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Abstract
Open Information Extraction (OIE) is a task of generating
the structured representations of information from natural
language sentences. Recently years, many works have
trained an End-to-End OIE extractor based on Sequence-to-
Sequence (Seq2Seq) model and applied Reinforce Algorithm
to update the model. However, the model performance
often suffers from a large training variance and limited
exploration. This paper introduces a reinforcement learning
framework that enables an Advantage Actor-Critic (AAC)
algorithm to update the Seq2Seq model with samples from
a novel Confidence Exploration (CE). The AAC algorithm
reduces the training variance with a fine-grained evaluation
of each individual word. The confidence exploration provides
effective training samples by exploring the word at key
positions. Empirical evaluations demonstrate the leading
performance of our Advantage Actor-Critic algorithm and
Confidence Exploration over other comparison methods.

Keywords: Open Information Extraction, Seq2Seq model,
Actor-Critic, Confidence Exploration

1 Introduction
Open Information Extraction (OIE) is an emerging task of ex-
tracting knowledge from natural language sentences. The
OIE extractor generates a structured representation of in-
formation (e.g., n-ary tuples) from unstructured knowledge
stored in source sentences. Unlike Closed Information Ex-
traction (CIE) which applies a finite and predefined natu-
ral language corpus, OIE requires an unlexicalized, domain-
independent extractor that scales to the entire corpus of a
language. Figure 1 shows an example of OIE. The extracted
facts are applied as input data for many data mining and
natural language processing tasks and benefit lots of down-
stream applications [9] including event schema induction, text
comprehension, and word embedding generation.

Traditional works for OIE mainly apply pattern matching

Figure 1: The task of OIE: Given a source sentence, a model
is required to extract facts. Under our sequence prediction
setting, the facts are stored in a target sequence, where we
apply parenthesis to separate facts and ’$’ to mark different
components of a fact. In this example, we also use symbol
’X’ as a place-holder and ’|’ to divide different objects.

methods [10] or the self-supervised training (with data gener-
ated by heuristic patterns) [3]. However, the pattern matching
method has limited generalization ability across different do-
mains, and the data generated by the self-supervised training
often contain lots of noise.

To tackle the problems, many works have applied the
supervised learning method to train an encoder-decoder re-
current model that directly generates the predicted facts when
given a source sentence. For example, a recent work [17]
applied a Sequence to Sequence (Seq2Seq) model and built
an End-to-End knowledge extractor named Logician. To
improve model performance, many works have applied rein-
forced algorithms to update the Seq2Seq model. A common
method [14] is optimizing the Seq2Seq extractor under the
guidance of evaluation scores, but instead of evaluating indi-
vidual words, the score function often computes expected re-
wards for the entire prediction sequence. This coarse-grained
evaluation generates a large training variance. Furthermore,
the limited exploration of their algorithm also undermines the
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model’s confidence to its predictions, and thus influences the
quality of predicted facts.

In this paper, we apply the Advantage Actor-Critic (AAC)
algorithm to optimize the Seq2Seq model. Unlike the re-
inforcement algorithm which evaluates the entire target se-
quence with only one sequence reward, the Critic provides
a fine-grained evaluation to each item (e.g., word or symbol
like ’$’) in a prediction sequence. Together with an advan-
tage function from the Actor, our AAC algorithm updates the
Seq2Seq model with a smooth gradient estimate and substan-
tially reduces the training variance.

To overcome the problem of insufficient exploration, we
propose a Confidence Exploration (CE) algorithm to explore
candidate words at key positions of predicted sequences.
Compared to previous works on OIE, CE generates sufficient
training samples to improve both the confidence and the
quality of predicted facts. Our empirical evaluation compares
state-of-the-art baseline models and demonstrates a leading
performance of our model by measuring 1) the quality of
predicted facts, 2) the scale of approximation error and 3) the
impact of our Confidence Exploration.

Our main contributions are summarized as follows:

• We design a reinforcement learning framework that formu-
lates a Markov Decision Process (MDP) for OIE.

• We introduce an Advantage Actor-Critic (AAC) algorithm
to provide a fine-grain evaluation over each predicted word.
This algorithm significantly reduces the variances during
training (with theoretical proof).

• We propose a Confidence Exploration algorithm that can
be easily generalized to the sequence prediction tasks.

In the rest of the paper, Section 2 discusses the related
works. We formulate an MDP for the OIE task in Section 3
and describe our AAC algorithm in Section 4. We introduce
our Confidence Exploration in Section 5 and present our
experiments in Section 6.

2 Related Works
2.1 Open Information Extraction: OIE is a task of di-
rectly extracting entity and relation level intermediate struc-
tures from Natural Language Sentences, in contrast with the
Close Information Extraction (CIE) which identifies instances
from a fixed and finite set of natural language corpus. Tra-
ditional works applied handcrafted heuristics to extract the
required structures rather than a commonly applicable NLP
component. The pattern matching method [10] also suffers
from the limitation of generalization ability. To tackle these
problems, a recent work [15] trained an end-to-end recur-
rent model and directly transferred source sentences to the
entity-relation facts.

2.2 Sequence to Sequence Model: Seq2Seq [18] model
applies an encoder-decoder structure. The encoder is a
recurrent neural network that takes source sentences as input
and produces context features in the form of hidden states.
The decoder is another recurrent neural network that takes
hidden states from the encoder and generates predicted
sequences word-by-word. The Seq2Seq model has been
applied to many promising applications [2] including machine
translation, image captioning and, parse tree generation.

Many recent works [14, 22, 16] applied the reinforce
algorithm to improve the Seq2Seq models. Their models
applied the sequence-level update, which produces a high
training variance. To tackle the problem, [1] applied the
Actor-Critic algorithm to improve the Seq2Seq model. Its
critic network evaluates every word with word-level rewards.
The issue of insufficient exploration, however, undermines
the performance of their Actor-Critic algorithm.

2.3 Exploration for Reinforcement Learning: As an at-
tempt to maximize knowledge gain, an effective exploration
significantly improves both training efficiency and efficacy.
Apart from the traditional method like the Boltzmann Ex-
ploration [6] and Epsilon-Greedy, many recent works have
introduced more advanced exploration methods. For example,
[13] applied a bootstrapped method to explore the Deep Q
network. Previous works are mainly implemented under the
game environments with which the agent can interact con-
sistently. For a sequence prediction task (e.g., OIE in this
work) , we do not have a concrete environment and reward
is only computed after predicting the entire sequence, whose
length is rather varied during training. There is a more recent
work [8] that built an Monte-Carlo Tree Search (MCTS) to
explore the candidate words. Instead of applying external
exploration algorithm, their model merges the generation and
the exploration process by performing multiple MCTS, which
significantly increases the time complexity.

3 Task Formulation
This section introduces our approach to constructing a Markov
Decision Process (MDP) for the OIE task and applying the
Actor-Critic algorithm to improve a Seq2Seq model.

3.1 Construct MDP for Sequence Prediction: We ac-
complish the OIE task in the form of sequence prediction [15,
17]. Given a source sentence X1...M = {x1, x2, · · · , xM}
containing M words, our model generates a predicted se-
quence Ŷ1...T = {ŷ1, ŷ2, · · · , ŷT } of T words. The pre-
dicted sequence Ŷ1...T records a sequence of extracted facts
{F1...Fn}. In constructing the MDP, we define the source-
predicted sequence pair (〈X, Ŷ1..t−1〉) as the state at predict-
ing step t. Action is an item ( a word or a symbol such as
’$’ or ’|’) to be predicted (ŷt). After determining the action,
our agent reaches the next states (X, Ŷ1..t). The Markov
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Property is strictly preserved as (X, Ŷ1..t) models previous
knowledge with hidden states from a recurrent network [2].

3.2 Potential-Based Reward Shaping: At predicting step
t, our reward function measures the prediction Ŷ1..t by how
much it resembles the target sequence Y . We introduce our
approach to computing such a similarity score. Given a
predicted sequence Ŷ1..t (contains a set of predicted facts
{F̂i}nP

1 ) and a target sequence Y (records a set of ground
truth facts {Fj}nG

1 ), we match each predicted fact to
a ground truth fact by finding an optimal assignment to
maximize matching similarity. We obtain a set of matched
fact pairs {(F̂i, Fj)l}min(nP ,nG)

1 and compute a similarity
score between the predicted sequence and target sequence:

(3.1) Sim(Ŷ1..t, Y ) =

min(nP ,nG)∑
l=1

g((F̂i, Fj)l)

where g denotes the Gestalt Pattern Matching function.
In this work, similarity score (Sim) is used as both our
sequence reward and our evaluation metric, which effec-
tively avoids the mismatch between optimization and eval-
uation [14]. To project the sequence rewards to word re-
wards, we apply a potential-based reward shaping [1] with
potentials Φ(Ŷ1..t) = Sim(Ŷ1..t, Y ). This method enables
our model to evaluate each predicted word. When generat-
ing a predicted sequence, we compute the similarity score
for all prefixes and obtain a sequence of similarity scores
[Sim(Ŷ1..1, Y ), Sim(Ŷ1..2, Y ), ..., Sim(Ŷ1..T , Y )]. At pre-
dicting step t, an Actor-Critic reward rac(ŷt, Y ) is the dif-
ference of similarity scores between two consecutive predict-
ing step : rac(ŷt, Y ) = Sim(Ŷ1..t, Y ) − Sim(Ŷ1..t−1, Y ).
Replacing a sequence reward at the end of prediction with the
shaping (Actor-Critic) rewards rac(ŷt, Y ) does not influence
the optimal policy [11].

3.3 The Framework of Proposed Solution: Many recent
works [22, 7] have applied the Seq2Seq model to generate
predicted sequences. In improving the model performance,
traditional Reinforce Algorithm suffers from a large training
variance and limited exploration. To resolve the issues,
we introduce an Advantage Actor-Critic (ACC) algorithm
with Confidence Exploration, whose framework is illustrated
in Figure 2. Algorithm 1 concludes the training process.
The details for our AAC algorithm and our Confidence
Exploration are introduced in Section 4 and Section 5,
respectively.

4 Advantage Actor-Critic for Sequence Prediction
This section introduces the Advantage Actor-Critic (AAC)
algorithm. We also describe a novel Local Vocabulary
technique to reduce the action space.

Figure 2: The framework of our Actor-Critic algorithm with
Confidence Exploration. Predictions (Ŷ1...T ) from the Actor
are sent to our Confidence Exploration algorithm, which
produces exploration sequences (Ŷ e). We store the sequences
in an exploration buffer, where we can sample batches of
training data 〈XB , Ŷ B1...T , Y

B〉.

Algorithm 1: Advantage Actor-Critic with Confi-
dence Exploration

1: Require: A Critic Q̂(a; Ŷ1...t, Y ),
an Actor π(a|Ŷ1...t, X),
an exploration depth D, and
an exploration width W .

2: Pre-train the Actor with cross entropy loss.
3: Pre-train the Critic with gradient computed in Eqn. (4.2).
4: Initialize the Exploration Buffer B.
5: while not converge do
6: Generate W ∗D exploration sequences {Ŷ E1...T }W∗D1

with our Confidence-Exploration algorithm.
7: Update buffer by B = B ∪ {Ŷ E1...T }W∗D1 .
8: for inner iteration t do
9: Randomly select N training samples

{XB , Y B , Ŷ B}N1 from the buffer B.
10: Update Q̂ with TD gradient from Eqn. (4.3).
11: Update π with gradient from Eqn. (4.4).
12: end for
13: end while

4.1 Model Structure: We introduce the network structure
of both our Actor model and our Critic Model.

4.1.1 Critic Model: Similar to [1], we implement the
Critic as an attention-based encoder-decoder structure. It
takes target sequences Y and predicted sequences Ŷ as the
input of encoder and decoder, respectively, and produces Q
values for the predicted words at every predicting step.

4.1.2 Actor Model: As Figure 2 shows, the Actor takes
a source sentence X as input and generates a predicted
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sequence Ŷ that records a sequence of predicted facts.
We implement the Actor with an attention-based Seq2Seq
model [18]. The model embeds the source sentences and
encodes the embeddings into a Nh dimensional hidden states
HE = [h1, . . . , hNh

] by a bi-directional GRU (Gated Recur-
rent Units) network. We input the HE to a decoder, which
applies another bi-directional GRU network to generate the
predicted words. The decoder computes the probability of
generating yt by Pr(yt|y1, · · · , yt−1; ct) = g(ht−1, st, ct)
where ht−1 and st are the hidden states from the GRU encoder
and the GRU decoder respectively, g is the word generation
model, and ct is the dynamic context vector. We implement
the generation model g with the copy mechanism [4] which
generates a prediction ŷt by either copying words from the
input sentence X or selecting symbols from a set of pre-
defined symbols (e.g., ’$’ or ’(’). This design allows OIE
extractor to select meaningfully information from source sen-
tences (by copying words) and reconstituting the words with
a pre-defined format (marked by the symbols). The dynamic
context vector ct applies the coverage mechanism [21], which
introduces an extra coverage vector for every word in source
sentences, in order to remember their individual attention
history. This mechanism significantly prevents information
loss or redundancy in prediction sequences.

4.2 Training Actor and Critic: We introduce the training
details of our Actor-Critic algorithm.

4.2.1 Training the Critic: The pre-training of our Critic
applies the Monte Carlo method [19] which uses the cumu-
lative reward

∑T
γ=t rac(ŷ

n
γ , Y

n) to supervise training. The
gradient is computed by:
(4.2)

d

dθQ̂

N∑
n=1

t∑
t=1

[
Q̂(ŷnt ; Ŷ

n
1...t−1, Y

n)−
T∑
γ=t

rac(ŷ
n
γ , Y

n)
]2

The pre-training provides an unbiased evaluation for each
action but generates high variance [19], so during updating,
we follow [1] and apply Temporal Difference (TD) gradient
to smooth the variance by:

d

dθQ̂

N∑
n=1

T∑
t=1

[
Q̂(ŷnt ; Ŷ

n
1...t−1, Y

n)− qnt
]2

(4.3)

where qnt = rac(ŷt
n, Y n)

+
∑
a∈A

π(a|Ŷ n1...t, Xn)Q̂(a; Ŷ n1...t, Y
n)

4.2.2 Training the Actor: For our Actor, we first pre-train
it by minimizing the cross-entropy loss computed with target
sequences and predicted sequences. Similar to MIXER [14],
the pre-training applies the teacher-forcing technique which
directly feeds the target sequences to the decoder. This

technique exploits the availability of target sequences but
has limited generalization ability to the unseen sequences.

To tackle this issue, in this work, we continuously update
our Actor using an advantages function Aπ and compute the
training gradient by:

N∑
n=1

T∑
t=1

∑
a∈A

dπ(a|Ŷ n1...t−1, Xn)

dθπ
Aπ(a; Ŷ n1...t−1, Y n)(4.4)

where the advantage function of the action a is

Aπ(a; Ŷ n1...t−1, Y n) =Q̂(a; Ŷ n1...t−1, Y
n)−∑

b∈A

π(b|Ŷ n1...t−1, Y n)Q̂(b; Ŷ n1...t−1, Y
n)(4.5)

Compared to the traditional Actor-Critic algorithm which
evaluates only on the selected action (1-sample estimate), our
Critic provides a fine-grained evaluation for all the candidate
actions (words and symbols).

A key benefit of applying advantage function is reducing
the training variance. Apart from it, advantage function also
provides an unbiased gradient estimate. We formally describe
the benefit of the AAC algorithm through the following
theorem (see proof in the Supplementary Materials1)):

THEOREM 4.1. Let A be a finite and discrete action space,
T be the prediction length and T ∈ [1, inf], our gradient func-
tion

∑T
t=1

∑
a∈A π(a|Ŷ1...t−1, X)Aπ(a; Ŷ n1...t−1, Y n) pro-

vides a unbiased gradient estimate, and the advantage Aπ
reduces the training variance.

4.3 Reduce the Action Space by Local Vocabulary Rep-
resentation: One major issue during implementation is the
massive action spaces (vocabularies) at every predicting step
t. It is a common challenge for many sequence prediction
works [1, 14]. To tackle this problem, we propose a novel
local vocabulary representation for the OIE task.

Local vocabulary representation maintains only a local
dictionary for each source sentence. Applying the copy mech-
anism [21], our model predicts a word by either copying the
words from the input source sentenceX or selecting a symbol
from a set of keywords (containing symbols like ’(’, or ’$’)
that mark the structure of predicted facts. A local dictionary
stores only length(sequence) + length(keywords) words
and it is guaranteed that our local dictionary contains the
word to be extracted. When global operations (e.g., Word
Embedding) are required, we use another “local to global”
dictionary to transfer the local words back to global words.

Applying local vocabulary representation, our actor pro-
duces only a probability distribution for less than 100 words,
and thus the exploration scans a significant smaller action

1https://github.com/Guiliang/homepage/blob/master/external-
materials/SDM20/SDM2020-Supplementary-Materials.pdf
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space at each predicting step, as opposed to 363,851 actions
(words) in the original global dictionary. Time and space
consumed by transferring local vocabulary dictionaries to the
global ones are essentially trivial, compared to the vocabulary
size that this technique manages to reduces (more than 300
times). Significant computation and space complexity are
also saved for the Critic as the evaluated actions are less than
100 (see Eqn. (4.3)). This local vocabulary representation
can be generalized to other information extraction tasks when
applying the Seq2Seq model.

5 Confidence Exploration
The trade-off between exploration and exploitation is a
key problem for reinforcement learning models. While
many models [22, 1] exploit the predicted sequences, their
exploration is not sufficient. In this work, we propose a
Confidence Exploration to expend the training samples. This
section provides two major motivations and introduces the
implementation details of our exploration.

5.1 Motivations: We explain how the confidence of pre-
dictions influences the quality of predicted facts and introduce
two major motivations for our Confidence Exploration.

Score is correlated with Confidence. We observe that a
Seq2Seq model tends to extract correct facts when it has
large confidence (probability) for its predictions. Figure 3
shows this phenomenon by illustrating the scatter plot of the
similarity score (between a predicted fact and a target fact)
and the average prediction confidence (for every word in
predicted facts). For the sequences with above zero scores,
the correlation between similarity scores and prediction
confidences is over 0.61. It indicates that to generate the
predicted facts that are more similar to the target facts, a
model should become more confident in its predictions.

Another important observation is that our model is
confident in most of its predicted words (Pr(ŷ) ≥ 0.8) in
general. The small average confidence for some predicted
sequences is caused by several words with very low prediction
probabilities. By substituting the unconfident predictions
with other candidate words and evaluating the new sequences
with Critic values Q̂, our model learns the consequence of
selecting a different combination of words. After updating the
predicting policy with the Actor-Critic algorithm, our model
will become more confident in its predictions.

Explore to improve the predictions. For a Seq2Seq model,
a prediction made at the predicting step t depends on the
predictions from previous t−1 steps [2]. A formerly predicted
word has significant influences on the following predictions.
By selecting an optimal word at a key step t′, the quality of a
predicted sequence will be improved [14].

Figure 4 shows an example of Confidence Exploration.
Through replacing the word or symbol having small confi-

Figure 3: The scatter plot of similarity score v.s. confidence.
Each point represents a predicted fact. For a predicted fact, its
similarity scores with the target fact are positively correlated
to its prediction confidence.

dence (e.g., ’ ’ with probability 0.6) with other candidate
words (e.g., ’Yellowstone’ with probability 0.3), we obtain an
exploration sequence that is more close to the target sequence
(see Figure 1). Guided by rewards and critic values computed
with the exploration sequences, our model learns how to reach
the target sequence from the predicted sequence by selecting
words at key positions.

5.2 Implementation: We introduce the approach of imple-
menting our Confidence Exploration for the task of sequence
prediction. The inference process of a sequence prediction
model (e.g., Seq2Seq model) is iteratively generating a prob-
ability distribution for all candidate words and selecting a
word ŷt along the predicting step from 1 to T . We explore a
predicted sequence by:

1) Locating the word ŷe with the smallest probabil-
ity. This process fits well with MinMax representation:
mint

{
maxŷ1

[
Pr(ŷ1 ∈ A|X, Ŷ0)

]
, ...,maxŷT

[
Pr(ŷT ∈

A|X, Ŷ1...T−1)
]}

, where at every predicting step t, we select
a word ŷ that maximizes the prediction probability distri-
bution. After generating the predicted sequence ŷ1, ..., ŷT ,
we find the word ŷe with the smallest prediction probability
among them. ŷe is the word to be explored.

2) Substituting the word to be explored (ŷe) with other
candidate words. For the depth d ∈ 1, 2, .., D, we repeatedly
replace the ŷe with the candidate word having the dth

prediction probability. By freezing the words before and
at step e with the teacher forcing technique and dynamically
generating the rest of words, we generate D exploration
sequences {Y d1..T }D1 . Figure 4 shows an example.

After generating an exploration sequence Y d1..T , we
evaluate it by computing either a sequence reward:
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Figure 4: An example of Confidence Exploration. By replacing the word ŷe with other candidate words and calculating the
sequence rewards, we learn how to improve predicted sequence by selecting words at the key positions.

r(Y d1..T , Y ) = Sim(Y d1..T , Y ) or the word-level rewards
(Actor-Critic rewards)

{
rac(y

d
t , Y ) = Sim(Y d1..t, Y ) −

Sim(Y d1..t−1, Y )
}T
t=1

. The rewards and the exploration se-
quences can be applied to update the Seq2Seq Model with
the Reinforced or Actor-Critic algorithm.

One can also define an exploration width W . That
is, at step 1), instead of finding only the word with the
smallest probability, we select the words with the minimum
W probabilities and continue the following operations. The
exploration sequence sets will be {Y dw1..T }W∗D1 .

6 Empirical Evaluation
In this section, we evaluate the Actor-Critic algorithm and
analyze the impact of our Confidence Exploration.

6.1 Experiment Settings
Dataset: A recent work [12] provided a detailed survey
of OIE and investigated the available datasets. The most
commonly applied datasets are WEB, WIKI, NYT, and PENN
which contain sequences from web text, Wikipedia, New York
Times Corpus and Penn Treebank respectively. However, they
are proposed to evaluate pattern matching methods and record
only less than 500 source sentences. Our experiment shows
the lack of training data leads to over-fitting in the model.

To address this problem, we apply a recently pro-
posed SAOKE dataset2 , which contains over 47,000 source-
target sequences pairs 〈X,Y 〉 (Y records the facts to be
extracted, check Figure 1 for an example). SAOKE ap-
plies a unified n-ary tuple (subject, predicate, object1, · · · ,
objectN ) and formulates facts to four categories: 1) Relation:
verb/preposition-based n-ary relations between entity men-
tions; 2) Attribute: nominal attributes for entity mentions;
3) Description: descriptive phrases of entity mentions; 4)
Concept: hyponymy and synonymy relations among concepts
and instances. Unlike many other system-labeling datasets

2http://ai.baidu.com/broad/subordinate?dataset=saoke

(e.g., OIE 2016 [15]), [17] manually labeled all the fact with
the Crowdsourcing technique. The labeling procedure is un-
der the supervision of the ”Completeness” criterion, so the
facts intend to cover all the information from the extracted
sequences. A previous work [17] has provided a detailed
study over the SAOKE dataset and ensured the data validity.

To the best of our knowledge, the SAOKE dataset is
the few valid open-domain source-target formatted dataset,
which has enough training samples and fulfills the require-
ment of the OIE task and our Seq2Seq extractor.

Training Settings: Following the prior work [17], we split
the SAOKE dataset into training data, validation data, and
testing data which take up 80%, 10%, and 10% of the
entire dataset respectively. To prepare training samples, the
facts to be extracted are represented as target sequences Y .
Both the Actor and the Critic are trained and updated with
the Stochastic Gradient Descent with RMSPROP optimizer,
implemented with PaddlePaddle3 deep learning platform.

Comparison Methods: We compare four state-of-the-art
methods that apply a deep model for the task of OIE. The
first baseline model Logician [17] is an end-to-end Seq2Seq
model trained by the supervised learning method. We
also experiment with updating the Seq2Seq model with the
Reinforce (RF) algorithm [14]. Another recent work [1]
applied the Actor-Critic (AC) algorithm (without advantage
function or exploration) to improve the performance of a
Seq2Seq model for sequence prediction problem. To compare
exploration methods, we follow [22] and use Monte-Carlo
Exploration (ME) to generate sequences with a Generative
Adversarial Nets. We modify their model for the OIE task
and combine it with the Actor-Critic algorithm (ME+AC).

We also experiment with two pattern matching meth-
ods. Chinese Open Relation Extraction (CORE) [20] is a
system designed for extracting entity-relation triples from
text sequences based on a series of NLP techniques, including

3https://www.paddlepaddle.org.cn

222
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

04
/1

4/
20

 to
 7

3.
25

4.
22

9.
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



word segmentation, POS tagging, syntactic parsing, and rules
extraction. Another method is an unsupervised OIE model
based on Dependency Semantic Normal Forms (DSNF) [5] .

To study the impact of exploration, we experiment differ-
ent exploration widths W ∈ {2, 4, 6} for our Confidence Ex-
ploration (CE+AAC(W2), CE+AAC(W4), CE+AAC(W6)).

6.2 Actor Evaluation: Are we predicting the correct
facts? We feed source sentences (from the hold-out testing
dataset) to the models and evaluate their performance by
measuring the quality of predicted facts. The evaluation met-
ric is the similarity score Sim between predicted sequences
and target sequences. Following [17], a predicted fact is la-
beled as True if the score exceeds the correctness threshold
(0.85) and False otherwise, with which we compute the pre-
cision (P), recall (R) and, F1-score (F1) for all the predicted
facts. To assess whether the scores of predicted facts from our
CE+AAC model have a significant difference with that from
the comparison methods, we perform a paired t-tests over all
the scores of predicted facts. The null hypothesis is rejected
with respective p-values: 1.08E-09, 2.55E-12, 5.15E-11 and
1.43E-11 for Logician, RF, AC, and ME+AC.

Table 1: The Evaluation Results for the Actor.

Model
Search
Method P R F1

DSNF N/A 0.220 0.112 0.148
CORE 0.400 0.1760 0.232

Logician

Greedy
Search

0.3803 0.3885 0.3844
RF 0.4015 0.4005 0.4010
AC 0.3834 0.3919 0.3876

ME+AC 0.3812 0.3890 0.3851
CE+AAC(W2) 0.4327 0.4062 0.4190
CE+AAC(W4) 0.4394 0.4159 0.4273
CE+AAC(W6) 0.4382 0.4148 0.4262

Logician

Beam
Search

0.4699 0.4004 0.4324
RF 0.4873 0.4099 0.4453
AC 0.4702 0.3998 0.4322

ME+AC 0.4705 0.4027 0.4340
CE+AAC(W2) 0.5089 0.4047 0.4509
CE+AAC(W4) 0.5164 0.4086 0.4562
CE+AAC(W6) 0.5123 0.4063 0.4532

Table 1 presents the evaluation results with both beam
search (beam size = 3, determined experimentally) and greedy
search. Without exploration, the improvement made by AC
itself is very limited, which is smaller than that from RF,
because it is difficult for AC to learn a complex word-level
Critic without exploration. The result is generally consistent
with [1]. After adding exploration, the performance of the
Actor is improved. However, compared with our Confidence
Exploration, the improvement from Monte-Carlo Exploration

is still limited for both beam search and greedy search. In
ME, we sample sequences by the probability distribution
over every candidate words. Sampling for each sequence is
independent. It’s highly possible to get the same exploration
sequences across different sampling. Whereas our Confidence
Exploration forces the model to explore different words at
key positions and improves the efficiency and efficacy of
exploration. We experiment with different exploration widths
and obtain the best result whenW = 4. It indicates expending
exploration width does not always improve the performance.
The number of keywords in a predicted sequence is limited
and exploring too many irrelevant words will generate noise.

The SAOKE dataset contains some noise from human
labeling (sub-optimal or incomplete facts). We find our model
manages to overcome the noise and generates the facts that
substantially exceed human labeling. For example,

• Source: 李白的诗歌对后代产生了极为深远的影
响。(Li Bai’s poetry has a profound impact on future
generations.).

• Human labeled sequence: (李白$诗歌$对后代产生了
极为深远的影响)(LiBai $ poetry $ has a profound impact
on future generations).

• Our model prediction: (李白的诗歌$对X产生了Y $后
代$极为深远的影响)(Li Bai ’s poetry $ has a X on Y $
profound impact $ future generations).

6.3 Critic Evaluation: Are the Q values smooth and ac-
curate? We evaluate the Critic by measuring 1) if it reduces
the Temporal Difference (TD) error. 2) if it approximates
the expected cumulative rewards and thus provides accurate
evaluations. Following [19], we measure the TD error with
the Expected TD Update and compute both the Absolute and
the Norm of the Expected TD Update (AEU, NEU). For the
approximation performance, a common approach is to com-
pute the difference between Q values from the Critic and real
cumulative rewards from input sentences: Q̂−

∑
t rac(t). We

compute the Mean Absolute Difference (MAD) and the Mean
Square Difference (MSD). The input sentences are sampled
from the hold-out testing dataset.

Table 2: Evaluation Results for the Critic.
Model AEU NEU MAD MSD

AC 0.0467 0.0084 0.4620 0.7343
ME+AC 0.0437 0.0072 0.4483 0.6618

CE+AAC(W2) 0.0374 0.0060 0.3789 0.3716
CE+AAC(W4) 0.0325 0.0052 0.4352 0.4397
CE+AAC(W6) 0.0321 0.0050 0.4416 0.4338

Table 2 presents the evaluation results. Both the TD
errors (AEU and NEU) and approximation difference (MAD

223
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

04
/1

4/
20

 to
 7

3.
25

4.
22

9.
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



and MSD) are significantly reduced by our model (CE+AAC).
Compared to Monte-Carlo Exploration, our Confidence
Exploration manages to reduce both kinds of errors more
effectively. When the exploration width (W ) expands, we
find the TD errors become smaller while the approximation
difference increases. It is because as the exploration scale
becomes larger, the model has to spend more steps to finish
the same epochs of training, which facilitates the TD learning
in reducing the training variance but adds some noise to the
Critic. It also explains why our model does not achieve the
best performance with the largest exploration width.

6.4 Drill-down Analysis: Has the exploration benefited
our model? We investigate the influences of our Confidence
Exploration by analyzing 1) for all the predicted facts, if the
algorithm manages to increase their scores and confidence.
2) for the predicted facts whose scores exceed over or
drop from the correctness threshold (0.85) after adding
the exploration, how their confidence fluctuates. This
experiment compares the model trained by only the Actor-
Critic algorithm (exploration width = 0) and that updated with
our Confidence Exploration (width = 2, 4, 6).

Table 3: Average scores and confidence for all the predicted
facts. AC does not explore, so width = 0.

Beam Search Greedy Search
Width Score Confidence Score Confidence

0 0.6993 0.8581 0.6846 0.8558
2 0.7558 0.9387 0.7320 0.9219
4 0.7567 0.9338 0.7364 0.9154
6 0.7566 0.9331 0.7354 0.9156

Table 3 shows the scores and confidence for all predicted
facts. We find our Confidence Exploration increases both
scores and confidence for the predicted facts, compared to
the model without exploration (width = 0). The results from
beam searches are better than from greedy search. Our model
obtains the highest average score when exploration width = 4,
which is consistent with the results in Table 1.

Table 4: Number of scores exceeding or dropping from the
threshold (0.85) after adding our Confidence Exploration.

Beam Search Greedy Search
Width Exceed Drop Exceed Drop

2 1301 1231 1462 1300
4 1129 1030 1323 1078
6 1121 1041 1318 1063

The following experiments study the impact of Confi-
dence Exploration on improving the scores of predicted facts
over the correctness threshold. After adding our Confidence

Exploration, the scores of many predicted facts are improved
over the correctness threshold while some scores (less than
the number of improved scores) also drop from this thresh-
old (Table 4). We want to know whether their confidence
increases during this process and report the percentage of
increasing confidence in Table 5.

Table 5: Percentage of increasing confidence when the scores
exceed or drop from the threshold (0.85) after adding the
Confidence Exploration.

Beam Search Greedy Search
Width Exceed Drop Exceed Drop

2 63.10% 34.52% 58.34% 38.92%
4 60.19% 32.45% 56.89% 33.58%
6 59.68% 31.89% 57.74% 33.99%

Table 5 shows when the Confidence Exploration manages
to improve the scores over the threshold, nearly 60% of the
confidence increases, but when the scores drop from the
threshold, only around 30% of the confidence increases. It
indicates a positive relationship between the confidence and
scores, which is consistent with the motivation in Section 5.
We observe when exploration width W = 2, the extractor
has larger confidence (Table 3) and improves more facts
(Table 4), but it also reduces the scores of many facts and
thus, fails to have the leading performance. It indicates that
the insufficient exploration (when W = 2) leads to many
unstable predictions.

6.5 Error Analysis and Limitations This section pro-
vides an error analysis over the incorrect predictions from
our method (CE + ACC(W4)) and introduces the related
limitations. The error analysis is implemented by randomly
selecting 100 samples among the incorrect predictions and
manually summarizing the error in Table 6.

Table 6: Summary of the prediction error.
Error Type Percentage
Correct relation, incorrect subjects 29%
Correct relation, incorrect objects 14%
Incomplete/over-extracted relation 22%
Incorrect relation category 9%
Wrong relation 17%
Other, include incomplete sequence 9%

We find more than 40% of the predictions have extracted
correct relations but generate wrong subjects or objects. A
typical error is the misuse of the placeholder (for some in-
complete source sentences, the correct facts use a placeholder
(’ ’) to represent the missing elements). Our model must
determine if there is a missing element and fills it with a
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placeholder at correct positions. This task is difficult for gen-
eral OIE extractors and our confidence exploration fails to
overcome this difficulty. It requires a more robust exploration
method that can run during both training and predicting to
evaluate more candidates words or symbols.

7 Conclusion and Future Work
This paper applies the Advantage Actor-Critic algorithm
with Confidence Exploration on the OIE task. The AAC
algorithm achieves a fine-grained optimization over each
individual word and reduces the training variance, and
the Confidence Exploration obtains more effective training
samples by exploring predicted sequences at key positions.
Empirical evaluation demonstrates the performance of our
approach. A promising direction of future work is conducting
detailed case studies over the wrong predictions and designing
a more robust exploration algorithm to handle the difficult
samples in error analysis.
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Monte-Carlo Planning. In ECML, pages 282–293, 2006.

[7] Xu Li, Mingming Sun, and Ping Li. Multi-agent
discussion mechanism for natural language generation.
In AAAI, pages 6096–6103, 2019.

[8] Guiliang Liu, Xu Li, Jiakang Wang, Sun Mingming, and
Ping Li. Extracting Knowledge from Web Text with
Monte Carlo Tree Search. In WWW, 2020.

[9] Mausam. Open Information Extraction Systems and
Downstream Applications. In IJCAI, pages 4074–4077,
2016.

[10] Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. Open Language Learning for
Information Extraction. In EMNLP-CoNLL, pages 523–
534, 2012.

[11] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Pol-
icy Invariance Under Reward Transformations: Theory
and Application to Reward Shaping. In ICML, pages
278–287, 1999.

[12] Christina Niklaus, Matthias Cetto, André Freitas, and
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