ways to learn data

representations and have been applied to anomaly detection. The

auto-encoder based approaches [2, 37] first train a model that can

reconstruct normal samples and then use the reconstruction errors

to identify abnormal samples. The authors of [39] assume the latent

spaces of data sets follow Gaussian mixture distributions. Instead of

utilizing auto-encoder basedmethods that derive statistical anomaly

criterion in light of data distributions or energies, they employ

GAN-based framework to detect abnormal medical images in [30].

In their work, the latent variables of the samples are inferred with

stochastic gradient descent. The anomaly score is estimatedwith the

reconstruction error from the inferred latent variables in addition

to the discrimination value from the discriminator of GAN model.

Different from these existing methods, we try to develop a new

anomaly detection method base on the proposed GAN likelihood

estimation. In the sense of generativeness, our approach shares

something in common with [30].

In summary, we aim to propose a framework that can estimate

the log-likelihoods of samples by leveraging the GAN models. The

proposed method can approximate the local variance of any given

data points with the help of two learned networks, the variance for

the generator and the inference network for the latent representa-

tion. With the variance network, the singularity of the generator’s

Jacobian matrix can be avoided. Thus, the likelihoods of samples

can be calculated with the Riemannian metric. Our experiments

on several real-world data sets reveal that, in the tasks of anom-

aly detection and likelihood testing, our approach considerably

outperforms other baseline methods.

2 METHODOLOGY
GANs attempt to estimate the empirical distributions of high dimen-

sional data sets. Given the learned generator д, and a latent variable
z, we can estimate the generated sample д(z)’s log-likelihood with

Eq. (1). The computation of Eq. (1) implies the full rank of д’s Ja-
cobian matrix regarding z. We can use a low dimensional latent

space, i.e., a small d , to obtain a full rank Jacobian matrix for almost

any z ∈ Z. However, experimentally a small d may hurt the perfor-

mance of GANs. In this paper, we try to resolve these issues with

an extension of the classical GAN model. Our primary goal is to

estimate the likelihoods of any given data samples. We need to learn

an inference network to directly map a given data point x in the

input space to a latent variable z that can be mapped back to a point

Estimate the Implicit Likelihoods of GANs with Application to Anomaly Detection WWW ’20, April 20–24, 2020, Taipei

close to x on the manifold M. Then the sample x ’s log-likelihood
value can be computed thanks to the generator and the proposed

variance network.

2.1 The Variance Network of the Generator
We add a variance network σ to the generator д, and it extends the

generator to a stochastic one,

f (z) = д(z) + σ (z) ⊙ ϵ, and (2)

д : Z → X,σ : Z → RD+ , ϵ ∼ N (0, ID).

Here д is the mean function, σ is the variance function, and ⊙

stands for element-wise multiplication. For a given ϵ , f is an ap-

proximation of д, and Eϵ∼N (0,ID) f (z) = д(z). The variance network

σ extends the generator д to the whole input space RD . We will

show that the singularity issue of the д’s Jacobian matrix can be

overcame with its variance network σ . To ensure that the variances
are large in the regions without or less data samples, we formulate

σ with a radial basis function (RBF) neural network [28]. The RBF
network is a trainable kernel learning function.

The setup and training of σ is similar to [28]. First of all, a large

number of data points are sampled from the latent space Z, and

then these data points are divided into K clusters with K-means.

ck is the center of cluster k and Ck is the number of data points

in cluster k . For any data sample x , to compute the corresponding

variance values, we first use the inference network h introduced

in next subsection to estimate its latent variable, i.e., z = h(x).
The RBF network returns the x ’s variance values by aggregating

the distance from z to all the cluster centers with learned kernel

weights. This step can be done in the prepossessing stage and it

can avoid computation overhead to the main algorithm.

The RBF function σ function is given by,

σ (z) = (W2v(z))−
1

2 ,

vk (z) = exp

(
− λk | |z − ck | |

2

2

)
, k = 1, ..,K

λk =
1

2

(
a

|Ck |

∑
zj ∈Ck

| |zj − ck | |2

)−2

,

where a is a hyper-parameter for the kernel, and W is the network

parameter need be learned from the training data samples. The

samples with larger distance from the cluster centers will have

larger variances. Given a generator network д, we can learn the

variance networkweightsW byminimize the distance between f (z)
and x . With the stochastic generator f and the variance function,

the Riemannian metric [4] can be written as

M̄z
f = Eϵ∼N (0,ID)J

⊤
f (z))Jf (z)

= J⊤д (z)Jд(z) + J⊤σ (z))Jσ (z). (3)

We have the following lemma for the estimation of likelihoods.

Lemma 1. With K ≥ dim(Z)+ 1 and a full rank W2, M̄z
f is a full

rank matrix. The log-likelihood of the a generated sample is given by

Eϵ∼N (0,ID) log(pX(f (z))) = log

(
pZ(z)

)
−

1

2

log(det(M̄z
f)). (4)

Proof. We have
∂
∂z σ (z) = BW2VE, where

B =


− 1

2
β
− 3

2

1
(z)

. . .

− 1

2
β
− 3

2

D (z)


, E =


z − c1

· · ·

z − cK


V =


−2λ1e

−λ1 | |z−c1 | |
2

2
)

. . .

−2λKe
−λK | |z−cK | |2

2
)


.

Here βi (z) =W2

i ·v(z). As rank(B) = D, rank(V) = K , rank(E) ≥

dim(Z), as B and V are diagonal and full rank, if W2
is full rank,

than rank(BW2V) = rank(W) = K . As the K centers are different

from each other, rank(E) = dim(Z), then rank(Jσ) = dim(Z), thus

M̄(f)
z is positive-definite. We have

log

(
pX(f (z))

)
= log

(
pZ(z)

)
−

1

2

log

(
det

(
J⊤f (z)Jf (z)

))
,

Eϵ∼N (0,ID) log

(
pX(f (z))

)
= log

(
pZ(z)

)
− Eϵ∼N (0,ID)

1

2

log

(
det

(
J⊤f (z)Jf (z)

))
= log

(
pZ(z)

)
−

1

2

log

(
det(M̄z

f)
)
.

The determinate of a d ×d matrix, M̄z
f will be either a too small or a

too large value that is out of the precision of the computer system.

We can avoid this issue by using the eigenvalues of M̄z
f to estimate

a sample’s likelihood. □

Remark: Note that

Eϵ∼N (0,ID) log(pX(f (z)))

= log

(
pZ(z)

)
−

1

2

log

(
det(M̄z

f)
)
= log

(
pZ(z)

)
−

1

2

d∑
i=1

log(λi).

Here λi , 0 ≤ i ≤ d are the eigenvalues of M̄z
f .

2.2 The Inference Network Learning
For a given data sample x , we need to find the corresponding latent
space representation z before we can use Eq. (3) and Eq. (4) to com-

pute the Riemannianmetric and thus the likelihood value. As shown

in Figure 1, we try to learn an approximate inverse of the generator

network д, so that for z ∈ Z, we have h : Eϵ∼N (0,ID)h(f (z)) =
Eϵ∼N (0,ID)h(д(z) + σ (z) ⊙ ϵ) ≈ z. The latent variable of a point

x in the input space can be approximated by the inference net-

work (encoder) h. Given a ϵ and a full rank Jf (z) at z and ϵ , f
is locally invertible in the open neighborhood f (S), S being an

open neighborhood of z. We try to lean a h : f (S) → S such that

Eϵ∼N (0,ID)h(f (z)) ≈ z,∀z ∈ S .
With the variance network σ introduced in the previous subsec-

tion, we can avoid the singularity of Riemannian metric ofM(z)
as long as K ≥ dim(Z) + 1. We maximize the following empirical

log-likelihoods of data samples from the data distribution pdata to

WWW ’20, April 20–24, 2020, Taipei Shaogang Ren, Dingcheng Li, Zhixin Zhou, Ping Li

Figure 1: Learning an approximate inverse (inference) func-
tion of the generator.

learn the parameters of σ and h,

max

h,σ
Ex∼pdata (x)

[
log(p(x |z))

��
z=h(x)

]
. (5)

Here (p(x |z)) is parametric with the extended generator f . Accord-
ing to Eq. (2), given a z,p(x |z) is a multivariate Gaussian distribution

withmeanд(z), and co-variancematrixΛσ , andΛσ (z) = diag(σ (z)).
We add a constraint to Eq. (5) to include the prior distribution of

z into the objective, and it forces the posterior q(z |x) (z = h(x),
x ∼ pdata (x)) to be close to the prior of z, p(z) (p(z) is the pZ(z) in
section 1.2),

max

h,σ
Ex∼pdata (x),z=h(x)

[
log(p(x |z))−KL(q(z |x)∥p(z))

]
.

Each element of the empirical distribution q(z |x) is a Gaussian
distribution with the sample average of h(x) as the mean, and

the standard deviation of h(x), x ∼ pdata (x) as the variance. The
objective formulae is different from the VAE [19] model. In our

model we do not model the variance of distribution q(z |x) in order

to reduce model complexity. Moreover, given the generator д, our
objective is to learn a variance network σ for the generator д rather

than the decoder in VAEs. It is easy to prove that, with z ∈ Z,

and ϵ ∼ N (0, ID), f follows a Gaussian Process with д as the mean

function, and Λσ as the covariance function, and Λσ is a diagonal

matrix with σ along the diagonal.

Lemma 2. Assuming д is a well learned generator function with
GAN model, with z ∈ Z and ϵ ∼ N (0, ID), the stochastic generator
f (z) = д(z) + σ (z) ⊙ ϵ can be taken as

f (z) ∼ GP(д(z),Λσ).

Proof. Any collection of the entries of f follows a Gaussian

distribution. According to the definition of Gaussian process, f (z)
follows Gaussian Process. □

By stacking f and h together, it is a regression model to recon-

struct a data sample x (x ∼ pdata), i.e., x̂ = д(h(x)) + σ (h(x)) ⊙ ϵ .
With the inferred latent variables and a collection of reconstructed

data samples x̂ ∼ f (h(x)), the whole framework is similar to the

Gaussian Process latent variable model (GP-LVM, [23]). The objec-

tive for h and σ becomes

Lh,σ =Ex∼pdata

[D∑
i=1

[
−

1

2

(
дi
(
h(x)

)
− xi

)
2

/σ 2

i (h(x))

− logσi (h(x))
]
− KL(q(z |x)∥p(z))

]
.

2.3 Stabilize Training
Experimentally, it is rather difficult to learn a pair of perfect h and

σ for a given д. We integrate the learning of both networks with

the training of GANs. We have the following objective to adjust the

generator д and h,

min

д,h
Ez∼p(z)

[
∥z − h(д(z))∥2

]
.

It is similar to the regularization term in InfoGAN [7] that en-

forces mutual information between the generated samples and

partial latent variables. VEEGAN [32] also included this term to

their regularization to reduce model collapses. Experiments show

that with this term the model can converge fast and the training

process is more stable. Figure 1 shows the scheme of the д and h.

2.4 Algorithm
The algorithm to learn h and σ is combined with the learning of

the generator д and the discriminator d in GAN. The complete

procedure is given in Algorithm 1.

Algorithm 1 The proposed algorithm to learn GAN with inference

net h and variance net σ

1: Input: Data sample set

2: Output: Networks д, d , h, and σ
3: Sample a fixed number of hidden variables from PZ for K-

means clustering; Compute λk , ck , k = 1, ...,K ;
4: while Training not finished do
5: Sample minibatchm samples {x (1), ..., x (m)} from Pdata ;

6: Sample minibatchm samples {z(1), ..., z(m)} from noise prior

PZ ;

7: Updating the discriminator d with ascending the gradient

∇θd
1

m

m∑
i=1

[
logd(x (i))] + log(1 − d(д(z(i))))

]
.

8: Sample minibatchm samples {z(1), ..., z(m)} from noise prior

PZ ;

9: Updating the generator д by descending the gradient

∇θд
1

m

m∑
i=1

[
log(1 − d(д(z(i))))

]
.

10: Sample minibatchm samples {x (1), ..., x (m)} from Pdata ;
11: Updating h and σ by ascending the gradient ∇θh,σ Lh,σ ;

12: Sample minibatchm samples {z(1), ..., z(m)} from noise prior

PZ ;

13: Updating h and д by descending the gradient

∇θh,д
1

m

m∑
i=1

∥z(i) − h(д(z(i)))∥2.

14: end while

Let Wt
denote W at iteration t in Algorithm 1. We have the

following Lemma 3 regarding the updating steps for W. Lemma 3

shows that with a randomly initialized W, we almost can ensure

each Wt , t = 1, ...,T is with full rank, and thus a full rank Jaco-

bian matrix for the stochastic generator f . This means we can

Estimate the Implicit Likelihoods of GANs with Application to Anomaly Detection WWW ’20, April 20–24, 2020, Taipei

safely compute the likelihood values for almost any testing sam-

ples. Algorithm 1 also avoids the step to directly fit the parameters

of generator д with real data samples, and thus can preserve the

capability of GAN to generate sharp and realistic images or data

samples.

Lemma 3. Let Wt be the matrix W at the updating step t of al-
gorithm 1, then Wt+1 will be the element-wise multiplication of Wt

with another matrix.

Proof. Given a sample x , the latent variable is z = h(x). We

have the loss regarding x ,

Lxh,σ

=

D∑
i=1

[
−

1

2

(
дi
(
h(x)

)
− xi

)
2

/σ 2

i (h(x)) − logσi (h(x))
]
− KL(q(z |x)∥p(z)).

For the ith entry of x , the gradient regarding W is

∂Lxih,σ
∂W

= −

((
дi
(
h(x)

)
− xi

)
2

σ 3

i (h(x))
−

1

σi (h(x))

)
β
− 3

2

i Wi · ⊙ vT (z).

Here βi (z) =W2

i ·v(z). Let

ui (x) =
β
− 3

2

i
σi (h(x))

(
1 −

(
дi
(
h(x)

)
− xi

)
2

σ 3

i (h(x))

)
,

we will get

∂Lh,σ
∂W

=W ⊙
(
u(x)vT (z)

)
.

Here u(x) = [u1(x), ..., uD (x)]T .
Without losing the generalization, we ignore the learning rate.

For t , we have

Wt =Wt−1 +Wt−1 ⊙
(
ut−1(x)(vt−1(z))T

)
=Wt−1 ⊙

(
1 + ut−1(x)(vt−1(z))T

)
.

With a batch of training samplesB , Wt
will be the element-wise

product of Wt−1
with an aggregated updating matrix, which is

Wt =Wt−1 ⊙

(
1 +

1

|B|

∑
x ∈B,z=h(x)

ut−1(x)(vt−1(z))T
)
.

This concludes the lemma. □

Let W0
be the initial value of W, the final step WT

will be the

element-wise multiplication of W0
with the aggregated updating

matrix regarding all steps. We are almost sure about the full rank

of WT
as W0

is randomly initialized and the updating matrix is

almost with full rank due to the randomness of training samples.

The time consuming part is the computation of the likelihood in the

testing stage. It is due to the calculation of Jд , and д is a mapping

from dim(Z) to dim(X).

3 THEORETICAL ANALYSIS
Algorithm 1 basically follows the same procedure to learn the gen-

erator д and the discriminator d in GANs. The only interaction

between д and h is to enhance the mutual information between

latent variables and the generated samples. The loss functions for d
and д can be adapted to any other forms of divergence to measure

distribution distances, such as Wasserstein distance. Without loss

generality, we study the theoretical upper bound of distribution

estimation with the proposed approach. We can follow existing

approaches to analysis the estimation upper bound. We adopt the

definition of Earth Moving Distance, or equivalentlyWasserstein-1
distance from [3].

Definition 1. For distributions P and Q on Rd , Wasserstein-1
distance between them

W (P,Q) = inf

γ ∈
∏
(P,Q)

E(X ,Y)∼γ [∥X − Y ∥].

In the following theorems, P(n) denotes the empirical distribu-

tions of P with n samples. In other words, suppose xi , i = 1, . . .n

are i.i.d. samples of P, then P(n) = 1

n
∑n
i=1

1{x = xi } is a empirical

distribution of P(n). For distributions P and Q, P + Q denotes the

distribution of X + Y for X ∼ P and Y ∼ Q independently. Suppose

Q(n) = 1

n
∑n
i=1

1{y = yi } is a empirical distribution of Q(n), then

P(n) + Q(n) = 1

n
∑n
i=1

1{z = xi + yi } is an empirical distribution

of P + Q. It is worth noting that P(n) + Q(n) , 1

n2

∑n
i=1

∑n
j=1

1{z =

xi + yj }.

Theorem 1. Let F be certain function class and д : Rd → RD

be an L-Lipschitz function for D > d > 2. Let Z be random variable
satisfying E[∥Z ∥2] ≤ c and P1 be the distribution of д(Z). Let P(n) be
an n-sample empirical distribution of д(Z) + ϵ , where Z follows dis-
tribution such that E[|Z |2] ≤ α and ϵ ∼ N (0, diag(σ1, . . . ,σD)/

√
D),

and

д̂ = arg min

д̄∈F,д̄(Z)∼ˆP
W (ˆP, P(n)).

Let ˆP be the distribution of д̂(Z), then

E[W (ˆP, P1)] ≤ 2Cd
√
cLn−d + 5

√∑D
i=1

σ 2

i
D

for the constant Cd only depending on d from Theorem 2.

Proof. Let P, P1 and
ˆP be the distribution of д(Z) + ϵ , д(Z) and

д̂(Z) respectively. By triangle inequality,

W (ˆP, P1) ≤W (ˆP, P(n)) +W (P(n), P) +W (P, P1).

The first term on the RHS can be bounded by

W (ˆP, P(n)) = min

д̄∈F,д̄(Z)∼ˆP
W (ˆP, P(n)) ≤W (P, P(n)),

where the inequality is due to the fact that д ∈ F and д(Z) ∼ P.
Hence, we have

W (ˆP, P1) ≤ 2W (P(n), P) +W (P, P1).

It is sufficient to bound these two terms to obtain the desired result.

We decompose P(n) = P
(n)
1
+P

(n)
2

where P
(n)
1

and P
(n)
2

are n-sample

WWW ’20, April 20–24, 2020, Taipei Shaogang Ren, Dingcheng Li, Zhixin Zhou, Ping Li

empirical distribution of д(Z) and ϵ respectively. We recall our

assumption that ϵ ∼ N (0, diag(σ1, . . . ,σD)/
√
D) = P2.

W (P(n), P) ≤W (P, P1) +W (P1, P
(n)
1

) +W (P
(n)
1
, P(n)).

By Lemma 4 and Jensen’s inequality, we have

W (P, P1) =W (P1 + P2, P1)

≤Eϵ∼P2
[∥ϵ ∥] ≤ (Eϵ∼P2

[∥ϵ ∥2])1/2 ≤

√∑D
i=1

σ 2

i
D

.

Since д is an L-Lipschitz function, Let Z ∈ Q and Q(n) be n-sample

empirical distribution of Z . Suppose Q(n) = 1

n
∑n
i=1

1{z = zi } and

Pn =
1

n
∑n
i=1

1{x = д(zi)}. Since д is an L-Lipschitz function, we
have

W (P1, P
(n)
1

) = inf

γ ∈
∏
(P1,P

(n)
1

)

E(X ,Y)∼γ [∥X − Y ∥]

≤ inf

γ ∈
∏
(Q,Q(n))

E(X ,Y)∼γ [∥д(X) − д(Y)∥]

≤ inf

γ ∈
∏
(Q,Q(n))

E(X ,Y)∼γ [L∥X − Y ∥]

≤ LW (Q,Q(n)).

By Theorem 2, we have

W (P1, P
(n)
1

) ≤ LW (Q,Q(n)) ≤ CdL
√
cn−d .

By 5,

E[W (P
(n)
1
, P(n))] =E[W (P

(n)
1
, P

(n)
1
+ P

(n)
2

)]

≤EX∼P2
[∥X ∥] ≤

√∑D
i=1

σ 2

i
D

.

We combine these bounds and obtain

E[W (P(n), P1)]

≤3W (P, P1) + 2E[W (P1, P
(n)
1

)] + 2E[W (P
(n)
1
, P(n))]

≤3

√∑D
i=1

σ 2

i
D

+ 2CdL
√
cn−d + 2

√∑D
i=1

σ 2

i
D

=2CdL
√
cn−d + 5

√∑D
i=1

σ 2

i
D

,

as desired. □

Lemma 4. Let P1, P2 and Q be distributions on Rd , then

W (P1 + P2,Q) ≤W (P1,Q) + EX∼P2
[∥X ∥]

Proof. Let γ is the optimal joint distribution for the infimum

ofW (P1,Q). We note that γ does not necessarily exists in general.

However, for every δ > 0, there exists γδ ∈
∏
(P1,Q) such that

W (P1,Q) + δ ≥ E(X ,Y)∼γδ [∥X − Y ∥].

Hence the argument can always be reduced to the case the optimal

gamma exists. Hence without loss of generality, we may assume

γ exists. Let γ ′ be the joint distribution of (X ,Y) such that Y ∼ Q
and X |Y ∼ γ (· ,Y) + P2. Then γ

′ ∈
∏
(P1 + P2,Q).

W (P1 + P2,Q) ≤ E(X ,Y)∼γ ′[∥X − Y ∥]

= E(X ,Y)∼γ ,Z∼P2
[∥X + Z − Y ∥]

≤ E(X ,Y)∼γ ,Z∼P2
[∥X − Y ∥ + ∥Z ∥]

= E(X ,Y)∼γ [∥X − Y ∥] + EZ∼P2
[∥Z ∥]

=W (P1,Q) + EZ∼P2
[∥Z ∥],

as desired. □

Lemma 5. Let P and Q be distributions on Rd . Let P(n) and Q(n)

be the empirical distribution of P and Q respectively. Then

E[W (P(n), P(n) + Q(n))] ≤ EX∼Q[∥X ∥].

Proof. We will use the definition P(n) = 1

n
∑n
i=1

1{x = xi },

Q(n) = 1

n
∑n
i=1

1{y = yi } and P
(n) +Q(n) = 1

n
∑n
i=1

1{z = xi + yi }.

Let γ ∈
∏
(P(n), P(n) + Q(n)) such that if (X ,Y) ∼ γ , then P(Y =

xi + yi |X = xi) = 1. Then

W (P(n), P(n) + Q(n))

≤E(X ,Y)∼γ [∥X − Y ∥]

≤
1

n

n∑
i=1

[∥xi − (xi + yi)∥] =
1

n

n∑
i=1

[∥yi ∥]

We have
1

n
∑n
i=1

[∥yi ∥] = EX∼Q[∥X ∥] as desired. □

We will introduce a useful theorem from [10], which provides

the bound between empirical distribution and original distribution

in Wasserstein distance. We refer readers to find the proof in the

original paper.

Theorem 2 ([10], Theorem 1). Let P be distribution on Rd and
Pn be its n-sample empirical distribution. Suppose EX∼P[∥X ∥2] ≤ c ,
then

E[W (P, Pn)] ≤ Cd
√
cn−d ,

for some constant Cd only depending on d .

4 EXPERIMENTS
In this section, we first evaluate the proposed likelihood estimation

method with simulated and real-world data sets. Then we try to

apply the proposed method to anomaly detection tasks. In the

following experiments, we use ‘InvGAN’ to represent the proposed

model. The implementation of the proposed InvGAN is based on

the PaddlePaddle
1
platform.

4.1 Likelihood Estimation on Synthetic Data
In this subsection, we investigate the proposed approach with

simulated data. We have two iid latent variables z1, z2 following

N (0, 1) distribution. The samples are simulated withX = [w1 sin z1,

w2 cos z2,w3 z
2

1
,w4z2,w5 z

3

1
,w6(z1 + z

2

2
)] + ϵ , and each entry of ϵ

follow N (0, 0.01). We can easily compute the Jacobian regarding X
and z to get the ground truth likelihood value for each simulated

data sample with Eq. (4). The simulated data set contents 50,000

samples for training and 50,000 samples for testing. In the proposed

1
https://www.paddlepaddle.org.cn/

Estimate the Implicit Likelihoods of GANs with Application to Anomaly Detection WWW ’20, April 20–24, 2020, Taipei

model, the generator and the discriminator both have two fully

connected layers with 30 hidden nodes, and the invert function

h has the same structure as the discriminator except the output

dimension.

We compare the proposed model with two density estimation

models FlowGAN, and FlowVAE. FlowGAN [15] is a hybrid model

with maximum likelihood estimation (MLE) and adversarial loss.

They employ the coupling layers proposed in [8] for the generator.

With the coupling layers, the generator has the same number of

dimensions for both latent space and input space. With the coupling

layers [8], the determinate of the generator can be easily computed,

and thus the likelihood of the samples. FlowGAN [15] train the

generator based on both MLE and the adversarial the loss functions.

We build a FlowVAE model with the decoder that has the same

structure as the generator in the FlowGAN model. InvGAN and

FlowGAN have the sample structure for the discriminator, which

includes Four linear layers and three Relu layers. We use the same

batch size and epoch number to train three models.

As state previously, the data set is simulated with 2 latent vari-

ables, and the dimension of the input (sample) space is 6. Since

FlowGAN and FlowVAE use the same dimension number for both

input space and the latent space, this may result in a constant offset

between the model estimations and the ground truth likelihood. To

fairly compare different models in figures, we add a constant value

to the likelihood values of both FlowGAN and FlowVAE. Figure 2

gives the comparison between the ground truth and the estimated

likelihood values for the testing set with three methods. We can see

that compared with FlowGAN and FlowVAE, the proposed model

can give more smooth estimations for the likelihood values, and

improved fitting with the ground truth likelihood curve.

0 100 200 300 400
-25

-20

-15

-10

-5

0

lo
g
-l
ik

e
lih

o
o
d

Ground Truth

InvGAN

0 500 1000 1500 2000

Iterations

0

50

100

150

200

250

300

L
h
,

InvGAN loss

0 100 200 300 400
-25

-20

-15

-10

-5

0

lo
g
-l
ik

e
lih

o
o
d

Ground Truth

FlowVAE

0 100 200 300 400
-25

-20

-15

-10

-5

0

lo
g
-l
ik

e
lih

o
o
d

Ground Truth

FlowGAN

Figure 2: The upper left plot shows the InvGAN log-
likelihoods of the simulated testing set; Upper right
presents the objective loss values over iterations; The lower
two plots give the log-likelihood values of the simulated
data set using FlowVAE and FlowGAN. For plots with log-
likelihood values, Y axe is the log-likelihood value, and X
axe is sample index based on the increasing order of the
ground truth log-likelihood value.

4.2 Likelihood Estimation on Real Data Sets

Table 1: Bits/dim on testing data sets of MNIST, CIFAR10,
and ImageNet32 for different models; lower is better

Model MNIST CIFAR10 ImageNet32

RealNVP 1.06 3.49 4.28

Glow 1.05 3.35 4.09

FFJORD 0.99 3.40 -

MADE 2.04 5.67 -

MAF 1.89 4.31 -

FlowGAN 3.26 4.21 -

InvGAN 1.29 1.23 1.02

We compare our model with the other likelihood estimation

methods using three real-world data sets, MNIST, CIFAR10, and

ImageNet32. The methods listed in the Table 1 include RealNVP [8],

Glow [18], FFJord [14], FlowGAN [15], MADE [11], and MAF [26].

Most of these methods are based onmaximum likelihood estimation

(MLE). FlowGAN is a hybrid model combining MLE and adversarial

loss. RealNVP, Glow, and FlowGAN rely on revertible coupling

layers to preserve the densitymass between the input space to latent

space. Different from invertible neural network models, MADE [11]

and MAF [26] are mask based neural density estimation methods.

For this set of experiments we use three convolution layers and one

linear layer for the generator, the discriminator, and the inference

network. More details about the network structures are given in

Appendix A.

0 20 40 60 80

d

30

40

50

60

70

80

N
e

g
a

ti
v
e

 L
o

g
-l
ik

e
lih

o
o

d

0 20 40 60 80

d

1.32

1.34

1.36

1.38

1.4

b
it
s
/d

im

Figure 3: The left plot shows the average negative log-
likelihood values of a MNIST testing image set using In-
vGAN at different latent space dimension (d). The right plot
presents the corresponding bits/dim for the testing set un-
der the revised metric at different d values.

For “InvGAN”, different number of dim(Z)may lead to different

values of log-likelihood values even for the same data sample (the

left plot in Figure 3). The bits per dimension metric [14, 15], i.e.,

− logpX(x)/D, x ∈ RD , may not apply to our model, as the pro-

posed model always yields smallest bits/dim value due the small

latent space dimension number used in our model. To fairly com-

pare with the other models, we propose to use the a revised ver-

sion of bits per dimension metric in the comparison, which is

− logpZ(z)/d + 1

2
log

(
det(Jд(z)⊤Jд(z))

)
/D. Here d is the latent

space dimension size. With the new metric, the bits/dim of InvGAN

WWW ’20, April 20–24, 2020, Taipei Shaogang Ren, Dingcheng Li, Zhixin Zhou, Ping Li

can be bounded in a reasonable range(as shown the right plot of Fig-

ure 3). The new metric can compensate the difference resulted from

different latent space dimension numbers. For flow or reversible

neural network based density estimation methods, the value of

bits per dim does change as they take D = d . We follow the ex-

perimental setup in FFJord [14] and FlowGAN [15], and Table 1

compares different methods under the new metric on testing data

sets. We use the likelihood values presented in FFJord [14] and

FlowGAN [15]. We can see that even with the revised metric, our

model can consistently perform better compared with other models.

4.3 Anomaly Detection

Table 2: Statistics of the data sets for anomaly detection

Data Set Feature Instance

MNIST 1,024 60,000

CIFAR10 3,072 60,000

Arrhythmia 274 452

In this subsection, we apply the proposed likelihood estimation

to three anomaly detection tasks. The data sets we use for anomaly

detection are MNIST [24], CIFAR10 [21], and Arrhythmia [9]. Ta-

ble 2 gives more details on the three data sets. For all of the results,

our anomaly score is defined similar to [1]. With the log-likelihood

value set, S = {si : LLK(xi), xi ∈ T }, the anomaly score is

s ′i =
si − min S

max(S) − min S
.

Here T is the testing set. The anomaly methods we compared our

method with are given in next subsection.

4.3.1 Baseline Methods.

Deep StructuredEnergyBasedModels (DSEBM) [36] are energy-
based models for anomaly detection. Similarly to denoising auto-

encoder, the main idea is to accumulate the energy across layers

of neural networks. Two types of anomaly scoring criteria were

proposed: energy based and reconstruction error based. In our ex-

perimental results, DSEBM-r represents results with reconstruction

error and DSEBM-e are results with energy based approach.

Deep Autoencoding Gaussian Mixture Model (DAGMM) [39]
is an autoencoder-based method for anomaly detection, and it can

achieve state-of-the-art results. In DAGMM, an auto-encoder as well

as an estimator network are trained jointly. The auto-encoder is to

generate latent space representations, and the estimator is to output

parameters of a GMMmodeling the lower-dimensional latent space.

The likelihood value of a sample’s latent representation computed

with the learned GMM is taken as the anomaly detection metric.

AnoGAN [30] is a GAN-based method for anomaly detection. The

method trains a GAN model to recover a latent representation for

each test data sample. The anomaly score is calculated with a com-

bination of the reconstruction error and the discrimination score

from the discriminator network. The reconstruction error measures

how well the GAN can reconstruct the data via the inferred latent

variable and the generator. The authors of [30] compare the two

components for the anomaly score and we picked the variant which

performed best in the paper.

Efficient GAN-Based Anomaly Detection (EGBAD) [35] is an-
other anomaly detection method based on GAN. Different from

AnoGAN [30], their model learns an inverse function of the gen-

erator to speed up the inference of the latent variable. Similar to

AnoGAN, The anomaly score in this approach includes two parts:

the fitting error from reconstruction and the discrimination score.

GANomaly [1] uses a conditional generative adversarial network

that jointly learns the generation of high-dimensional image space

and the inference of latent space. Employing encoder-decoder-

encoder sub-networks in the generator enables the model to map

the input image to a lower dimension vector, which is then used to

reconstruct the generated output image. The use of the additional

encoder network maps this generated image to its latent representa-

tion. Minimizing the distance between these images and the latent

vectors during training aids in learning the effective representations

for the normal samples.

Adversarially Learned Anomaly Detection (ALAD) [35] is a
recently proposed GAN based anomaly detection method. Similar

to EGBAD [36], ALAD learns an encoding function to infer the

latent variable for testing samples. Their model is enhanced with

three discriminators. With a cycle consistence between sample

space and latent space, the training of their model can be stabilized

in learning representations for anomaly detection.

One Class Support Vector Machines (OC-SVM) [31] are a clas-
sic kernel method for anomaly detection and density estimation

that learns a decision boundary around normal examples. The ra-

dial basis function (RBF) kernel is employed in the experiments.

The v parameter is set to the expected anomaly proportion in the

data set, which is assumed to be known, whereas the γ parameter

is set to be inversely proportional to the number of input features.

Isolation Forests (IF) [25] are a classic machine learning tech-

nique that isolates abnormal samples rather than learning the distri-

bution of normal data. Themethod constructs trees across randomly

chosen features according to randomly split values . The anomaly

score is defined as the average path length from a testing sample to

the root. The experiments results for this model are obtained with

the implementation in the scikit-learn [27] package.

4.3.2 MNIST. We take one class of the ten numbers in theMNIST [24]

data set as the abnormal class, and the rest classes as the normal

class. In the training phase, we use only the images from nine nor-

mal classes to train GAN and our model. In the testing state, we use

the images from all ten classes in the testing set. The experiment

set up is following GANomaly [1]. The results for GANomaly [1] is

obtained by running the online code with the optimal parameters

given in the script. The results for the other methods are based

on the result section in [1]. The upper plot in Figure 4 shows the

results of all of the methods on ten classes. The proposed method

outperforms the others methods in all the ten tasks.

4.3.3 CIFAR10. Similar to the MNIST data set, we take one class

as the abnormal class, and the rest classes as normal. We follow

the experimental set up in [1]. The testing involves samples from

both the normal classes and the abnormal class in the testing data

Estimate the Implicit Likelihoods of GANs with Application to Anomaly Detection WWW ’20, April 20–24, 2020, Taipei

0 1 2 3 4 5 6 7 8 9

Digit (anomalous class)

0

0.2

0.4

0.6

0.8

1

A
U

C

VAE AnoGAN EGBAD GANomaly InvGAN

bird car cat deer dog frog horse plane ship truck

Anomalous Class

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
U

C

AnoGAN EGBAD GANomaly InvGAN

Figure 4: Anomaly detection with different models on the
MNIST and CIFAR10 data sets.

set. As shown in the lower plot in Figure 4, our method leads the

best results in all ten anomaly detection tasks, especially for the

class dog. The anomaly detection results on two real data sets show

that our model can perform well on the variance estimation for the

distribution samples and outliers.

Table 3: Anomaly detection on MNIST and CIFAR10

Data Set Model AUROC

VAE 0.3420 ±0.1861

AnoGAN 0.4390 ±0.1116

MNIST GANomaly 0.7390 ±0.0882

InvGAN 0.7920 ±0.0786
OC-SVM* 0.5843 ±0.0956

IF* 0.6025 ±0.1040

DSEBM-r* 0.6071 ±0.1007

DSEBM-e* 0.5956 ±0.1151

CIFAR10 ALAD* 0.6072 ±0.1201

AnoGAN 0.5949 ±0.1076

EGBAD 0.4450 ±0.0786

GANomaly 0.6065 ±0.0390

InvGAN 0.6391 ±0.0608

Table 3 presents comparison among different anomaly detection

methods for both image data sets. The experimental setups for

AnoGAN, EGBAD, GANomaly, and the proposed InvGAN are the

same and follow [1]. In order to obtain a comprehensive comparison

with existing methods, we also include some anomaly detection

results for CIFAR-10 from [35] (models marked with ∗ in Table 3).

Table 4: Anomaly detection on Arrhythmia data set

Data Set Model Precision Recall F1 Score

OC-SVM 0.5397 0.4082 0.4581

IF 0.5147 0.5469 0.5303
DSEBM-r 0.1515 0.1513 0.1510

Arrhythmia DSEBM-e 0.4667 0.4565 0.4601

DAGMM 0.4909 0.5078 0.4983

AnoGAN 0.4118 0.4375 0.4242

ALAD 0.5000 0.5313 0.5152

InvGAN 0.4390 0.6000 0.5070

We notice that there are some small experimental differences be-

tween [35] and what we used for CIFAR-10. In [35], they take one

class any the normal one, and the rest classes as the abnormal ones.

Anomaly detection is essentially a binary classification problem.

The numerical results in Table 3 can validate the significance of the

proposed model. In summary, the proposed method outperforms

the other auto-encoder and GAN based approaches for both image

data sets. More details about the implementation of the networks

are given in Appendix A.

4.3.4 Arrhythmia. We further investigate the method on a tabular

data set. The Arrhythmia [9] data set is obtained from the ODDS

repository. The smallest classes, including 3, 4, 5, 7, 8, 9, 14, and 15,

are combined to form the anomaly class, and the rest of the classes

are combined to form the normal class. Table 4 shows the anomaly

detection results with different methods. Due to the small training

set, classic methods outperform deep generative models on preci-

sion and F1 score. However, our method achieves the highest recall

values and a high F1 score as well. With the help of the variance

network, our method is relatively robust compared with other deep

neural network methods. More details about the implementation

of the InvGAN can be found in Appendix B. Figure 5 gives the

convergence of the loss Lh,σ for different data sets.

0 50 100 150 200 250

Iterations

0

10

20

30

40

50

L
h

,

MNIST

0 400 800 1200

Iterations

0

5

10

15

20

25

L
h

,

CIFAR10

0 500 1000 1500 2000

Iterations

0

5

10

15

L
h

,

ImageNet32

0 2000 4000 6000

Iterations

0

5000

10000

15000

L
h

,

Arrhythmia

Figure 5: Lh,σ at different iterations for different data sets.

WWW ’20, April 20–24, 2020, Taipei Shaogang Ren, Dingcheng Li, Zhixin Zhou, Ping Li

5 CONCLUSIONS
In this paper, we propose an approach to estimate the implicit likeli-

hoods of GANs. By leveraging an inference function and a variance

network of the generator, the likelihoods of testing samples can be

estimated. Simulation study and likelihood testing on real-world

data sets valid the advantages of the proposed method. We further

apply the method to three anomaly detection tasks. Experimental

results show that the proposed approach can outperform classic

and other deep neural network based anomaly detection methods.

Our future work includes further theoretical study of the model

and broadening the applications.

Appendix

A NETWORK STRUCTURES FOR IMAGE
DATA SETS

The generator, discriminator, and the inference network for MNIST,

CIFAR10 are given in Tables 5, 6, and 7. In the experiments, Ima-

geNet32 use the same network structure as CIFAR10, and it is not

stated in the tables.

Table 5: Generator of InvGAN in likelihood and anomaly de-
tection experiments for MNIST and CIFAR10

Generator

Layer Number of Kernel Stride Activation

Output function

Input z∼ N (0, 1)50
50

Fully-Connected 128*4*4 ReLU

Transposed 128*8*8 4*4 2 ReLU

convolution

Transposed 64*16*16 4*4 2 ReLU

convolution

Transposed 1*32*32 4*4 2 Tanh

convolution (MNIST)

3*32*32 4*4 2 Tanh

(CIFAR10)

Table 6: Discriminator of InvGAN in likelihood and anom-
aly detection experiments for MNIST and CIFAR10

Discriminator

Layer Number of Kernel Stride Activation

Output function

Input x 1*32*32

(MNIST)

3*32*32

(CIFAR10)

Convolution 64*16*16 4*4 2 ReLU

Convolution 128*8*8 4*4 2 ReLU

Convolution 128*4*4 4*4 2 ReLU

Fully-Connected 1 1 Sigmoid

Table 7: Inference network of InvGAN in likelihood and
anomaly detection experiments for MNIST and CIFAR10

Inference Network

Layer Number of Kernel Stride Activation

Output function

Input x 1*32*32

(MNIST)

3*32*32

(CIFAR10)

Convolution 64*16*16 4*4 2 ReLU

Convolution 128*8*8 4*4 2 ReLU

Convolution 128*4*4 4*4 2 ReLU

Fully-Connected 50 50

B NETWORK STRUCTURES FOR
ARRHYTHMIA DATA SET

The network structures for the generator, the discriminator, and

the inference network in the Arrhythmia experiments are given in

Tables 8, 9, and 10, respectively.

Table 8: Generator of InvGAN in Arrhythmia anomaly de-
tection experiments

Generator

Layer Number of Batch Activation

Output Normalization function

Input z∼ N (0, 1)zdim 50

Fully-Connected 128 Y ReLU

Fully-Connected 256 Y ReLU

Fully-Connected 274

Table 9: Discriminator of InvGAN in Arrhythmia anomaly
detection experiments

Discriminator

Layer Number of Batch Activation

Output Normalization function

Input x 274

Fully-Connected 256 Y ReLU

Fully-Connected 128 Y ReLU

Fully-Connected 1 Sigmoid

Table 10: Inference network of InvGAN in Arrhythmia
anomaly detection experiments

Inference Network

Layer Number of Batch Activation

Output Normalization function

Input x 274

Fully-Connected 256 Y ReLU

Fully-Connected 128 Y ReLU

Fully-Connected 50

Estimate the Implicit Likelihoods of GANs with Application to Anomaly Detection WWW ’20, April 20–24, 2020, Taipei

REFERENCES
[1] Samet Akcay, Amir Atapour Abarghouei, and Toby P. Breckon. 2018. GANomaly:

Semi-supervised Anomaly Detection via Adversarial Training. In 14th Asian
Conference on Computer Vision (ACCV). Perth, Australia, 622–637.

[2] Jinwon An and Sungzoon Cho. 2015. Variational Autoencoder based Anomaly
Detection using Reconstruction Probability. Technical Report.

[3] Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.
Technical Report. arXiv:1701.07875

[4] Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. 2018. Latent Space

Oddity: on the Curvature of Deep Generative Models. In 6th International Con-
ference on Learning Representations (ICLR). Vancouver, BC, Canada.

[5] Yu Bai, Tengyu Ma, and Andrej Risteski. 2019. Approximability of Discrimi-

nators Implies Diversity in GANs. In 7th International Conference on Learning
Representations (ICLR). New Orleans, LA.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large Scale GAN

Training for High Fidelity Natural Image Synthesis. In 7th International Conference
on Learning Representations (ICLR). Orleans, LA.

[7] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. 2016. InfoGAN: Interpretable Representation Learning by Information

Maximizing Generative Adversarial Nets. In Advances in Neural Information
Processing Systems (NIPS). Barcelona, Spain, 2172–2180.

[8] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2017. Density estimation

using Real NVP. In 5th International Conference on Learning Representations (ICLR).
Toulon, France.

[9] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[10] Nicolas Fournier and Arnaud Guillin. 2015. On the rate of convergence in

Wasserstein distance of the empirical measure. Probability Theory and Related
Fields 162, 3-4 (2015), 707–738.

[11] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE:

Masked Autoencoder for Distribution Estimation. In Proceedings of the 32nd
International Conference on Machine Learning (ICML). Lille, France, 881–889.

[12] Alvina Goh and René Vidal. 2008. Clustering and dimensionality reduction on

Riemannian manifolds. In 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR). Anchorage, Alaska.

[13] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press.

[14] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, andDavid Du-

venaud. 2019. FFJORD: Free-Form Continuous Dynamics for Scalable Reversible

Generative Models. In 7th International Conference on Learning Representations
(ICLR). New Orleans, LA.

[15] Aditya Grover, Manik Dhar, and Stefano Ermon. 2018. Flow-GAN: Combining

Maximum Likelihood and Adversarial Learning in Generative Models. In Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI).
New Orleans, LA, 3069–3076.

[16] Andrew J. Hanson. 1994. Graphics gems iv. chapter Geometry for N-dimensional
Graphics. Academic Press Professional, Inc.

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive

Growing of GANs for Improved Quality, Stability, and Variation. In 6th Interna-
tional Conference on Learning Representations (ICLR). Vancouver, BC, Canada.

[18] Diederik P. Kingma and Prafulla Dhariwal. 2018. Glow: Generative Flow with

Invertible 1x1 Convolutions. InAdvances in Neural Information Processing Systems
(NeurIPS). Montréal, Québec, Canada, 10236–10245.

[19] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.

In 2nd International Conference on Learning Representations (ICLR). Banff, AB,
Canada.

[20] Steven Krantz and Harold Parks. 2008. Analytical Tools: The Area Formula, the
Coarea Formula, and Poincaré Inequalities. Birkhäuser Boston, Boston, 1–33.

[21] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Technical Report. https://www.cs.toronto.edu/~kriz/learning-features-2009-

TR.pdf

[22] Abhishek Kumar, Prasanna Sattigeri, and Tom Fletcher. 2017. Semi-supervised

Learning with GANs: Manifold Invariance with Improved Inference. In Advances
in Neural Information Processing Systems. Long Beach, CA, 5534–5544.

[23] Neil D. Lawrence. 2003. Gaussian Process Latent VariableModels for Visualisation

of High Dimensional Data. In Advances in Neural Information Processing Systems
(NIPS). Vancouver, BC, Canada, 329–336.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning

applied to document recognition. Proc. IEEE 86 (1998), 2278–2324.

[25] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In

Proceedings of the 8th IEEE International Conference on Data Mining (ICDM). Pisa,
Italy, 413–422.

[26] George Papamakarios, IainMurray, and Theo Pavlakou. 2017. Masked Autoregres-

sive Flow for Density Estimation. In Advances in Neural Information Processing
Systems (NIPS). Long Beach, CA, 2338–2347.

[27] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Olivier

Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake

Vanderplas, Alexandre Passos, and David Cournapeau. 2011. Scikit-learn: Ma-

chine Learning in Python. Journal of Machine Learning Research 12 (2011),

12825–2830.

[28] Qichao Que and Mikhail Belkin. 2016. Back to the Future: Radial Basis Function

Networks Revisited. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics (AISTATS). Cadiz, Spain, 1375–1383.

[29] Aditya Ramesh and Yann LeCun. 2018. Backpropagation for Implicit Spectral
Densities. Technical Report. arXiv:1806.00499

[30] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-

Erfurth, and Georg Langs. 2017. Unsupervised Anomaly Detection with Gener-

ative Adversarial Networks to Guide Marker Discovery. In Proceedings of 25th
International Conference on Information Processing in Medical Imaging (IPMI).
Boone, NC, 146–157.

[31] Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola, John Shawe-

Taylor, and John C. Platt. 1999. Support Vector Method for Novelty Detection. In

Advances in Neural Information Processing Systems (NIPS). Denver, CO, 582–588.
[32] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, and

Charles A. Sutton. 2017. VEEGAN: Reducing Mode Collapse in GANs using

Implicit Variational Learning. In Advances in Neural Information Processing Sys-
tems (NIPS). Long Beach, CA, 3308–3318.

[33] Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg.

2018. Geodesic Clustering in Deep Generative Models. Technical Report. arXiv:

1809.04747

[34] Haiyan Ying, Dingcheng Li, Xu Li, and Ping Li. 2020. Meta-CoTGAN: A Meta

Cooperative Training Paradigm for Improving Adversarial Text Generation. In

The Thirty-Forth AAAI Conference on Artificial Intelligence (AAAI). New York,

NY.

[35] Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vi-

jay Chandrasekhar. 2018. Adversarially Learned Anomaly Detection. In IEEE
International Conference on Data Mining (ICDM). Singapore, 727–736.

[36] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. 2016. Deep Struc-

tured Energy Based Models for Anomaly Detection. In Proceedings of the 33nd
International Conference on Machine Learning (ICML). New York, NY, 1100–1109.

[37] Chong Zhou and Randy C. Paffenroth. 2017. Anomaly Detection with Robust

Deep Autoencoders. In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD). Halifax, NS, Canada,
665–674.

[38] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired

Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In

IEEE International Conference on Computer Vision (ICCV). Venice, Italy, 2242–2251.
[39] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Dae-ki

Cho, and Haifeng Chen. 2018. Deep Autoencoding Gaussian Mixture Model for

Unsupervised Anomaly Detection. In 6th International Conference on Learning
Representations (ICLR). Vancouver, BC, Canada.

arXiv:1701.07875
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
arXiv:1806.00499
arXiv:1809.04747
arXiv:1809.04747

	Abstract
	1 Introduction
	1.1 Deep Generative Models as Manifolds
	1.2 Change of Variable
	1.3 Density Estimation with Neural Networks
	1.4 Anomaly Detection with Generative Models

	2 Methodology
	2.1 The Variance Network of the Generator
	2.2 The Inference Network Learning
	2.3 Stabilize Training
	2.4 Algorithm

	3 Theoretical Analysis
	4 Experiments
	4.1 Likelihood Estimation on Synthetic Data
	4.2 Likelihood Estimation on Real Data Sets
	4.3 Anomaly Detection

	5 Conclusions
	A Network Structures for Image Data sets
	B Network Structures for Arrhythmia Data set
	References

