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Abstract: The Chernoff coefficient is known to be an upper bound of
Bayes error probability in classification problem. In this paper, we will
develop a rate optimal Chernoff bound on the Bayes error probability. The
new bound is not only an upper bound but also a lower bound of Bayes
error probability up to a constant factor. Moreover, we will apply this result
to community detection in the stochastic block models. As a clustering
problem, the optimal misclassification rate of community detection problem
can be characterized by our rate optimal Chernoff bound. This can be
formalized by deriving a minimax error rate over certain parameter space
of stochastic block models, then achieving such an error rate by a feasible
algorithm employing multiple steps of EM type updates.
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1. Introduction

Many classification and clustering problems in statistical literature can be re-
duced to symmetric hypothesis testing. In a classical setting, given two hypothe-
ses H0 and H1, where Hi assumes that observing data from a measurable space
with distribution Pi, one discriminates between them according to certain de-
cision rule. Type-I error occurs if one accepts H0 while the data are generated
from distribution P1, and vice versa on type-II error. Symmetric hypothesis
testing indicates that the hypotheses are equiprobable, and the loss function
weighs type-I error and type-II error equally. Therefore, we would like to focus
on the Bayes error probability, which averages two kinds of error probabilities.

The asymptotic behavior of the Bayes error probability becomes an essential
problem in symmetric hypothesis testing. Given probability density functions
(PDFs) or probability mass functions (PMFs) ϕ0 and ϕ1 of distribution P0 and
P1 respectively, the Chernoff information, defined as

Dα∗(ϕ0‖ϕ1) = − inf
α∈(0,1)

log

∫
ϕ1−α
0 ϕα

1 dμ (1.1)
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is known as the best exponent of Bayes error probability [1]. A Chernoff type
lower bound was investigated in [2, 3]. It is a powerful tool in many researches,
such as community detection [4, 5, 6] and quantum information theory [7, 8].
However, the ratio between Chernoff coefficient, defined as exp(−Dα∗(ϕ0‖ϕ1)),
and the Bayes error probability has not been investigated in previous literature.
In this paper, we will propose a rate optimal Chernoff bound for Bayes error
probability. Observing i.i.d. samples with distribution either ϕ0 or ϕ1, we will
show that the Bayes error probability is asymptotically equivalent to

1√
nα∗(1− α∗)

e−nDα∗ (ϕ0‖ϕ1) (1.2)

up to a constant factor. This result can be generalized to the non-i.i.d. case.
Although a comparable second-order asymptotics for asymmetric hypothesis
testing was investigated in [9, 10], there is no direct application to our situ-
ation.

This paper will also apply the main result of the rate optimal Chernoff up-
per and lower bound to one of popular clustering problems in statistics, namely
community detection. Particularly, we will focus on the stochastic block models
(SBM). Many effective algorithms and related theories have been proposed for
solving community detection in SBMs, including global approaches such as spec-
tral clustering [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and convex relax-
ations via semidefinite programs (SDPs) [24, 25, 26, 27, 28, 29, 30, 31, 32, 33].
Global approaches usually involve a single optimization step (either spectral
clustering or SDP after convex relaxation) and do not require good initial-
ization. However, these algorithms are usually not optimal on their own, be-
cause both spectral clustering and SDP lose the block structure in SBM. The
pseudo-likelihood approach [34] fills in the gap with local refinement and makes
optimal clustering possible. The general idea was concluded as “Good Initial-
ization followed by Fast Local Updates” (GI-FLU) by [35]. Since the minimax
error rate proposed in [36], algorithms in the manner of GI-FLU are developed
in [37, 35, 4, 6]. However, as the rate optimal Chernoff upper and lower bounds
were not used in these papers, the minimax rate is not sufficiently accurate and
very few algorithm have been proved to be optimal. Details can be found in the
following table. Here, n is the number of nodes and d is the average degree of
a node in the network. K denotes number of communities. I indicates Chernoff
information in (1.1). The specific one for community detection will be defined
in (3.7). o(1) is some eventually positive sequences converging to 0.

Table 1

Comparison with existing results.

paper density symmetry minimax error algorithmic error
[37] not needed yes not derived exp(−CnI), (C < 1)
[4] Θ(logn) yes not derived o(1/n)
[35] not needed yes exp(−(1 + o(1))nI) exp(−(1− o(1))nI)

[6] O(
√
n) no Ω(exp(−nI)/dK/2) O(exp(−nI)/

√
d)

This paper not needed yes Ω(exp(−nI)/
√
d) O(exp(−nI)/

√
d)
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Some features or assumptions of the problem are described as follows. Density
indicates the average degree of a node. Symmetry means the paper assumes
that the network is an undirected graph. Community detection on symmetric
network is usually more difficult since half edges are duplicated. Minimax error
rate can be considered as fundamental limit of community detection problem.
Algorithmic error rate are the theoretical guarantees of feasible algorithms.

Block partitioning skills introduced in [37] generate enough independence be-
tween different steps of their algorithm. However, the last local update can only
be applied on half of dataset, so the error rate is much higher than exp(−nI).
Algorithm derived in [35] has error rate similar to the minimax error rate in [36],
but the ratio between upper and lower bound has order exp(o(1)nI), which can
be arbitrary divergent sequence. The analysis in [4] focuses on the density regime
Θ(log n), but it cannot generalize to other densities. To achieve an optimal er-
ror rate, the algorithm in [6] allows twice local update. However, their approach
cannot extend to undirected network. We will combine different existing tech-
niques and propose a new algorithm that achieves the minimax error rate (up
to a constant).

We summarize the contributions of this paper as follows:

1. We investigate the rate optimal Chernoff upper and lower bound for Bayes
error probability.

2. Considering certain parameter space, we propose the second-order asymp-
totics for minimax lower bound for community detection in SBM.

3. We provide a feasible algorithm which guarantees to achieve the minimax
lower bound up to a constant factor.

The rest of the paper will be organized as follows. We introduce the Chernoff
type upper and lower bound in Section 2, then we present our minimax lower
bounds and the provable community detection algorithm with its analysis in
Section 3. Simulations will appear in Section 5. Proofs of Theorems and corol-
laries in Section 2 will appear in Section 6. Proofs about minimax error rate
and consistency of community detection can be found in Section 7.

Here, we briefly introduce the notations will be used in this paper. [n] is
the set of integers from 1 to n, i.e., [n] = {1, 2, . . . , n}. A random variable
X ∼ f means X has probability mass function or density function f . an � bn or
equivalently an = O(bn) holds if there exists a constant C such that an ≤ Cbn
for sufficiently large n. If an � bn and bn � an, then an � bn. an = o(1) means
an converges to 0 and nonnegative for sufficiently large n. Furthermore, we use
a ∨ b and a ∧ b to denote max(a, b) and min(a, b) respectively.

2. Rate optimal Chernoff upper and lower bounds

We will introduce a fundamental testing problem under a Bayes setting, then
present a new Chernoff type upper and lower bound of Bayes error probability.
We will also introduce its application exponential families.
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2.1. Symmetric hypothesis testing

We will define a symmetric hypothesis testing problem and its Bayes error prob-
ability. Let ϕ0j and ϕ1j for j ∈ [n] be two sequences of measurable PDFs for
one-dimensional real random variables. Same results hold if they are PMFs, but
we only consider PDFs for brevity. We assume for every j ∈ [n], ϕ0j and ϕ1j

are defined on the same measure space (Ωj ,Σj , μj). Let us consider the product
measure space (Ω,Σ, μ) defined by

Ω := Ω1 × · · · × Ωn, Σ = Σ1 ⊗ · · · ⊗ Σn and μ = μ1 × · · · × μn (2.1)

and measurable PDFs

ϕz(x) := ϕz(x1, . . . , xn) :=

n∏
j=1

ϕzj(xj) for z ∈ {0, 1}. (2.2)

Furthermore, we denote the Kullback–Leibler divergence of ϕ1 from ϕ0 by

DKL(ϕ0‖ϕ1) =

∫
Ω

ϕ0 log
ϕ0

ϕ1
dμ.

We assume both DKL(ϕ0‖ϕ1) and DKL(ϕ1‖ϕ0) exist, which implies
∫
Ω
(ϕ0 +

ϕ1)
∣∣ log ϕ1

ϕ0

∣∣dμ < ∞. In particular, it requires ϕ0 and ϕ1 to have the same
support, and take different values on a set with non-zero measure. For a pair of
density functions satisfying these conditions, we say

(ϕ0, ϕ1) ∈ F(Ω,Σ, μ, n). (2.3)

Now we randomly draw a number z ∈ {0, 1} with equal prior probability 1/2. We
note that the following arguments about the rate optimal Chernoff bound still
hold as long as the prior probability is nondegenerate, but we assume equiprob-
able for simplicity. Then we draw a random sample X = (X1, . . . , Xn) where
Xj ∼ ϕzj independently. We aim to recover the label z given the observation
X = x = (x1, . . . , xn). For any estimator ẑ := ẑ(x) of z, we define the Bayes
error probability, also called Bayes risk, given by

R(ẑ, z) :=
1

2

∑
z∈{0,1}

P(ẑ �= z)

Due to the Neyman-Pearson lemma, the Bayes estimator, which is known to be
the best estimator in the measurement of Bayes risk, is given by

ẑ := arg max
z∈{0,1}

ϕz(x).

In the rest of this section, we let ẑ be the Bayes estimator. The Bayes error prob-
ability is closely related to total variation affinity between ϕ0 and ϕ1, denoted
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as η(ϕ0, ϕ1), which will be defined as follows:

η(ϕ0, ϕ1) :=

∫
Ω

min(ϕ0, ϕ1)dμ

=

∫
Ω

ϕ01{ϕ0 ≤ ϕ1}dμ+

∫
Ω

ϕ11{ϕ1 < ϕ0}dμ = 2R(ẑ, z).

(2.4)

The naming of total variation affinity comes from the fact that

η(ϕ0, ϕ1) = 1−DTV(ϕ0‖ϕ1), where DTV(ϕ0‖ϕ1) := sup
A∈Σ

∣∣∣ ∫
A

ϕ0 − ϕ1dμ
∣∣∣.

Here, DTV(ϕ0‖ϕ1) is the total variation distance. Now we can focus on the total
variation affinity and express it as

η(ϕ0, ϕ1) =

∫
Ω

min(ϕ0, ϕ1)dμ =

∫
Ω

ϕ1−α
0 ϕα

1 min(lα, lα−1)dμ, (2.5)

where l = ϕ0/ϕ1 is the likelihood ratio defined pointwisely on Ω. This ratio is
well defined since we assume that ϕ0 and ϕ1 have the same support. We observe
that ϕ1−α

0 ϕα
1 is a PDF on Ω up to a normalizer and min(lα, lα−1) is a real valued

function on Ω, so it would be convenient to express η(ϕ0, ϕ1) as an expectation.
For α ∈ (0, 1), we define PDF

ϕα(x) := ϕ0(x)
1−α ϕ1(x)

αeDα(ϕ0‖ϕ1),

where Dα(ϕ0‖ϕ1) :=− log

∫
Ω

ϕ1−α
0 ϕα

1 dμ.
(2.6)

We call Dα(ϕ0‖ϕ1) the Chernoff α-divergence between ϕ0 and ϕ1. We also
define a real valued function, which will play an important role in the analysis
of the higher-order term:

gα : R → R, gα(x) := exp[min(αx, (α− 1)x)] = min(eαx, e(α−1)x). (2.7)

Then by direct calculation from (2.5), we have

η(ϕ0, ϕ1) = e−Dα(ϕ0‖ϕ1)

∫
Ω

ϕα min(lα, lα−1)dμ

= e−Dα(ϕ0‖ϕ1)EY∼ϕα [gα(log l(Y ))].

(2.8)

We note that since gα(x) ≤ 1, we always have EY∼ϕα [gα(log l(Y ))] ≤ 1, which
implies e−Dα(ϕ0‖ϕ1) is an upper bound of η(ϕ0, ϕ1). In (2.8), Y := (Y1, . . . , Yn)
is a random vector with independent elements on the product space Ω, and one
can observe that

Yj ∼ ϕαj := ϕ1−α
0j ϕα

1je
Dα(ϕ0j‖ϕ1j),

where Dα(ϕ0j‖ϕ1j) := − log

∫
Ωj

ϕ1−α
0j ϕα

1jdμj .
(2.9)
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Let lj = ϕ0j/ϕ1j and Zj := log lj(Yj), then we can decompose log l(Y ) as

log l(Y ) =
n∑

j=1

log lj(Yj) =
n∑

j=1

Zj . (2.10)

log l(Y ) is indeed the sum of independent random variables, so it is approxi-
mately normally distributed under some regularization condition, which will be
specified in the following theorem. Obtaining normal approximation from the
Berry-Esseen theorem (Theorem 6.1), we have the following result.

Theorem 2.1. We consider the PDFs or PMFs (ϕ0, ϕ1) ∈ F(Ω,Σ, μ, n) defined
in (2.3), and recall the definitions of ϕα in (2.6), gα in (2.7), ϕαj in (2.9), Yj ,
lj = ϕ0j/ϕ1j and Zj = log lj(Yj). Let

α∗ := arg max
α∈(0,1)

Dα(ϕ0‖ϕ1), Yj ∼ ϕα∗j , and σ̄n :=
( 1

n

n∑
j=1

Var[Zj ]
)1/2

.

If
∑n

j=1 E|Zj |3 ≤ C1nσ̄
2
n, then there exists constant C2 which only depends on

C1 such that

EY∼ϕα∗ [gα∗(log l(Y ))] ≤ C2√
nσ̄n(1− α∗)α∗ .

Furthermore, there exist positive constants C3 and C4 which only depend on C1,
such that, if

√
nσ̄n(1− α∗)α∗ ≥ C3, then

EY∼ϕα∗ [gα∗(log l(Y ))] ≥ C4√
nσ̄n(1− α∗)α∗ .

As a direct consequence of (2.8),

C4√
nσ̄nα∗(1− α∗)

e−Dα∗ (ϕ0‖ϕ1) ≤ η(ϕ0, ϕ1) ≤
C2√

nσ̄nα∗(1− α∗)
e−Dα∗ (ϕ0‖ϕ1),

where Dα∗(ϕ0‖ϕ1) is the Chernoff information defined in (1.1). By (2.4), same
upper and lower bound hold for 2R(ẑ, z).

Remark 1. A possible (but not necessarily optimal) choice of C2, C3 and C4

can be C2 = 1 + 0.28C1, C3 = 2 ∨ [2(0.56C1)
3/2 exp(−

√
2πC1)] and C4 =

exp(−2(0.56)
√
2πC1)/30. The gap between C2 and C4 vanishes when we ob-

serve samples with normal distribution, but a positive gap exists in general,
e.g., for Bernoulli distribution. We will be demonstrate this fact empirically by
simulation in Section 5.

Remark 2. The names of Chernoff information/coefficient/divergence in this
paper are according to the survey [38]. The Chernoff information indicates the
Chernoff α-divergence with α = α∗ which maximize Dα(ϕ0‖ϕ1). We are not
going to calculate the exact value of α∗ in this work. Dα∗( · ‖ · ) represents
the Chernoff information, and α∗ might be different for variant inputs. α∗ in
Theorem 2.1 is unique since we assume ϕ0 and ϕ1 are different on a set with
positive measure.
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To gain better understanding of Theorem 2.1, we will introduce a corollary
of the i.i.d. case. Under the assumption of i.i.d. sampling, some quantities in
the theorem become constants. Since many existing results only consider i.i.d.
cases, the following corollary will be helpful for comparison.

Corollary 1 (i.i.d. case). Let (ϕ
(n)
0 , ϕ

(n)
1 ) ∈ F(Ω,Σ, μ, n) be sequences of PMFs

or PDFs satisfying for z ∈ {0, 1}, ϕ(n)
z (x) =

∏n
j=1 ϕ̄z(xj) for fixed ϕ̄z, then

η(ϕ
(n)
0 , ϕ

(n)
1 ) � 1√

n
e−nDα∗ (ϕ̄0‖ϕ̄1).

Proof. Under the assumptions, E[|Zj |3], σ̄n and α∗ are constants only depending
on ϕ̄0 and ϕ̄1, so the assumption

∑n
j=1 E|Zj |3 � nσ̄2

n is satisfied. Moreover, we

have Dα∗(ϕ
(n)
0 ‖ϕ(n)

1 ) = nDα∗(ϕ̄0‖ϕ̄1) and
1√

nσ̄nα∗(1−α∗)
� 1√

n
.
√
nσ̄n(1−α∗)α∗

is sufficiently large as n increases. Hence the result holds by Theorem 2.1.

Comparison with existing results The Chernoff type lower bound can be
traced back to early literature. [2, Theorem 5] produced the following lower
bound for Bayes risk, namely

R(ẑ, z) ≥ 1

4
min(e−α∗√nσ̄n , e−(1−α∗)

√
nσ̄n)e−Dα∗ (ϕ0‖ϕ1). (2.11)

Since min(e−α∗√nσ̄n , e−(1−α∗)
√
nσ̄n) � 1√

nσ̄nα∗(1−α∗)
, (2.11) is strictly weaker

than the result in Theorem 2.1. This lower bound has been applied to the Bayes
risk of quantum hypothesis testing, such as [8]. For the i.i.d. case, Dα∗(ϕ0‖ϕ1)
has been shown to be the best achievable exponent [39, Theorem 11.9.1] and it
is restated in [7, Theorem 2.1] as follows:

lim
n→∞

1

n
log η(ϕ

(n)
0 , ϕ

(n)
1 ) = −Dα∗(ϕ̄0‖ϕ̄1),

under the same conditions as Corollary 1. This result can be obtained from

Corollary 1 since the exponent of η(ϕ̄0, ϕ̄1) has the form log η(ϕ
(n)
0 , ϕ

(n)
1 ) =

−nDα∗(ϕ̄0‖ϕ̄1) − 1
2 logn + O(1). The logn term was investigated in [40], and

applied to hypothesis testing problem in [4, Lemma 11]. However, the result can
only be applied to Poisson distribution when the samples are i.i.d. in a fixed
setting σ̄n � log n

n . If the samples are not identical, their lower bound is not
valid. The authors of [6] generalize the result to other setting; however, their
bounds cannot be applied to the case when observed data are not i.i.d. Poisson.
Therefore, neither of them proposed a minimax lower bound that matches their
algorithmic error rate in community detection problems.

2.2. Application to exponential families

With a concrete expressions of ϕ0 and ϕ1, we can write the Chernoff type bound
in Theorem 2.1 with a closed form up to a constant factor. In this section, we
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are interested in exponential families with PMFs or PDFs of the form

ϕ(x; θ) = h(x) exp[θ	T (x)−A(θ)], (2.12)

for x ∈ Ω and θ ∈ Θ. We assume the parameter space Θ is a convex subset of
Euclidean space and A is a smooth function on Θ. Let {ϕzj : z ∈ {0, 1}, j ∈ [n]}
belongs to an exponential family. To be more specific, we assume that there
exist parameters θzj ∈ Θ, z ∈ {0, 1}, j ∈ [n] such that

ϕzj(xj) = p(x; θzj) = h(xj) exp[θ
	
zjT (xj)−A(θzj)]. (2.13)

We still define ϕ0 and ϕ1 as in (2.2) on some measure space such that (ϕ0, ϕ1) ∈
F(Ω,Σ, μ, n) (see (2.3)). Let us define θαj := (1 − α)θ0j + αθ1j , then θαj is a
valid parameter since we assume the parameter space Θ is convex. The Chernoff
α-divergence has a close form:

Dα(ϕ0j‖ϕ1j) = (1− α)A(θ0j) + αA(θ1j)−A(θαj). (2.14)

See Section 6.2 for derivation of the last equation. Suppose Yj ∼ ϕα∗j , then
using the definition of Zj in (2.10),

Zj = log lj(Yj) = (θ0j − θ1j)
	T (Yj)−A(θ0j) +A(θ1j). (2.15)

We have Var[Zj ] = (θ0j − θ1j)
	H(A(θα∗j))(θ0j − θ1j) where H(A(θ)) is the

Hessian matrix of A evaluated at θ. Now we can establish a corollary when
ϕzj ’s belong to exponential families.

Corollary 2 (exponential family). Under same assumptions in Theorem 2.1,
we assume ϕzj ’s have the form (2.13), and let

σ̄n :=
( 1

n

n∑
j=1

Var[Zj ]
)1/2

=
( 1

n

n∑
j=1

(θ0j − θ1j)
	H(A(θα∗j))(θ0j − θ1j)

)1/2

.

Suppose
∑n

j=1 E|Zj |3 ≤ C1nσ̄
2
n, using the same constants C2, C3 and C4 in

Theorem 2.1, then

η(ϕ0, ϕ1) ≤
( C2√

nσ̄n(1− α∗)α∗ e
−

∑n
j=1[(1−α∗)A(θ0j)+α∗A(θ1j)−A(θα∗j)]

)
.

If
√
nσ̄n(1− α∗)α∗ ≥ C3, then we have

η(ϕ0, ϕ1) ≥
( C4√

nσ̄n(1− α∗)α∗ e
−

∑n
j=1[(1−α∗)A(θ0j)+α∗A(θ1j)−A(θα∗j)]

)
.

2.3. Application to Bernoulli distribution

We are going to investigate a specific exponential family. Let pzj ∈ (0, 1) and
θzj = log

( pzj

1−pzj

)
for z ∈ {0, 1}, j ∈ [n], and define PMFs of Bern(pzj):

ϕzj(x) := ϕ(x; θzj) :=

⎧⎪⎨
⎪⎩
pzj , if x = 1,

1− pzj , if x = 0,

0, otherwise.
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It coincides with (2.13) if we let A(θ) = log(1 + eθ), T (x) = x and h(x) =
1{0,1}(x), i.e., ϕzj(x) = h(x) exp[θ	zjT (x) − A(θzj)]. Let us briefly recall the
testing problem in Section 2.1. We randomly draw a number z ∈ {0, 1} with
equal probability 1/2, and draw a random sample X = {X1, . . . , Xn} where
Xj ∼ Bern(pzj) independently. As usual, we want to recover z given X = x ∈
{0, 1}n. Then we have

e−Dα(ϕ0‖ϕ1) =

n∏
j=1

[p1−α
0j pα1j + (1− p0j)

1−α(1− p1j)
α]. (2.16)

Let pαj =
p1−α
0j pα

1j

p1−α
0j pα

1j+(1−p0j)1−α(1−p1j)α
and recall the definition of α∗ and σ̄n from

Theorem 2.1, then we have

nσ̄2
n =

n∑
j=1

[
log

p0j(1− p1j)

p1j(1− p0j)

]2
pα∗j(1− pα∗j). (2.17)

Now let us apply Theorem 2.1. Suppose maxj∈[n]

∣∣∣ log p0j(1−p1j)
p1j(1−p0j)

∣∣∣ ≤ C1, then

there exists constants C2, C3 and C4 which only depend on C1, such that if√
nσ̄nα

∗(1−α∗) ≥ C2, then the upper and lower bound of η(ϕ0, ϕ1) = 2R(ẑ, z)
in the theorem holds.

Finally, it is worth mentioning a special case when pz1 = · · · = pzn := p̄z for
z ∈ {0, 1}. Let ψz(x) be the PMF of Bin(n, p̄z). Then one can check that

η(ψ0, ψ1) = η(ϕ0, ϕ1). (2.18)

This is due to the fact that, given the observed data x, the optimal test only
relies on the minimal sufficient statistic

∑n
j=1 xj . This observation can generalize

Corollary 1 to the cases when only the sufficient statistic, which is the sum of
i.i.d. random variables, are observed. For example, one can apply Corollary 1 to
Bayes error probability of Poisson parameter testing by the fact that a Poisson
variable is the sum of multiple i.i.d. Poisson variables.

Calculation details in this section will appear in Section 6.4 to 6.7.

3. Community detection in the stochastic block models

The results in Section 2 can apply to many clustering and classification problem
in statistics. A typical example is community detection in the stochastic block
models (SBM). Given some good estimates of the parameters, community de-
tection is indeed a classification problem. Hence the clustering error rate of the
label estimates heavily depends on the Bayes error probability.

3.1. Background of stochastic block models

We will focus on a network which can be represented by a symmetric adjacency
matrix A ∈ {0, 1}n×n, where the nodes are indexed by [n]. We assume that
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there are K communities on [n], and the membership of the nodes are given by
z ∈ [K]n. Thus zi = k if node i ∈ [n] belongs to community k ∈ [K]. We let
nk := |{i : zi = k}| be the size of kth community. Under the assumptions of
SBM, given a symmetric connectivity matrix P ∈ [0, 1]K×K ,

Aij = Aji ∼ Bern(Pzizj ) for all i > j independently, (3.1)

and Aii = 0 for all i ∈ [n]. That is, the connectivity of nodes only depends
on their memberships, and there are no self-loops. A fundamental task of com-
munity detection on SBM is to recover z given A and K. For consistency of
notation with Section 2.3, we define

pkj := Pkzj for k ∈ [K], j ∈ [n]. (3.2)

In other words, if zi = k, E[Aij ] = pkj whenever j �= i. Thus, the vectors pk∗
and E[Ai∗] are the same at all entries but the ith one. When n is large, the
effect of one entry is merely a constant factor. Here pk∗ = (pk1, . . . , pkn), and
similarly Ai∗ is the ith row of A. This notation will be used in the rest of this
paper. We will consider the parameters satisfying

nk ∈
[ n

βK
,
βn

K

]
, max

k,�
Pk� := p∗ ≤ 1− ε, and

maxk,� Pk�

mink′,�′ Pk′�′
≤ ω (3.3)

for some fixed constants K, β > 1, ε ∈ (0, 1), and ω > 1. β controls the balance
between different communities. There are no too small or too large communities.
All connectivity probabilities are bounded above by 1−ε, which is a mild sparsity
assumption.

For estimate ẑ of z, we are interested in the misclassification rate defined as

Mis(ẑ, z) = min
π∈SK

1

n

n∑
i=1

1{π(ẑi) �= zi} (3.4)

where SK is the symmetric group which contains all permutations of [K] and
the permutation π will apply entrywisely on the label vector ẑ.

3.2. Fundamental limit

Let us first consider a simplified symmetric hypothesis testing problem in SBM.
In the community detection problem described in the previous section, only the
adjacency matrix A and number of community K is given. Now suppose addi-
tionally, we know z−i, i.e., all the labels but the ith one, and the connectivity
matrix P , our goal is to recover zi. To further simplify the problem, we assume
zi ∈ {k, �}, then the hypothesis problem becomes comparison between the pa-
rameters pk∗ and p�∗ defined in (3.2). Since the distribution of Bernoulli vector
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Ai∗ can be characterized by pk∗ if zi = k, we will write

Dα(pk∗‖p�∗) := Dα

( n⊗
j=1

Bern(pkj)‖
n⊗

j=1

Bern(p�j)
)
,

and η(pk∗, p�∗) := η
( n⊗
j=1

Bern(pkj),

n⊗
j=1

Bern(p�j)
)
.

(3.5)

which also denote the same quantities if we input the corresponding PMF’s. Sub-
stituting p0∗ and p1∗ with pk∗ and p�∗ in Section 2.3, and using the assumptions
about SBM in Section 3.1, we have the following lemma.

Lemma 1. Given adjacency matrix A and parameters K, z−i and P , and
knowing that zi = k or � with probability 1/2, then Bayes estimator ẑi

ẑi := arg max
r∈{k,�}

∑
j 
=i

Aij log prj + (1−Aij) log(1− prj)

satisfies P(ẑi �= zi) = 1
2η(pk∗, p�∗). Assuming (3.3), there exists a constant C

only depending on β, ε,K and ω such that, if np∗ ≤ C(Dα∗(pk∗‖p�∗))2, then

P(ẑi �= zi) �
(√

np∗ max
j∈[n]

∣∣∣ log pkj(1− p�j)

p�j(1− pkj)

∣∣∣)−1

exp(−Dα∗(pk∗‖p�∗)).

Now we will derive a minimax lower bound of community detection problem.
We will consider the following parameter space:

Θ(n,K, p, q) :=
{
(z, P ) : P ∈ (0, 1)K×K , P = P	, Pkk ≥ p,

Pk� ≤ q if k �= �, pkj = Pkzj , and (3.3) is satisfied
}
.

(3.6)

Theorem 3.1 (minimax lower bound). We define

IK =

{
− 2

K log[
√
pq +

√
(1− p)(1− q)], if K = 2;

− 2
βK log[

√
pq +

√
(1− p)(1− q)], if K ≥ 3.

(3.7)

If p > q and nI2K ≥ Cp for some C only depending on β, ε,K and ω, then

inf
ẑ

sup
Θ(n,K,p,q)

E[Mis(ẑ, z)] �
(√

np log
p(1− q)

q(1− p)

)−1

exp(−nIK). (3.8)

The proof will appear in Section 7.3, which is inspired by [36]. Compared
with the minimax lower bound in [36], which states

inf
ẑ

sup
Θ(n,K,p,q)

E[Mis(ẑ, z)] ≥ exp(−(1 + o(1))nIK),

Theorem 3.1 specifies that the o(1) term is of the form

1

nIK

(1
2
log(np) + log log

p(1− q)

q(1− p)

)
. (3.9)
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Considering the case p/q → c > 1 and np → ∞, the higher order term(√
np log p(1−q)

q(1−p)

)−1

� (np)−1/2 converges to 0 as average degree increases. It

requires extra effort to find an algorithm achieving this sharp lower bound.

Remark 3. The condition nI2K ≥ Cp is not required in [36], but it is needed
in this theorem due to a technical reason. Essentially, the lower bound in Theo-
rem 2.1 requires the condition

√
nσ̄n(1−α∗)α∗ ≥ C3 for some sufficiently large

C3. The corresponding condition nI2K ≥ Cp in community detection scenario

is needed due to Lemma 4. In other words, the prefactor
(√

np log p(1−q)
q(1−p)

)−1

in (3.8) is valid only if it is small enough.

3.3. Algorithm achieving the minimax lower bound

Our algorithm is inspired by the pseudo-likelihood approach in [34]. We define
an operator to estimate P given adjacency matrix A and estimated labels z̃:

B(A, z̃) := (P̂k�) ∈ [0, 1]K×K , P̂k� :=

∑
i>j Aij1{z̃i = k, z̃j = �}∑

i>j 1{z̃i = k, z̃j = �} . (3.10)

We will also use likelihood ratio classifier defined as follows:

L(A, P̂ , z̃) := (ẑi) ∈ [K]n,

ẑi = arg max
k∈[K]

∑
j 
=i

Aij log P̂kẑj + (1−Aij) log(1− P̂kẑj ).
(3.11)

Note that we can apply these two operators on submatrices of A with the cor-
responding indices if needed. This is an EM-type algorithm if we repeat (3.10)
and (3.11) iteratively, i.e., (3.10) is the expectation step and (3.11) is the maxi-
mization step. As pointed out in [6], it requires at least two iterations of EM-type
update to achieve the optimal error rate up to a constant. To generate enough
independence between iterations, we combine the block partition method in [37]
and “leave-one-out” trick in [35]. It is worth noting that besides the dependence
between A and z̃ in L(A, P̂ , z̃), other dependence can be handled by uniform
bounds. Details about Algorithm 1 will be describe as follows:

Step 3 to 4: We apply spectral clustering on the whole adjacency matrix.
However, we will only use its output in the matching step (step 9) and approx-
imate an initial estimate P̃ of P . The dependence between P̃ and A can be
handled by uniform bounds.

Step 5: This is the block partitioning trick. Data in different blocks will be
used in different steps to acquire independence.

Step 6 to 7: This is the “leave-one-out” trick. In each iteration, we only use
the data of the jth node in step 12, so the last likelihood ratio classifier will be
independent with other steps in the for loop.

Step 8 to 9: We apply spectral clustering on two of the subblocks. Although
the labels from spectral clustering have consistent misclassification, but the cor-
responding optimal permutations in (3.4) are not necessarily the same in gen-
eral. This issue can be solved by step 9. After the matching step, the new label
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Algorithm 1 Community detection
1: Input: Adjacency matrix A, number of communities K.
2: Output: Estimated labels ẑ.
3: z̃ ← SC(A,K).
4: P̃ ← B(A, z̃).
5: Let I ⊂ [n] with |I| = �n/2� be a random subset of indices. Let J = [n]\I.
6: for j = 1 to n do
7: I′ ← I\{j}, J ′ ← J\{j}.
8: z̃′

I′ ← SC(AI′×I′ ,K), z̃′
J′ ← SC(AJ′×J′ ,K).

9: z̃′
I′ ← Match(z̃I′ , z̃

′
I′ ), z̃

′
J′ ← Match(z̃J′ , z̃′

J′ ).

10: z̃′
I′ ← L(AI′×J′ , P̃ , z̃′

J′ ), z̃
′
J′ ← L(AJ′×I′ , P̃ , z̃′

I′).

11: z̃′ ← (z̃i, z̃
′
I′ , z̃

′
J′ ), P̂ ← B(A, z̃′).

12: ẑj ← L(Aj∗, P̂ , z̃′).
13: end for
14: function SC(A,K)
15: Apply degree-truncation to A to obtain Are.
16: Apply SVD on Are so that Are = UΣUT . Let Σ̂ contains top K singular values on the

diagonal and Û contains corresponding singular vectors.
17: Output the K-means clustering result on the rows of ÛΣ̂.
18: end function
19: function Match (z̃, z)
20: z̃ ← argminπ(z̃):π∈SK

∑n
i=1 1{zi �= π(zi)}.

21: Output z̃.
22: end function

vector z̃′ has the same permutation as z̃ when computing the misclassification
rate. This fact will be clarified in the proof. Note that although z̃ depends on A,
z̃′I′ and z̃′J ′ only depend on the corresponding subblocks as long as the spectral
clustering algorithm outputs good enough labels.

Step 10: We apply the first likelihood ratio classifier on a different subblock
using estimated connectivity matrix from step 4 and labels from step 9.

Step 11: We obtain the updated labels and estimate the connectivity matrix
by P̂ according to the new labels..

Step 12: We update the label again according to the new P̂ and z̃′ obtained
in step 11 by likelihood ratio classifier.

Step 14 to 18: A spectral clustering algorithm proposed in [22]. Details of the
degree-truncation step appears in Section 8.

Step 19 to 22: A matching algorithm finding the optimal permutation between
labels. A linear assignment algorithm with computational complexity O(K3) can
find the exact solution of z̃ [41].

The following block matrix might help understand the partitioning of adja-
cency matrix A in the algorithm.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 Aj×(I′∪J ′)

...

AI′×I′ AI′×J ′

AJ ′×I′ AJ ′×J ′

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2nd LR (step 12)

...

2nd SC
(step 8)

1st LR
(step 10)

1st LR
(step 10)

2nd SC
(step 8)

⎤
⎥⎥⎥⎥⎥⎥⎦
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Note that “
... ” represents the block A	

j×(I′∪J ′). We can see that the second
spectral clustering and both likelihood ratio tests are applied on different blocks
of the adjacency matrix, so we do not need to worry about dependence between
steps. Now we present the theoretical guarantees of the output of Algorithm 1.

Theorem 3.2. Let us assume (3.3) for some fixed constants β, ω, ε, and K.
We also briefly denote D∗ := mink 
=� Dα∗(pk∗‖p�∗) and η∗ = maxk 
=� η(pk∗, p�∗).
There exists constant C only depending on β, ε,K and ω such that, if Cnp∗ ≤
(D∗)2, then the output ẑ from Algorithm 1 satisfies:

(a) If D∗ ≤ 2 logn, then E[Mis(ẑ, z)] = O(η∗).
(b) If nη∗ = o(1), then ẑ achieves exact recovery with high probability, i.e.,

P(ẑ = z) ≥ 1− o(1).

Moreover, η∗ in (a) can be replaced by

max
k 
=�

(√
np∗ max

j∈[n]

∣∣∣ log pkj(1− p�j)

p�j(1− pkj)

∣∣∣)−1

exp(−Dα∗(pk∗‖p�∗)).

Case (a) and case (b) in the theorem have described all situations in the
model. Case (a) assumes D∗ ≤ 2 logn, and if D∗ > 2 logn, it is easy to check
that nη∗ = o(1) with the help of Lemma 1.

Theorem 3.2 immediately implies the error rate on the parameter space
Θ(n,K, p, q) defined in (3.6) by considering the least favorable submodel. It
shows that the misclassification error of our algorithm is rate optimal in this
parameter space. We summarize this result in the following corollary.

Corollary 3. Recall IK in (3.7) and suppose it satisfies
√
Cnp∗ ≤ D∗ ≤ 2 logn

for the constant C in Theorem 3.2, then the output ẑ from Algorithm 1 satisfies

sup
Θ(n,K,p,q)

E[Mis(ẑ, z)] �
(√

np log
p(1− q)

q(1− p)

)−1

exp(−nIK).

Remark 4 (Comparison with existing results.). We have already compared
some results in literature. Here, we will summarize the novelty in details.

1. Existing papers either consider the asymptotic behavior of optimal com-
munity detection in general undirected or bipartite SBM [6] or symmetric
assortative SBM [37, 35, 42]. We extend the algorithms to general SBM.

2. We apply twice local updates (likelihood ratio tests) on symmetric adja-
cency matrix in our algorithm. It is also possible to apply multiple times
by partitioning more blocks. Although multiple steps of local updates are
allowed in [43] by variational inference, data splitting method for initial-
ization is required and lacking in their algorithm.

3. By the new Chernoff bound introduced in Theorem 2.1, we provide sharp-
ened minimax error rate and tight misclassification rate for our algorithm.
In particular, we replace the uncertain term exp(o(1)nIK) in [36] by an
explicit expression. Although a high order term is also discovered in [42],
their result only applies to assortative SBM with K = 2, P11 = P12 = p >
P12 = P21 = q and p � q � logn

n . Our algorithm applies to general SBM.
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4. In a more general setting than [42], the authors of [21, 32, 33] consider
K = 2, P11 = P22 = p > P12 = P21 = q and their algorithms can achieve
error rate exp(−(1− o(1))nI2), where I2 is defined in (3.7). In particular,
the term o(1) can behave like O((nI2)

−1/2) in [32, 33]. The error rates in
these work is not as sharp as the result in Corollary 3 because D∗ = nI2
in this setting and our theorem shows the error rate can be as sharp as
exp(−(1 + o(1))nI2), where the o(1) term is of the form (3.9).

5. When considering the error rate in Corollary 3, the condition Cnp∗ ≤
(D∗)2 is not required in [21, 32, 33]. However, this is due to the fact
that they consider a simpler model. Under the same setting, if we use
the error rate proposed in these works for our initialization steps, e.g.,
step 8 in Algorithm 1, then the condition Cnp∗ ≤ (D∗)2 can be removed in
Corollary 3. However, we have not found the generalization of the results
in [21, 32, 33] to the cases when K > 2 with sharp enough error rates, so
we still require the condition Cnp∗ ≤ (D∗)2 in our theorem.

4. Discussion

We discuss some possible extensions and future works in this section.

4.1. Rate optimal Chernoff bound for quantum hypothesis testing

The Quantum Chernoff bound has been shown to be the upper [44] and lower [7]
bound of symmetric quantum hypothesis testing. In the proof of Chernoff lower
bound, the authors reduce the problem from quantum setting to classical prob-
ability space, and apply classical Chernoff bound. Hence, the second-order term
in Theorem 2.1 can apply to lower bound immediately. However, its application
to Chernoff upper bound is more technical.

4.2. Simplified feasible algorithm for community detection

It was pointed out in [35] that the “leave-one-out” trick is not necessary in
practice, so it only requires a single spectral clustering. See Algorithm 3 in their
paper. However, they cannot provide theoretical guarantee for this simplified
algorithm. To the best of our knowledge, considering general SBM, there is
no algorithm with finite number of global method (either spectral clustering
or semidefinite programming) can achieve the error rate in Theorem 3.2. The
idea of “leave-one-out” can be generalized to leave more than one out [42], but
minimum number of global methods still grows as the number of nodes increases.

With the assortativity assumption, a concurrent work [32] shows that in
the simplest SBM setting, i.e., K = 2, P11 = P22 = p > P12 = P21 = q, a
semidefinite programming approach can achieve a sharp error rate of the form
exp((1 − o(1))I2), where I2 is defined in (3.7). With such a tight error rate in
the initialization step, it only requires one step of global update the achieve the
minimax lower bound in Theorem 3.1. However, the “leave-one-out” step is still
required, and their method does not apply to general SBM, e.g., when q > p.
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5. Simulation

We will show that, in some asymptotic setting, the Bayes error probability con-
verges with a rate expected in Theorem 2.1 by simulation. Since the exponent of
the error rate has been well known, we will focus on the second-order asymptotics
in our experiments. Let us consider Bernoulli distributions analyzed in Sec-
tion 2.3. Let p01 = p02 = · · · = p0n = p1(n+1) = p1(n+2) = · · · = p1(2n) = 0.55,
and p11 = p12 = · · · = p1n = p0(n+1) = p0(n+2) = · · · = p0(2n) = 0.45, i.e.,

p0∗ = (0.55, 0.55, . . . , 0.55︸ ︷︷ ︸
n times

, 0.45, 0.45, . . . , 0.45︸ ︷︷ ︸
n times

);

p1∗ = (0.45, 0.45, . . . , 0.45︸ ︷︷ ︸
n times

, 0.55, 0.55, . . . , 0.55︸ ︷︷ ︸
n times

).

Now we consider the Chernoff α-divergence. The optimal α∗ in Theorem 2.1
is 1/2 by symmetry. Using the notation in (3.5), by (2.16), we have

e−Dα∗ (p0∗‖p1∗) = (2
√
0.55 · 0.45)2n.

By (2.17) with some details in Section 6.4, we have

nσ̄2
n =

2n∑
j=1

(
log

0.552

0.452

)2

0.5(1− 0.5) � n.

By Theorem 2.1, we expect

η(p0∗, p1∗) �
1√
n
(2
√
0.55 · 0.45)2n.

Or equivalently,

an := log η(p0∗, p1∗)− 2n log(2
√
0.55 · 0.45)

asymptotically behaves like −1
2 logn + C. We can also think of p0∗ and p1∗ as

the parameters in (3.2) associated with SBM with community sizes n0 = n1 = n
and connectivity matrix

P =

[
0.55 0.45

0.45 0.55

]
.

By Theorem 3.2, we expect

bn := log(2 ·Misclassification rate)− 2n log(2
√
0.55 · 0.45)

also tends to −1
2 logn+ C. Note that 2 comes from the fact that η(p0∗, p1∗) =

2 · (Bayes error probability) would help the simulation scale better. We will use
the true Bernoulli PMF to compute η(p0∗, p1∗), then find the misclassification
rate of Algorithm 1 and compute bn.
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Fig 1. Second-order asymptotics of an and bn.

Fig 2. Second-order asymptotics of Bayes probability error.

From Figure 1, we observe that n increases, both an and bn behave like
−1

2 logn+ C for the same constant C. For smaller n, the misclassification rate
is large since initialization in Algorithm 1 is not accurate enough; however, bn
becomes stable when n gets larger.

Another interesting empirical result we want to show by simulation is that,
there is a gap between the constants C2 and C4 in Theorem 2.1 in general. We
let p0∗ = 0.3 · 1n and p1∗ = 0.7 · 1n, i.e.,

p0∗ = (0.3, 0.3, . . . , 0.3︸ ︷︷ ︸
n times

) and p1∗ = (0.7, 0.7, . . . , 0.7︸ ︷︷ ︸
n times

).

By symmetry, we have α∗ = 1/2, so

η(p0∗, p1∗) �
1√
n
(2
√
0.3 · 0.7)n.

Again, we let an = log η(p0∗, p1∗)−n log(2
√
0.3 · 0.7). The following plots shows

the behavior of an. They are plots of an in different ranges of n. Although an
asymptotically behaves like −1

2 logn, it oscillates up and down until infinity.
This simulation result empirically shows that, an +

1
2 logn does not converge to

any constant for such p0∗ and p1∗.
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6. Proofs of Section 2

6.1. Proof of Theorem 2.1

Lemma 2. We recall α∗ = argmaxα∈(0,1) Dα(ϕ0‖ϕ1) and Y ∼ ϕα∗ from the
assumption of the theorem, then E[log l(Y )] = 0.

Proof. By definition of Y , we have

E[log l(Y )] =

∫
Ω

ϕα∗ log l(y)dμ(y) = e−Dα∗ (ϕ0‖ϕ1)

∫
Ω

ϕ1−α∗
0 ϕα∗

1 log
ϕ0

ϕ1
dμ

We recall that we assume the Kullback–Leibler divergences DKL(ϕ0‖ϕ1) and
DKL(ϕ0‖ϕ1) exist, so for α ∈ (0, 1),

∣∣ϕ1−α
0 ϕα

1 log ϕ0

ϕ1

∣∣ ≤
∣∣(ϕ0 + ϕ1) log

ϕ1

ϕ0

∣∣ is
integrable. By the mean value theorem and the dominated convergence theorem,∫

Ω

ϕ1−α
0 ϕα

1 log
ϕ0

ϕ1
dμ = −

∫
Ω

d

dα
ϕ1−α
0 ϕα

1 dμ = − d

dα

∫
Ω

ϕ1−α
0 ϕα

1 dμ. (6.1)

Since α �→ −ϕ0(x)
1−αϕ1(x)

α is convex for x ∈ Ω, α �→ −
∫
Ω
ϕ1−α
0 ϕα

1 dμ is also
convex, and it is indeed strictly convex if ϕ0 �= ϕ1 on a set with nonzero measure.
Therefore, Dα(ϕ0‖ϕ1) achieves maximum if and only if d

dα

∫
Ω
ϕ1−α
0 ϕα

1 dμ = 0,
which is true if we evaluate at α = α∗. Hence E[log l(Y )] = 0.

Proposition 1. Let Φ be the cumulative distribution function of standard nor-
mal distribution, then for x > 0,

1

x
− 1

x3
≤

√
2πex

2/2Φ(−x) ≤ 1

x
. (6.2)

and

√
2πex

2/2
(
Φ(x)− 1

2

)
≥ x+

x3

3
. (6.3)

In particular,

Φ(x) ≥ 1

2
+

1√
2π

(
x− 2x3

3

)
. (6.4)

Proof. For x > 0, we have divergent series expanded at ∞:

√
2πex

2/2Φ(−x) =
1

x
+

∞∑
i=1

(−1)i(2i− 1)!

2i−1(i− 1)!

1

x2i+1
=

1

x
− 1

x3
+

3

x5
− 15

x7
+ . . .

which implies (6.2). We also have the power series expanded at 0. Let m!! =
1 · 3 · · · · ·m for odd integer m, we have

√
2πex

2/2
(
Φ(x)− 1

2

)
=

∞∑
i=0

x2i+1

(2i+ 1)!!
= x+

x3

3
+

x5

3 · 5 +
x7

3 · 5 · 7 + . . .
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which implies (6.3). Then we expand e−x2/2
(
x+ x3

3

)
and have

e−x2/2
(
x+

x3

3

)
= x− 2x3

3
+

7x5

30
− . . .

Then we obtain (6.4).

Lemma 3. Recall from (2.7) that gα(x) = exp(min(αx, (α − 1)x)). Suppose
Z ∼ N (0, σ2), then

1√
2πσα(1− α)

− 1√
2πσ3α3(1− α)3

≤ E[gα(Z)] ≤ 1√
2πσα(1− α)

.

Proof. We have

E[gα(Z)] = E[exp(min(αZ, (α− 1)Z))]

=
1√
2πσ

∫ 0

−∞
eαxe−

x2

2σ2 dx+
1√
2π

∫ ∞

0

e(α−1)xe−
x2

2σ2 dx

=
eσ

2α2/2

√
2πσ

∫ 0

−∞
e−

(x−σ2α)2

2σ2 dx+
eσ

2(1−α)2/2

√
2πσ

∫ ∞

0

e−
(x−σ2(1−α))2

2σ2 dx

= exp
(σ2α2

2

)
Φ(−σα) + exp

(σ2(1− α)2

2

)
Φ(−σ(1− α))

By (6.2), we have

E[gα(Z)] ≤ 1√
2πσα

+
1√

2πσ(1− α)
=

1√
2πσα(1− α)

,

and

E[gα(Z)] ≥ 1√
2πσα

− 1√
2πσ3α3

+
1√

2πσ(1− α)
− 1√

2πσ3(1− α)3

≥ 1√
2πσα(1− α)

− 1√
2πσ3α3(1− α)3

.

Theorem 6.1 (Berry-Esseen theorem). Let {Zi}ni=1 be independent random
variables with zero means and E[

∑n
i=1 Z

2
i ] = σ2. Let F be the distribution func-

tion of
∑n

i=1 Zi/σ, then there exists an absolute constant C0 ≤ 0.56 such that
for every x ∈ R,

|F (x)− Φ(x)| ≤ C0

∑n
i=1 E[|Zi|3]
σ3

. (6.5)

Proof. The best upper bound of C0 so far is given by [45]. We would also like
to refer readers to see a proof by Stein’s method in [46].

Proof of Theorem 2.1. Let α = α∗. By Lemma 2, E[
∑n

j=1 Zj ] = E[log l(Y )] = 0.

Let us define σ2 = E[
∑n

j=1 Z
2
j ] as in Theorem 6.1. Note that σ =

√
nσ̄n. By

assumption
∑n

j=1 E|Zj |3 ≤ C1nσ̄
2
n, the distribution function F of

∑n
j=1 Zj/σ



Chernoff bound and community detection in SBM 1321

satisfies for x ∈ R, |F (x)−Φ(x)| ≤ C
σ where C := 0.56C1. Recall that log l(Y ) =∑n

j=1 Zj , we have

E[gα(log l(Y ))] =

∫ 1

0

P(gα(log l(Y )) > x)dx

=

∫ 1

0

P

( log x
ασ

<
log l(Y )

σ
<

log x

(α− 1)σ

)
dx

=

∫ 1

0

F
( log x

(α− 1)σ

)
− F

( log x
ασ

)
dx

≤
∫ 1

0

Φ
( log x

(α− 1)σ

)
− Φ

( log x
ασ

)
dx+

2C

σ

=
1√

2πσα(1− α)
+

2C

σ
≤ 1 + C/2

σα(1− α)
.

On the other hand, for any t ∈ [0, 1],

E[gα(log l(Y ))] =

∫ 1

0

F
( log x

(α− 1)σ

)
− F

( log x
ασ

)
dx

≥
∫ t

0

Φ
( log x

(α− 1)σ

)
− Φ

( log x
ασ

)
− 2C

σ
dx

=

∫ t

0

Φ
( log x

(α− 1)σ

)
− Φ

( log x
ασ

)
dx− 2tC

σ
.

By Fubini’s theorem,∫ t

0

Φ
( log x

σ(α− 1)

)
− Φ

( log x
σα

)
dx =

∫ t

0

1√
2π

∫ log x
σ(α−1)

log x
σα

e−y2/2dydx

=
1√
2π

[ ∫ log t
σα

−∞
eσαy−

y2

2 dy +

∫ ∞

log t
σ(α−1)

eσ(α−1)x− y2

2 dy
]

+ t
[
Φ
( log t

σ(α− 1)

)
− Φ

( log t
σα

)]
.

(6.6)

The first integral in the last step can be evaluated as

1√
2π

∫ log t
σα

−∞
eσαy−

y2

2 dy =
1√
2π

∫ log t
σα

−∞
e

σ2α2

2 − (y+σα)2

2 dy = e
σ2α2

2 Φ
( log t

σα
− σα

)
.

For the second integral in the last step of (6.6), we similarly have

1√
2π

∫ ∞

log t
σ(α−1)

eσ(α−1)x− y2

2 dy = e
σ2(1−α)2

2 Φ
( log t

σ(1− α)
− σ(1− α)

)
.

Assuming σα(1− α) ≥
√
2πC ∨ 2 and letting t = exp[−2

√
2πC(1− α)α], using

α(1− α) ≤ 1/4, we have

− log t

σα
≤ 2

√
2πCα(1− α)√

2πC
≤ 1

2
and σα− log t

σα
≤ σα+

1

2
≤ 5σα

4
.
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By (6.2) and the fact that the function 1
x −

1
x3 is decreasing on [

√
3,∞], we have

e
σ2α2

2 Φ
( log t

σα
− σα

)
≥ 1√

2π
exp

(σ2α2 −
(
log t
σα − σα

)2
2

)[ 1

σα− log t
σα

− 1(
σα− log t

σα

)3

]

≥ 1√
2π

exp
(
log t− 1

2

( log t
σα

)2)[ 4

5σα
− 64

125σ3α3

]
≥ 1√

2π
exp(−2

√
2πC(1− α)α− 1/8)

[ 4

5σα
− 64

125(4σα)

]
≥ exp(−2

√
2πC)

5σα
.

Similarly, we have

e
σ2(1−α)2

2 Φ
( log t

σ(1− α)
− σ(1− α)

)
≥ exp(−2

√
2πC)

5σ(1− α)
.

Hence the integral in (6.6) has lower bound

1√
2π

[ ∫ log t
σα

−∞
eσαy−

y2

2 dy +

∫ ∞

log t
σ(α−1)

eσ(α−1)x− y2

2 dy
]

≥ exp(−2
√
2πC)

5σα
+

exp(−2
√
2πC)

5σ(1− α)
=

exp(−2
√
2πC)

5σα(1− α)
.

(6.7)

Now we consider another term Φ
(

log t
σ(α−1)

)
in (6.6). By (6.4), we have

Φ
( log t

σ(α− 1)

)
≥ 1

2
+

1√
2π

( log t

σ(α− 1)
− 2

3

( log t

σ(α− 1)

)3)
=

1

2
+

1√
2π

(−2
√
2πCα(1− α)

σ(α− 1)
− 2

3

(−2
√
2πCα(1− α)

σ(α− 1)

)3)
=

1

2
+

2Cα

σ
− 32πC3α3

3σ3

and similarly the term −Φ
(

log t
σα

)
has lower bound

−Φ
( log t

σα

)
= Φ

(
− log t

σα

)
− 1 ≥ 1

2
+

2C(1− α)

σ
− 32πC3(1− α)3

3σ3
− 1.

Therefore,

t
[
Φ
( log t

(α− 1)σ

)
− Φ

( log t
ασ

)]
− 2tC

σ

≥ 2tC

σ
− 32πC3α3

3σ3
− 32πC3(1− α)3

3σ3
− 2tC

σ
≥ −32πC3

3σ3
.
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Let us assume that σα(1−α) ≥ 2C3/2 exp(
√
2πC), then we have σ2α2(1−α)2 ≥

4C3 exp(2
√
2πC), so we have

32πC3

3σ3
≤ 32πC3α3(1− α)3

3σ3α3(1− α)3
≤ πC3

6σ3α3(1− α)3

≤ π exp(−2
√
2πC)

24σα(1− α)
≤ exp(−2

√
2πC)

6σα(1− α)
.

(6.8)

We combine (6.7) and (6.8) and have,

E[gα(log l(Y ))] ≥ exp(−2
√
2πC)

5σα(1− α)
− exp(−2

√
2πC)

6σα(1− α)
=

exp(−2
√
2πC)

30σα(1− α)
.

6.2. Proof of (2.14)

Dα(ϕ0j‖ϕ1j) = − log

∫
Ωj

ϕ1−α
0j ϕα

1jdμ

= − log

∫
Ωj

h(x) exp{[(1− α)θ0j + αθ1j ]
	T (x)− (1− α)A(θ0j)− αA(θ1j)}

= − log
{
exp[−(1− α)A(θ0j)− αA(θ1j) +A(θαj))]

∫
Ωj

ϕ(x; θαj)dx
}

= (1− α)A(θ0j) + αA(θ1j)−A(θαj).

6.3. Proof of variance of (2.15)

The variance of Zj can be directly derived from the following proposition. Its
proof is skipped for brevity.

Proposition 2. A random variable X ∼ ϕ(x; θ) in (2.12) satisfies:

(a) The moment generating function of T (X), MT (X)(t) = exp[A(θ+t)−A(θ)]
if it exists.

(b) E[T (X)] = ∇A(θ) and Var[T (X)] = H(A(θ)) where H(A(θ)) is the Hes-
sian matrix of A evaluated at θ.

6.4. Proof of (2.16)

For α ∈ (0, 1), we recall θαj = (1− α)θ0j + αθ1j and define

pαj :=
1

1 + e−θαj
=

1

1 + e−(1−α)θ0j−αθ1j

=
1

1 +
(

1−p0j

p0j

)1−α(
1−p1j

p1j

)α =
p1−α
0j pα1j

p1−α
0j pα1j + (1− p0j)1−α(1− p1j)α

.
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It is worth noting that the identity still holds when α = 0 or 1, including the
next one.

exp(A(θαj)) = 1 + eθαj = 1 +
pαj

1− pαj
=

1

1− pαj

=
p1−α
0j pα1j + (1− p0j)

1−α(1− p1j)
α

(1− p0j)1−α(1− p1j)α
.

By (2.14), we can write the Chernoff coefficient for p0j and p1j in terms of pαj ’s:

e−Dα(ϕ0j‖ϕ1j) = e−(1−α)A(θ0j)−αA(θ1j)+A(θαj)

= (1− p0j)
1−α(1− p1j)

α
p1−α
0j pα1j + (1− p0j)

1−α(1− p1j)
α

(1− p0j)1−α(1− p1j)α

= p1−α
0j pα1j + (1− p0j)

1−α(1− p1j)
α.

Hence,

e−Dα(ϕ0‖ϕ1) = e−
∑n

j=1 Dα(p0j‖p1j) =

n∏
j=1

[p1−α
0j pα1j + (1− p0j)

1−α(1− p1j)
α].

6.5. Proof of (2.17)

We recall the definition of Yj from (2.9), and have Yj ∼ Bern(pαj). Then
by (2.15), and letting α = α∗,

Zj − E[Zj ] = (Yj − pα∗j) log
p0j(1− p1j)

p1j(1− p0j)

with variance

Var[Zj ] = (θ0j − θ1j)
2Var(Yj) =

[
log

p0j(1− p1j)

p1j(1− p0j)

]2
pαj(1− pαj).

Summing over j ∈ [n] of Var[Zj ] gives (2.17).

6.6. The rest of proof of Bernoulli example in Section 2.3

To show the upper and lower bound, it remains to show that

max
j∈[n]

∣∣∣ log p0j(1− p1j)

p1j(1− p0j)

∣∣∣ ≤ C1

is a sufficient condition of Theorem 2.1. We have

E[|Zj |3] =
∣∣∣ log p0j(1− p1j)

p1j(1− p0j)

∣∣∣3[(1− pαj)p
3
αj + pαj(1− pαj)

3]
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≤
∣∣∣ log p0j(1− p1j)

p1j(1− p0j)

∣∣∣3pαj(1− pαj).

Suppose maxj∈[n]

∣∣∣ log p0j(1−p1j)
p1j(1−p0j)

∣∣∣ ≤ C1, then

∑n
j=1 E[|Zj |3]∑n
j=1 Var[Zj ]

=

∑n
j=1

∣∣∣ log p0j(1−p1j)
p1j(1−p0j)

∣∣∣3pαj(1− pαj)∑n
j=1

[
log

p0j(1−p1j)
p1j(1−p0j)

]2
pαj(1− pαj)

≤ max
j∈[n]

∣∣∣ log p0j(1− p1j)

p1j(1− p0j)

∣∣∣ ≤ C1.

This implies
∑n

j=1 E|Zj |3 ≤ C1nσ̄
2
n.

6.7. Proof of (2.18)

We recall the definition of total variation affinity η from (2.4), and have

η(ϕ0, ϕ1) =
∑

x∈{0,1}n

min
( n∏

j=1

p̄
xj

0 (1− p̄0)
1−xj ,

n∏
j=1

p̄
xj

1 (1− p̄1)
1−xj

)

=
∑

x∈{0,1}n

min
(
p̄
∑n

j=1 xj

0 (1− p̄0)
n−

∑n
j=1 xj , p̄

∑n
j=1 xj

1 (1− p̄1)
n−

∑n
j=1 xj

)

=

n∑
y=0

(
n

y

)
min(p̄y0(1− p̄0)

n−y, p̄y1(1− p̄1)
n−y)

= η(ψ0, ψ1).

7. Proofs of Section 3

7.1. Proof of Lemma 1

It is required to check the assumptions in Theorem 2.1 are satisfied. Firstly,
we need to check that

∑n
i=1 E[|Zj |3] �

∑n
i=1 Var[Zj ]. We use the notation in

Section 2.3, and replace p0∗ and p1∗ by pk∗ and p�∗, under (3.3), we have∑n
i=1 E[|Zj |3]∑n
i=1 Var[Zj ]

≤ max
j∈[n]

∣∣∣ log pkj(1− p�j)

p�j(1− pkj)

∣∣∣ ≤ ∣∣∣ log ω

ε

∣∣∣.
Secondly, by Lemma 5, we can remove α∗(1 − α∗) since it is bounded below
by constant and bounded above by 1/4. Thirdly, by Lemma 4, nσ̄2

n in (2.17) is
sufficiently large under the assumption np∗ ≤ C(Dα∗(pk∗‖p�∗))2. Furthermore,
we need to check that nσ̄2

n can be replaced by

max
j∈[n]

[
log

pkj(1− p�j)

p�j(1− pkj)

]2
np∗
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up to a constant factor. For all k, � and j, pα∗j = p1−α∗

kj pα
∗

�j ≤ p∗, so we have

n∑
j=1

[
log

pkj(1− p�j)

p�j(1− pkj)

]2
pα∗j(1− pα∗j) ≤ max

j∈[n]

[
log

pkj(1− p�j)

p�j(1− pkj)

]2
np∗. (7.1)

Under the assumption of the block structure and (3.3), for at least n
βK many

i ∈ [n], [
log

pki(1− p�i)

p�i(1− pki)

]2
= max

j∈[n]

[
log

pkj(1− p�j)

p�j(1− pkj)

]2
.

Combining with pα∗j(1− pα∗j) ≥ p∗ε
ω , we have

n∑
j=1

[
log

pkj(1− p�j)

p�j(1− pkj)

]2
pα∗j(1− pα∗j) ≥ max

j∈[n]

[
log

pkj(1− p�j)

p�j(1− pkj)

]2 np∗ε
ωβK

. (7.2)

Now we combine (7.1) and (7.2) and obtain

n∑
j=1

[
log

pkj(1− p�j)

p�j(1− pkj)

]2
pα∗j(1− pα∗j) � max

j∈[n]

[
log

pkj(1− p�j)

p�j(1− pkj)

]2
np∗.

Finally, by Lemma 5, we can remove α∗(1 − α∗) since it is bounded below by
constant and bounded above by 1/4.

7.2. Auxiliary lemmas for proof of Lemma 1

Lemma 4. Under the assumption (3.3), for any C1, there exists C2 only de-
pends on β, ε,K and ω such that if Dα∗(pk∗‖p�∗)2 ≥ C2np

∗, then
√
nσ̄nα

∗(1−
α∗) ≥ C1, where σ̄n is defined in (2.17). In particular, we can choose large
enough C2 so that C1 is also sufficiently large.

Proof. We briefly write α = α∗ in this proof. We recall that

Dα(pk∗‖p�∗) =
n∑

j=1

− log(p1−α
kj pα�j + (1− pkj)

1−α(1− p�j)
α),

so there exists j ∈ [n] such that

− log(p1−α
kj pα�j + (1− pkj)

1−α(1− p�j)
α) ≥ Dα(pk∗‖p�∗)

n
.

In this proof, we briefly denote p0 := pkj , p1 := p�j = p1 and a := Dα(pk∗‖p�∗)
n .

Without loss of generality, we assume p1 ≥ p0. Then the inequality above implies

e−a ≥ p1−α
0 pα1 + (1− p0)

1−α(1− p1)
α ≥ p1

(p0
p1

)1−α

+ 1− p1.
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By straightforward rearrangement, we have

(1− α) log
p1
p0

≥ log p1 − log(p1 − (1− e−a)) ≥ 1− e−a

p1
≥ a− a2/2

p1

where the second inequality is due to the derivative of log(p1 + x) is at least

1/p1 on (−p1, 0], and the last inequality uses the fact that 1− e−x ≥ x− x2

2 for
x ≥ 0. Therefore,

(1− α) log
p1
p0

≥
{

1−e−a

p1
≥ 1−e−1

p1
, if a ≥ 1;

a−a2/2
p1

≥ a
2p1

, if a < 1.

We recall that we assume p1 ≥ p0, so log 1−p0

1−p1
≥ 0. By (7.2),

nσ̄2
n �

[
log

p1(1− p0)

p0(1− p1)

]2
np∗

=
(
log

p1
p0

+ log
1− p0
1− p1

)2

np∗

≥ 1

(1− α)2

(1− e−1

p1
∧ a

2p1

)2

np∗.

Since we choose α = α∗ to be optimal, then by Lemma 5, 1
(1−α)2 is bounded

below by constant. Now it suffices to show both (1−e−1)2np∗

p2
1

and a2np∗

4p2
1

are

bounded below by constant. Under the assumption Dα∗(pk∗‖p�∗)2 ≥ C2np
∗, by

Lemma 10 and using Cε in that lemma,

np∗ ≥ Dα∗(pk∗‖p�∗)
Cε

≥
√
C2np∗

Cε
,

which implies np∗ ≥ C2/C
2
ε . Now we consider the first term and have

(1− e−1)2np∗

p21
≥ (1− e−1)2np∗ ≥ C2(1− e−1)2

C2
ε

.

By choosing sufficiently large C2, the RHS is sufficiently large. For the second

term, we recall a = Dα(pk∗‖p�∗)
n and the assumption that p1 ≤ p∗, so

a2np∗

4p21
=

Dα(pk∗‖p�∗)2np∗
4n2p21

≥ Dα(pk∗‖p�∗)2
4np∗

≥ C2

4
.

This term is also sufficiently large by chosen a big enough C2.

Lemma 5 (Bounds of α∗). Under the setting in Section 2.3, suppose

max
j∈[n]

(p0j
p1j

∨ p1j
p0j

)
≤ ω,max

j∈[n]
(p0j ∨ p1j) ≤ 1− ε and α∗ = arg max

α∈[0,1]
Dα(p0∗‖p1∗)

for ω > 1 and ε ∈ (0, 1), then there exists δ ∈ (0, 1/2) which only depends on ε
and ω such that α∗ ∈ [δ, 1− δ].
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Proof. We first consider the case n = 1 and briefly denote p01 := p and p11 := q
(in this proof only). Let f(α) = p1−αqα + (1− p)1−α(1− q)α, then

f ′(α) = p1−αqα log
q

p
+ (1− p)1−α(1− q)α log

1− q

1− p
.

Since f is smooth and convex, α∗ minimize f(α) if and only if f ′(α∗) = 0. Let us
define x := log q

p and y := log 1−q
1−p , then p = 1−ey

ex−ey and 1− p = ex−1
ex−ey . Without

loss of generality, we assume p > q, so x < 0 and y > 0. Hence

f ′(α) =
1− ey

ex − ey
xeαx +

ex − 1

ex − ey
yeαy.

f ′(α∗) = 0 implies

α∗ =
log ey−1

y − log ex−1
x

y − x
.

Let

g(z) =

{
0, if z = 0;

log ez−1
z otherwise.

We can observe that g is a strictly increasing smooth function on R, and g′ ∈
(0, 1). α∗ is the slope of a secant line that intersects the function g at x and y,
so α∗ can only take value g′(z) for some z ∈ [x, y]. Since x ∈ [− logω, logω]
and y ∈ [1 − ε, 1

1−ε ], there exists δ which only depends on ω and ε such that
α∗ ∈ [δ, 1− δ]. Now we can generalize the conclusion to n > 1. Let

f(α) :=

n∏
i=1

fj(α) :=

n∏
i=1

[p1−α
0j pα1j + (1− p0j)

1−α(1− p1j)
α]

Since each positive convex function fj is decreasing on [0, δ] and increasing on
[1 − δ, 1], so is their product pointwise f . Therefore, f achieves minimum on
[δ, 1− δ].

7.3. Proof of Theorem 3.1

It suffices to replace Lemma 5.2 in [36] with the Chernoff lower bound in Sec-
tion 2.3. Let n′ = �n/K�,

p0∗ = (p, p, . . . , p︸ ︷︷ ︸
n′ times

, q, q, . . . , q︸ ︷︷ ︸
n′ times

), and p1∗ = (q, q, . . . , q︸ ︷︷ ︸
n′ times

, p, p, . . . , p︸ ︷︷ ︸
n′ times

).

Let Xi ∼ Bern(p) and Yi ∼ Bern(q) for i ∈ [n′]. For sufficiently large np,

P

( n′∑
i=1

Yi −Xi ≥ 0
)
= P(ϕ((X,Y ); p0∗) ≤ ϕ((X,Y ); p1∗))
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=
∑

x∈{0,1}2n′

ϕ(x; p0∗)1{ϕ(x; p0∗) ≤ ϕ(x; p1∗)}

≥ 1

2

∑
x∈{0,1}2n′

min(ϕ(x; p0∗), ϕ(x; p1∗))

�
(√

np log
p(1− q)

q(1− p)

)−1

exp(−Dα∗(p0∗‖p1∗))

=
(√

np log
p(1− q)

q(1− p)

)−1

(
√
pq +

√
(1− p)(1− q))2n

′

≥
(√

np log
p(1− q)

q(1− p)

)−1

(
√
pq +

√
(1− p)(1− q))2n/K .

This inequality provides a lower bound of Bτ (σ̂(1)) in [36]. The rest of proofs
follow from the arguments in [36].

7.4. Auxiliary lemmas for proof of Theorem 3.2

In this section, we will use the following concentration inequality [47, p. 118]:

Proposition 3 (Prokhorov). Let S =
∑

i Xi for independent centered variables
{Xi}, each bounded by c < ∞ in absolute value a.s. and suppose v ≥

∑
i EX

2
i ,

then for t > 0,

P
(
S > vt

)
≤ exp[−vhc(t)], where hc(t) :=

3

4c
t log

(
1 +

2c

3
t
)
. (7.3)

Same bound holds for P(S < −vt).

Lemma 6 (Uniform Parameter Estimation). For P̂ obtained from the operation
B(A, z̃), and assuming Mis(z̃, z) ≤ γ for 1

n ≤ γ ≤ 1
2βK with optimal permutation

π∗ =id, we have

P

(
sup{‖P̂ − P‖∞ :

n∑
i=1

1{z̃i �= zi} ≤ nγ} > C(8βKγ + τ)p∗
)

≤ exp
[
− n2p∗h1(τ)

8β2K2
− 2nγ log γ

]
.

for every τ > 0. If γ < 1
n , we can replace nγ log γ by 0.

Proof. We only consider the case k = �. If k �= �, the arguments will similarly fol-
low. Let E = {(i, j) : z̃i = zi = z̃j = zj = k}, F = {(i, j) : z̃i = z̃j = k, but zi �=
k or zj �= k}. Let n̂k = |{i ∈ [n] : z̃i = k}|. According to assumptions,

(n̂k − nγ)2 ≤ |E| ≤ n̂2
k and |F | ≤ 2nγn̂k.

Hence by definition of P̂k� from (3.10), we have upper bound

n̂2
kE[P̂k�] ≤ |E|Pk� + |F |p∗ ≤ n̂2

kPk� + 2nγn̂kp
∗
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Since n̂k ≥ nk − nγ ≥ n
βK − n

2βK = n
2βK , so

E[P̂k�] ≤
n̂2
kPk� + 2nγn̂kp

∗

n̂2
k

≤ Pk� + 4βKγp∗.

For lower bound, we have

n̂2
kE[P̂k�] ≥ (n̂k − nγ)(n̂k − nγ − 1)Pk� ≥ n̂kn̂�Pk� − 2nγ(n̂k + 1)p∗

≥ n̂kn̂�Pk� − 4nγn̂kp
∗.

Therefore, using n̂k ≥ n
2βK again, we have

E[P̂k�] ≥
n̂2
kPk� − 4nγn̂kp

∗

n̂2
k

≥ Pk� − 8βKγp∗.

Thus |Pk� − E[P̂k�]| ≤ 8βKγp∗. By Proposition 3,

P(|P̂k� − E[P̂k�]| ≥ τp∗) = P

( n̂k(n̂k − 1)

2
(P̂k� − E[P̂k�]) ≥

n̂k(n̂k − 1)

2
τp∗

)
≤ 2 exp

[
− n̂k(n̂k − 1)

2
p∗h1(τ)

]
≤ 2 exp

[
− n2p∗h1(τ)

8β2K2

]
.

There are at most

nγ�∑
i=0

(
n

i

)
≤

(
n

�nγ�

) ∞∑
j=0

( �nγ�
n− �nγ�+ 1

)j

.

many different z̃ with error rate at most γ. We consider the function f(x) =
(
a
x

)x
which is increasing when x ≤ a/e. By the fact that �nγ� ≤ nγ ≤ n, the first
term on the RHS has upper bound(

n

�nγ�

)
≤

( en

�nγ�
)nγ�

≤
( en

nγ

)nγ

= exp(−nγ log γ).

The second term on the RHS is a geometric sum, using 1 ≤ �nγ� ≤ n
2βK ≤ n

4 ,
we have

∞∑
j=0

( �nγ�
n− �nγ�+ 1

)j

=
(
1− �nγ�

n− �nγ�+ 1

)−1

=
n− �nγ�+ 1

n− 2�nγ�+ 1
≤ n

n− 2�nγ� ≤ 2.

If γ < 1
n , then z̃ = z is unique. Taking the union bound, we obtain the desired

probability.

Let ϕ(x; p) be the PMF evaluated at x of a Poisson-Binomial variable with
parameters p = (p1, . . . , pn). In particular, if p = p̄1n, then ϕ(x, p) is the PMF
of a binomial distribution with parameters n and p̄.
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Lemma 7 (Binomial Perturbation). If |p̄1− p̄2| ≤ δmax(p̄1, p̄2) := δp∗, p∗/ω ≤
p̄1, p̄2 ≤ 1− ε, then

ϕ(x; p̄11n)

ϕ(x; p̄21n)
≤ exp

(
δωx+

δnp∗

ε

)
∀x ∈ Z+.

Proof. Using 1 + x ≤ ex several times, we have

ϕ(x; p̄11n)

ϕ(x; p̄21n)
=

( p̄1
p̄2

)x (1− p̄1)
n−x

(1− p̄2)n−x

≤
( p̄2 + δp∗

p̄2

)x(1− p̄2 + δp∗

1− p̄2

)n−x

≤ (1 + δω)x
(
1 +

δp∗

ε

)n−x

≤ exp
(
δωx+

δnp∗

ε

)
.

as desired.

Lemma 8 (Poisson-Binomial Approximation). Let p = (p1, . . . , pn) be param-
eter of a Poisson binomial distribution. Let p∗ := maxi∈[n] pi. We assume at
least n(1− γ) entries of p are exactly p̄, and p∗ ≤ min(1− ε, ωp̄). Then,

ϕ(x; p)

ϕ(x; p̄1n)
≤ exp

(γ
ε
(np̄+ ωx)

)
, ∀x ∈ Z+.

Proof. Let S(x) = {S ⊂ [n] : |S| = x} for x ∈ Z+, then

ϕ(x; p) =

n∏
i=1

(1− pi)
∑

S∈S(x)

∏
j∈S

pj
1− pj

By Maclaurin’s inequality,

∑
S∈S(x)

∏
j∈S

pj
1− pj

≤
(
n

x

)
1

nx

( n∑
i=1

pi
1− pi

)x

,

so we have

ϕ(x; p)

ϕ(x; p̄1n)
≤

∏n
i=1(1− pi)

∑
S∈S(x)

∏
j∈S

pj

1−pj(
n
x

)
p̄x(1− p̄)x

≤
∏n

i=1(1− pi)
1
nx

(∑n
i=1

pi

1−pi

)x

p̄x(1− p̄)n−x
.

Without loss of generality, we assume pnγ�+1 = · · · = pn = p̄. We have

∏n
i=1(1− pi)

1
nx

(∑n
i=1

pi

1−pi

)x

p̄x(1− p̄)n−x
=

( n∏
i=1

1− pi
1− p̄

)( 1

n

n∑
i=1

pi(1− p̄)

p̄(1− pi)

)x
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=
( nγ�∏

i=1

1− pi
1− p̄

)(
1− �nγ�

n
+

1

n

nγ�∑
i=1

pi(1− p̄)

p̄(1− pi)

)x

≤ 1

(1− p̄)nγ

(
1 +

1

n

nγ�∑
i=1

pi
p̄(1− pi)

)x

.

By the inequality 1
1−x ≤ exp

(
x

1−x

)
for x ∈ (0, 1), we have

1

(1− p̄)nγ
≤ exp

( nγp̄

1− p̄

)
≤ exp

(nγp̄
ε

)
.

For the other term, 1 + x ≤ ex implies

(
1 +

1

n

nγ�∑
i=1

pi(1− p̄)

p̄(1− pi)

)x

≤ exp
( xγp∗

p̄(1− p∗)

)
≤ exp

(γωx
ε

)
.

Therefore, we have

ϕ(x; p)

ϕ(x; p̄1n)
≤

∏n
i=1(1− pi)

1
nx

(∑n
i=1

pi

1−pi

)x

p̄x(1− p̄)n−x
≤ exp

(γ
ε
(np̄+ ωx)

)
.

Lemma 9 (Degree Truncation). For fixed i ∈ [n], let bi+ =
∑

r∈[K] bir =∑n
j=1 Aij be the degree of node i, where A is the adjacency matrix in SBM

(see (3.1)), and assuming maxj∈[n] E[Aij ] ≤ p∗ ≤ 1 − ε. Then there exists
Cε > 0, which only depends on ε such that

P(bi+ > Cεnp
∗) ≤ exp(−np∗(1 + log ε−1)).

Proof of Lemma 9. We choose large enough Cε such that

(Cε − 1) log
(
1 +

2(Cε − 1)

3

)
≥ 1 + log ε−1.

Now we want to find the upper bound of the following probability:

P
(
bi+ > Cεnp

∗) ≤ P
(
bi+ − E[bi+] > (Cε − 1)np∗

)
.

For fixed i, let pj = Aij , and v =
∑n

j=1 pj(1−pj), vt = (Cε−1)np∗, so t ≥ Cε−1.
By Proposition 3, we have

P
(
bi+ − E[bi+] > (Cε − 1)np∗

)
≤ exp

[
−3

4
vt log

(
1 +

2t

3

)]
≤ exp

[
− (Cε − 1) log

(
1 +

2(Cε − 1)

3

)
np∗

]
≤ exp(−np∗(log ε−1)),

where the last inequality holds by the choice of Cε.
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Lemma 10. Recall the Chernoff information Dα(pk∗‖p�∗) between Bernoulli
distribution from (2.16), assuming maxi max(pki, p�i) = p∗ ≤ 1 − ε, then we
have Dα(pk∗‖p�∗) ≤ Cεnp

∗ where Cε only depends on ε.

Proof. For α ∈ [0, 1], we have

Dα(pk∗‖p�∗) =
n∑

j=1

− log[p1−α
kj pα�j + (1− pkj)

1−α(1− p�j)
α]

≤
n∑

j=1

− log[(1− pkj)
1−α(1− p�j)

α]

=

n∑
j=1

−(1− α) log(1− pkj)− α log(1− p�j)

≤ −n log(1− p∗)

≤ np∗(log ε−1),

where the last inequality uses p∗ ≤ 1− ε.

Lemma 11 (Perturbed Likelihood Ratio Test). We assuming the parameters
satisfies (3.3), given the ith row of the adjacency matrix Ai∗ and ẑj for j ∈ [n]

such that
∑n

j=1 1{ẑj �= zj} ≤ nγ ≤ n
2βK , and let B(ρ) = {P̃ : ‖P − P̃‖∞ ≤ ρ}.

Assuming ρ ≤ ε/2 and Dα(pk∗‖p�∗)2 ≥ C1np
∗ for some sufficiently large C1,

then the likelihood ratio test variable

Yik� := Yik�(P̂ , ẑ) :=
∑
j 
=i

Aij log
P̂�ẑj

P̂kẑj

+ (1−Aij) log
1− P̂�ẑj

1− P̂kẑj

(7.4)

satisfies

P(∃P̂ ∈ B(ρ),Yik�(P̂ , ẑ) ≥ 0) � exp
(
C2

(
δ + γ +

1

n

)
np∗

)
η(pk∗, p�∗).

Proof. Firstly, we define the following probability mass functions:

ψ̄0 ∼
K⊗
r=1

Bin(n̂r, Pkr), ψ̂0 ∼
K⊗
r=1

Bin(n̂r, Pkr + ρ),

ψ̂0 ∼
K⊗
r=1

Bin(n̂r, Pkr − ρ) and ψ̂1 ∼
K⊗
r=1

Bin(n̂r, P�r + ρ),

(7.5)

where n̂r =
∑n

j 
=i 1{zj = r}. Let bir :=
∑n

j=1 Aij1{ẑj = r}, then we have

sup
P̂∈B(ρ)

Yik� = sup
P̂∈B(ρ)

K∑
r=1

bir log
P̂�r

P̂kr

+ (n̂r − bir) log
1− P̂�r

1− P̂kr

≤
K∑
r=1

bir log
P�r + ρ

Pkr − ρ
+ (n̂r − bir) log

1− P�r + ρ

1− Pkr − ρ



1334 Z. Zhou and P. Li

We have Pkr ≤ 1− ε, so 1− Pkr ≥ ε. Let ε ≤ a, b ≤ 1, then for x ∈ [−ε/2, ε/2],

d

dx
log

a+ x

b− x
=

1

a+ x
+

1

b+ x
≤ 2

ε
+

2

ε
=

4

ε
.

Therefore, log a+x
b−x is a 4

ε -Lipschitz function. As a result,

log
1− P�r + ρ

1− Pkr − ρ
≤ log

1− P�r − ρ

1− Pkr + ρ
+

4ρ

ε
.

Hence, using
∑K

r=1(n̂r − bir) ≤ n, we have

sup
P̂∈B(ρ)

Yik� ≤
4nρ

ε
+

K∑
r=1

bir log
P�r + ρ

Pkr − ρ
+ (n̂r − bir) log

1− P�r − ρ

1− Pkr + ρ

=
4nρ

ε
+ log

ψ̂1(x)

ψ̂0(x)
.

(7.6)

Now we consider the tail bound of Yik�. The only random variable on the RHS
of the equation above is bir for r ∈ [K]. Let ψ̃0 be the probability mass function
of (bir) ∈ Z

K
+ . If zi �= r, then bir follows a Poisson binomial distribution with at

least n̂r−nγ parameters equal to Pkr. If zi = r, then n̂r−nγ need to be replaced
by n̂r−nγ−1 in the previous sentence. Since γ ≤ 1

2βK , so n̂r ≥ n
βK− n

2βK = n
2βK .

The proportion of parameters different from Pkr is at most

γr :=
nγ + 1

n̂r
≤ (nγ + 1) · 2βK

n
≤ 2βK

(
γ +

1

n

)
.

Since ψ̃0 is the joint probability mass function of a Poisson binomial distribution,
by Lemma 8, we have

ψ̃0(x)

ψ̄0(x)
≤

K∏
r=1

exp
(2βK

ε

(
γ +

1

n

)
(n̂rPkr + ωxr)

)

≤ exp
(2βK

ε

(
γ +

1

n

)(
np∗ + ω

K∑
r=1

xr

))
.

(7.7)

By Lemma 7, let δ := ρ/p∗, and by the assumption maxr Pkr + ρ ≤ 1− ε/2, we
obtain

ψ̄0(x)

ψ̂0(x)
≤

K∏
r=1

exp
(
δωxr +

2δn̂rp
∗

ε

)
= exp

(
δω

K∑
r=1

xr +
2δnp∗

ε

)
. (7.8)

We define subset of ZK
+ :

E = {x ∈ Z
K
+ :

K∑
i=1

xr ≤ Cεnp
∗},
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where Cε is chosen to be the one in Lemma 9. Then for x ∈ E,
∑K

r=1 xr ≤ Cεnp
∗.

We combine (7.7) and (7.8), and have

ψ̃0(x)

ψ̂0(x)
≤ exp

(
C3

(
δ + γ +

1

n

)
np∗

)
, ∀x ∈ E, (7.9)

where C3 only depends on β,K, ε, and ω. Hence we have

P

(
sup

P̂∈B(ρ)

Yik� ≥ 0
)
≤

∑
x∈Z

K
+

ψ̃0(x)1
{
log

ψ̂1(x)

ψ̂0(x)
≥ −4nρ

ε

}

=
∑
x∈Z

K
+

ψ̃0(x)1
{e4nρ/εψ̂1(x)

ψ̂0(x)
≥ 1

}

≤
∑
x∈E

exp
(
C3

(
δ + γ +

1

n

)
np∗

)
ψ̂0(x)1

{e4nρ/εψ̂1(x)

ψ̂0(x)
≥ 1

}
+

∑
x/∈E

ψ̃0(x)

≤ exp
(
C3

(
δ + γ +

1

n

)
np∗ +

4nρ

ε

) ∑
x∈E

min(ψ̂0(x), ψ̂1(x)) +
∑
x/∈E

ψ̃0(x)

≤ exp
(
C4

(
δ + γ +

1

n

)
np∗

) ∑
x∈E

min(ψ̂0(x), ψ̂1(x)) +
∑
x/∈E

ψ̃0(x). (7.10)

Again, by Lemma 7, for x ∈ E, we have

ψ̂0(x)

ψ̄0(x)
≤

K∏
r=1

exp
(
δωxr +

2δn̂rp
∗

ε

)
= exp

(
δω

K∑
r=1

xr +
2δnp∗

ε

)
≤ exp(C5np

∗).

Therefore, by Lemma 1, for all α ∈ (0, 1),∑
x∈E

min(ψ̂0(x), ψ̂1(x)) ≤ exp(C5np
∗)

∑
x∈E

min(ψ̄0(x), ψ̄1(x))

�
(√

np∗ max
r∈[K]

∣∣∣ log Pkr(1− P�r)

P�r(1− Pkr)

∣∣∣)−1

exp(−Dα(ψ̄0‖ψ̄1)).

(7.11)

Now we consider the perturbation of the Chernoff information. Let

ψ0 ∼
K⊗
r=1

Bin(nr, Pkr) and ψ1 ∼
K⊗
r=1

Bin(nr, P�r),

where nr =
∑n

i=1 1{zi = r}. By (2.16), we have

exp(−Dα(ψ̄0‖ψ̄1))

exp(−Dα(ψ0‖ψ1))
=

K∏
r=1

[P 1−α
kr Pα

�r + (1− Pkr)
1−α(1− P�r)

α]n̂r−nr . (7.12)

Under the definition of n̂r and assumption on ẑj , we have

K∑
r=1

|n̂r − nr| ≤
n∑

j=1

1{zj �= ẑj} ≤ nγ.
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By assumption (3.3), we have Pkr, P�r ≤ p∗ for r ∈ [K]. Thus

P 1−α
kr Pα

�r + (1− Pkr)
1−α(1− P�r)

α ≥ 1− p∗.

Therefore,

K∏
r=1

[P 1−α
kr Pα

�r + (1− Pkr)
1−α(1− P�r)

α]n̂r−nr ≤ (1− p∗)nγ ≤ enp
∗γ .

Hence, exp(−Dα(ψ̄0‖ψ̄1)) ≤ exp(np∗γ − Dα(ψ0‖ψ1)). Applying this bound
to (7.11), and by Lemma 1, we have∑

x∈E

min(ψ̂0(x), ψ̂1(x))

�
(√

np∗ max
r∈[K]

∣∣∣ log Pkr(1− P�r)

P�r(1− Pkr)

∣∣∣)−1

exp(−Dα∗(ψ̄0‖ψ̄1))

≤
(√

np∗ max
r∈[K]

∣∣∣ log Pkr(1− P�r)

P�r(1− Pkr)

∣∣∣)−1

exp(np∗γ −Dα∗(ψ0‖ψ1))

� exp(np∗γ)η(pk∗, p�∗),

where α∗ = argmaxα∈(0,1) Dα∗(ψ0‖ψ1). Thus,

exp
(
C4

(
δ + γ +

1

n

)
np∗

) ∑
x∈E

min(ψ̂0(x), ψ̂1(x))

≤C5 exp
(
C2

(
δ + γ +

1

n

)
np∗

)
η(pk∗, p�∗).

(7.13)

By Lemma 9 and Lemma 10,∑
x/∈E

ψ̃0(x) ≤ exp(−np∗(1 + log ε−1)) ≤ exp(−np∗ −Dα∗(pk∗‖p�∗)).

Under the assumption on Pkr and P�r, we have

ε

ω
≤ Pkr(1− P�r)

P�r(1− Pkr)
≤ ω

ε
,

so
∣∣∣ log Pkr(1−P�r)

P�r(1−Pkr)

∣∣∣−1

≥ log ω
ε . Under the assumption Dα∗(pk∗‖p�∗)2 ≥ C1np

∗,

by Lemma 10 and using Cε in that lemma,

np∗ ≥ Dα∗(pk∗‖p�∗)
Cε

≥
√
C1np∗

Cε
,

which implies np∗ ≥ C1/C
2
ε . Hence, for sufficiently large C1, we have(√

np∗ max
r∈[K]

∣∣∣ log Pkr(1− P�r)

P�r(1− Pkr)

∣∣∣)−1

≥ exp(−np∗).
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Therefore, by Lemma 1,

exp(−np∗ −Dα∗(pk∗‖p�∗))

≤
(√

np∗ max
r∈[K]

∣∣∣ log Pkr(1− P�r)

P�r(1− Pkr)

∣∣∣)−1

exp(−Dα∗(ψ0‖ψ1)) � η(pk∗, p�∗).

This implies
∑

x 
=E ψ̃0(x) � η(pk∗, p�∗). Applying this bound and (7.13) to
(7.11), we have

P(∃P̂ ∈ B(ρ),Yik�(P̂ , ẑ) ≥ 0) � exp
(
C2

(
δ + γ +

1

n

)
np∗

)
η(pk∗, p�∗),

as desired.

Lemma 12 (Random Partitioning). Let I be a random subset of [n] with |I| =
�n/2� in Algorithm 1 and nI

k = |{i ∈ I : zi = k}|, then for any ζ > 0 and
sufficiently large n,

max
k∈[K]

∣∣∣nI
k − nk

2

∣∣∣ ≤ nξ

holds with probability at least 1− 2K exp
(
− nξ2/3

)
.

Proof of Lemma 12. We have nI
k ∼ Hypergeometric(�n/2�, nk, n). For any fixed

k ∈ [K], the concentration of hypergeometric distribution [48] gives
∣∣∣nI

k− nk

2

∣∣∣ ≤
nξ with probability at least 1−2 exp(−nξ2/3) when n is sufficiently large. Taking
the union bound over all k ∈ [K] gives the desired result.

Lemma 13. Suppose D∗ := mink 
=� Dα∗(pk∗‖p�∗) is sufficiently large, then
under SBM defined in Section 3.1, for any r > 0 the misclassification rate of z̃
by spectral clustering in step 14 of Algorithm 1 satisfies Mis(z̃, z) ≤ Cr3/2(D∗)−1

with probability at least 1− n−r, where C only depends on β,K, ω and r.

Proof. The result follows from [6, Corollary 5].

7.5. Proof of Theorem 3.2

Under the assumption (D∗)2 ≥ C2np
∗ for sufficiently large C2, by Lemma 4, we

have np∗ � √
nσ̄nα

∗(1 − α∗) ≥ C1 where
√
nσ̄n is defined in (2.17). Choosing

sufficiently large C2, C1 is also large enough. To simplify the notation, we assume
np∗ ≥ C1. We will analyze the algorithm step by step. Each step fails with some
probability, which will be summed up before calculating the error rate.

Spectral clustering and matching Assuming D∗ := mink 
=� Dα∗(pk‖p�) is
sufficiently large, and let r = 4, by Lemma 13, we have Mis(z̃, z) ≤ C3/D

∗ ≤
1

8βK with probability at least 1−n−4, because β is fixed and K = O(1). Without
loss of generality, we assume the optimal permutation between z̃ and z is identity,



1338 Z. Zhou and P. Li

that is, nMis(z̃, z) =
∑n

i=1 1{z̃i �= zi}. Now we consider spectral clustering in
the for loop. Using Lemma 12 and let ξ = 1

6βK , when n is sufficiently large,

nk

3
≤ nk

2
− n

6βK
≤ nI

k := |{i ∈ I : zi = k}|.

For sufficiently large n, we have n/(4βK) ≤ nk/4 ≤ nI′

k . Similar bound holds

for nJ ′

k , i.e., nk/4 ≤ nJ ′

k . This guarantees the community size in each partitioned
subgraph is sufficiently large. Hence for α ∈ (0, 1),

Dα(pkI′‖p�I′) = −
∑
j∈I′

log(p1−α
kj pα�j + p1−α

kj pα�j)

≥ −
K∑
r=1

nk

4
log(P 1−α

kr Pα
�r + P 1−α

kr Pα
�r)

=
Dα(pk∗‖p�∗)

4
.

(7.14)

Let α∗ = argmaxα∈(0,1) Dα(pk∗‖p�∗), then

Dα∗(pkI′‖p�I′) ≥ Dα∗(pk∗‖p�∗)
4

≥ D∗

4
.

Then the output z̃′I′ of first spectral clustering in step 8 satisfies

γ1 := Mis(z̃′I′ , zI′) ≤ C3(D
∗/4)−1 ≤ 1

8βK

when D∗ is sufficiently large with probability at least 1 − (n/2 − 1)−4 ≥ 1 −
(n/3)−4. Now we consider the first matching algorithm in step 9. Let

π∗ = arg max
π∈SK

∑
i∈I′

1{z̃i �= π(z̃′i)},

then
∑

i∈I′ 1{z̃i �= π∗(z̃′i)} ≤ |I′|
8βK ≤ n

16βK . On the other hand, since nI′

k ≥ n
4βK ,

we must have |{i ∈ I ′ : z̃′i = k}| ≥ n
4βK − n

16βK = 3n
16βK . Hence for every k ∈ [K],

|{i ∈ I ′ : z̃i = π∗(z̃′i) = k}| ≥ 3n
16βK − n

16βK = n
8βK . On the other hand, for any

π �= π∗,
∑

i∈I′ 1{z̃i �= π(z̃′i)} ≥ 2 · n
8βK = n

4βK because at least two labels have
been permuted and at least n

4βK of them match z̃ under the permutation π∗.
Then by triangle inequality of the hamming distance, we have∑

i∈I′

1{zi �= π(z̃′i)} ≥
∑
i∈I′

1{z̃i �= π(z̃′i)} −
∑
i∈I′

1{zi �= z̃i}

≥ n

4βK
− n

16βK
=

3n

16βK
.

Therefore, π∗ is the unique permutation such that
∑

i∈I′ 1{zi �= π∗(z̃′i)} ≤ n
16βK .

In other words, the matching algorithm succeed to find the optimal permuta-
tion between z̃′I′ and zI′ . The second matching algorithm will similarly work.
Therefore, the updated z̃I′ and z̃J ′ are consistent with z.
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First estimated parameters We will apply Lemma 6 to find the bound for P̃
in step 4. Recall from the spectral clustering step that we have γ1 ≤ 4C3(D

∗)−1

and we let τ1 = C4D
∗/(np∗) ≤ 1 for some sufficiently small C4. By concavity of

log
(
1 + 2

3 t
)
and 0 = log 1 ≤ 1

6 ≤ log 5
2 = log

(
1 + 2

3

)
, we have log

(
1 + 2

3 t
)
≥ t

6
on [0, 1].

h1(t) =
3

4
t log

(
1 +

2

3
t
)
≥ 3

4
t
( t

6

)
=

t2

8
for t ∈ [0, 1].

Thus, we have

n2p∗h1(τ1)

4β2K2
≥ n2p∗

32β2K2

(C4D
∗

np∗

)2

=
C2

4n(D
∗)2

32β2K2np∗
≥ C2C

2
4n

32β2K2

≥ 4n log(D∗/(4C3))

D∗/(4C3)
≥ −4nγ1 log γ1

where the second and the third inequalities hold when D∗ is sufficiently large,
and the last inequality is due to the fact that −x log x is increasing on [0, 1/e].
Therefore, with probability at most

exp
[
− n2p∗h1(τ1)

4β2K2
− 2nγ log γ

]
≤ exp

[
− n2p∗h1(τ1)

8β2K2

]
≤ exp

[
− n(D∗)2

32C2
2β

2K2np∗

]
≤ exp(−2D∗),

(7.15)

we have ‖P̃−P‖∞ ≤ C5(8βKγ1+τ1)p
∗ fails, where C5 corresponds to constants

in Lemma 6, and the last inequality holds for sufficiently large D∗.

First likelihood ratio test In step 10, we apply likelihood ratio test on
AI′×J ′ . We recall the definition of Yik� in (7.4) from Lemma 11. The updated
z̃′I′ satisfies z̃′i = zi if Yizi� < 0 for every � �= zi. For P̃ ∈ B(ρ) := {P̂ :

‖P̂ − P‖∞ ≤ ρ}, the probability that the classification error rate on nodes I ′ is
at least γ2 after the first likelihood ratio test is

P

(∑
i∈I′

1{max
�
=zi

Yizi�(P̃ , z̃′I′) ≥ 0} ≥ |I ′|γ2
)

≤P

(∑
i∈I′

1{∃P̃ ∈ B(ρ),max
�
=zi

Yizi�(P̃ , z̃′I′) ≥ 0} ≥ |I ′|γ2
)
.

(7.16)

Let us define random variable

Zi = 1{∃P̃ ∈ B(ρ),max
�
=zi

Yizi�(P̃ , z̃′I′) ≥ 0}, for i ∈ I ′.

Since z̃′I′ only depends on AI′×J ′ , which is independent with AI′×I′ .
∑

i∈I′ Zi

is a sum of independent variables. We can assume z̃′I′ is fixed and satisfy-
ing Mis(z̃′I′zI′) ≤ 4C3((D

∗)−1) := γ1. We apply Lemma 11 with ρ := ρ1 :=
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C5(8βKγ1 + τ1)p
∗, and let C6 be the constant in the lemma,

P(Zi = 1) ≤ K exp(C6n(ρ1 + p∗(γ1 + 1/n)))min
�
=zi

exp(−Dα∗(pziJ ′‖p�J ′))

≤ K exp
(
C6np

∗
(
C5(8βKγ1 + τ1) + γ1 +

1

n

))
e−D∗/4

≤ K exp
(
8C5C6βKnp∗

4C3

D∗ + C5C6np
∗C4D

∗

np∗
+ C6p

∗
)
e−D∗/4

= K exp
(
8C5C6βKnp∗

4C3

D∗ + C4C5C6D
∗ + C6p

∗
)
e−D∗/4.

Since C2np
∗ ≤ (D∗)2 for sufficiently large C2, choosing sufficiently small C4, we

have

8C5C6βKnp∗
4C3

D∗ + C4C5C6D
∗ + C6p

∗ ≤ D∗

16
.

Since D∗ is sufficiently large and K = O(1), we have logK ≤ D∗/24. Thus,

P(Zi = 1) ≤ exp(−D∗/4 +D∗/16 +D∗/16) = exp(−D∗/8).

Applying Proposition 3 to (7.16), let v = |I ′| exp(−D∗/8), vt := |I ′|γ2 :=
3|I ′|e−D∗/16 + 64, then t = eD

∗/16 + 64
|I′|e

D∗/8, so the failing probability

P

(∑
i∈I′

Zi ≥ 3|I ′|e−D∗/16 + 64
)

=P

(∑
i∈I′

Zi − |I ′|P(Zi = 1) ≥ 3|I ′|e−D∗/16 + 64− |I ′|P(Zi = 1)
)

≤P

(∑
i∈I′

Zi − |I ′|P(Zi = 1) ≥ 2|I ′|e−D∗/16 + 64
)

≤ exp
(
− (2|I ′|e−D∗/16 + 64)

3

4
log

(
1 +

4eD
∗/16

3

))
≤ exp(−2D∗)

(7.17)

The same error rate holds for z̃′J ′ . Therefore, the updated z̃′ satisfies

Mis(z̃′, z) ≤ 1

n
(3|I ′|e−D∗/16 + 64 + 3|J ′|e−D∗/16 + 64 + 1) ≤ 3e−D∗/16 +

129

n
.

Second estimated parameters As we have obtained labels z̃′ with higher
accuracy, we would like to update P̃ as well. The proof is similar as the first
estimated parameter, but with τ2 and γ2 different from τ1 and γ1. Let τ2 :=
16βK(1∨

√
p∗D∗)

np∗ . Since np∗ is sufficiently large and by Lemma 10,
√
D∗

np∗ � 1√
D∗ ,

τ2 is arbitrarily small. Using h1(t) ≥ t2/8 for t ∈ [0, 1] again, we have

n2p∗h1(τ2)

4β2K2
≥ 256n2p∗(1 ∨ p∗D∗)

32(np∗)2
= 8D∗ ∨ 8

p∗
.
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Let γ2 := 3e−D∗/16+129/n ≤ 6e−D∗/16 ∨ 258/n. Since −x log x is increasing on
[0, 1/e], we have

−nγ2 log γ2 ≤ (−n(6e−D∗/16) log(6e−D∗/16)) ∨ (−258 log
(258

n

)
)

= 6ne−D∗/16
(D∗

16
− log 6

)
∨ (258 logn− 258 log 258)

≤ ne−D∗/32 ∨ (258 logn).

Again, similar as in the step of first estimated parameter, we want to show that
n2p∗h1(τ2)

8β2K2 ≥ −4nγ2 log γ2. Using np∗ is sufficiently large and C2np
∗ ≤ (D∗)2,

we have

8

p∗
=

8n

np∗
≥ 8ne−

√
C2np∗
32 ≥ 8ne−D∗/32 ≥ 4ne−D∗/32.

By C2np
∗ ≤ (D∗)2 again, we have C2n ≤ (D∗)2

p∗ , so either D∗ or 1/p∗ is greater

than
√
C2n, which is greater than 1032 logn when n is sufficiently large. Hence

n2p∗h1(τ2)

4β2K2
≥ 8D∗ ∨ 8

p∗
≥ 4ne−D∗/32 ∨ (1032 logn) ≥ −4nγ2 log γ2.

Therefore, by Lemma 6, with failing probability at most,

exp
[
− n2p∗h1(τ2)

4β2K2
− 2nγ2 log γ2

]
≤ exp

(
− 4D∗ ∨ 4

p∗

)
≤ exp(−2D∗). (7.18)

we have ‖P̂ −P‖∞ ≤ C5(8βKγ2+ τ2)p
∗, where we recall that γ2 := 3e−D∗/16+

129/n and τ2 = 16βK(1∨
√
p∗D∗)

np∗ .

Second likelihood ratio test The arguments will be similar as the first
likelihood ratio test. We define Zj by new ρ, P̂ and z̃′, i.e.,

Zj = 1{∃P̃ ∈ B(ρ),max
�
=zi

Yizi�(P̃ , z̃′) ≥ 0}.

The likelihood ratio test ẑj ← L(Aj∗, P̂ , z̃′) in step 12 succeed to recover zj
if Zj = 0. We apply Lemma 11 with ρ := ρ2 := C5(8βKγ2 + τ2)p

∗, and let
η∗ = maxk 
=� η(pk∗, p�∗), then we have

P(Zj = 1) ≤ K exp(C6n(ρ2 + p∗(γ2 + 1/n)))η∗

+ 3 exp(−2D∗) + n−4 + 2
(n
3

)−4

,
(7.19)

where 3 exp(−2D∗) comes from the failing probability of first parameter esti-
mation (7.15), first likelihood ratio test (7.17), and second parameter estima-
tion (7.18), n−r is the failing probability of spectral clustering in step 3, and



1342 Z. Zhou and P. Li

2
(
n
3

)−r
is the failing probabilities in step 8. For the first term of (7.19), we have

C6nρ2 = C6nC5(8βKγ2 + τ2)p
∗

= 8C5C6βK(3np∗e−D∗/16 + 129p∗) + 16C5C6βK(1 ∨
√
p∗D∗).

Since D∗ ≥
√
C2np∗, we have np∗e−D∗/16 = O(1) for sufficiently large D∗.

Clearly, 129p∗ ≤ 129 = O(1) and 16C5C6βK = O(1) by assumption 3.3. Thus,

Cnρ2 = O(1 +
√
p∗D∗).

For the other part of the first term, we similarly have

C6np
∗(γ2 + 1/n) = 3C6np

∗e−D∗/16 + C6130p
∗ = O(1 +

√
p∗D∗).

To handle the second term of (7.19), we apply Lemma 1, then we have

η(pk∗, p�∗) ≥ C7

(√
np∗ max

j∈[n]

∣∣∣ log pkj(1− p�j)

p�j(1− pkj)

∣∣∣)−1

exp(−Dα∗(pk∗‖p�∗))

where C7 is the constant of the lower bound in the lemma. Then by (3.3),∣∣∣ log pkj(1− p�j)

p�j(1− pkj)

∣∣∣ ≤ log
ω

ε
,

Since D∗ ≥
√
C2np∗, then for sufficiently large D∗, we have

C7

(√
np∗ max

j∈[n]

∣∣∣ log pkj(1− p�j)

p�j(1− pkj)

∣∣∣)−1

≥ 3 exp(−D∗)

As a result,

η∗ ≥ C7

(√
np∗ max

j∈[n]

∣∣∣ log pkj(1− p�j)

p�j(1− pkj)

∣∣∣)−1

exp(−D∗) ≥ 3 exp(−2D∗). (7.20)

Combining these results, we have

P(Zj = 1) ≤ exp(C8(1 +
√
p∗D∗))η∗ + 3

(n
3

)−4

. (7.21)

for some constants C8. We will consider two cases:
Case 1: suppose D∗ ≤ 2 log n, then using (D∗)2 ≥ C2np

∗,

p∗D∗ =
np∗D∗

n
≤ (D∗)3

C2n
≤ C3

9 (logn)
2

n
= O(1)

and by (7.20),

η∗ ≥ e−2D∗ ≥ e−4 logn = n−4 � 3
(n
3

)−4

.
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Thus, (7.21) can be bounded by P(Zj = 1) = O(η∗), and

E[Mis(ẑ, z)] ≤ 1

n

n∑
j=1

P(ẑj �= zj) ≤
1

n

n∑
j=1

P(Zj = 1) = O(η∗).

Case 2: suppose nη∗ = o(1), we further divide this case into two situation.
Suppose the condition D∗ ≤ 2 logn is still satisfied, then E[Mis(ẑ, z)] = O(η∗).
Therefore, by the Markov inequality,

P(Mis(ẑ, z) > 0) = P(Mis(ẑ, z) ≥ 1/n) ≤ nE[Mis(ẑ, z)] = O(nη∗) = o(1).

Now suppose D∗ > 2 logn, then using η∗ � e−D∗
, for sufficiently large D∗,

by (7.21), we have

P(Zj = 1) � exp(C8(1 +
√
p∗D∗))e−D∗

+ 3
(n
3

)−4

≤ e−
2D∗
3 + 3

(n
3

)−4

≤ n−4/3 + 3
(n
3

)−4

� n−4/3.

Therefore,

E[Mis(ẑ, z)] ≤ 1

n

n∑
j=1

P(Zj = 1) = O(n−4/3).

By the Markov inequality again, we have

P(Mis(ẑ, z) > 0) ≤ nE[Mis(ẑ, z)] = O(n · n−4/3) = o(1).

8. Data driven adjacency regularization

We provide the procedure of data driven regularization in step 14 of Algorithm 1.
We note that this is only one of possible way to regularized the adjacency matrix.
We refer readers to original paper [22] for more details.

Algorithm 2 Data-driven adjacency regularization
1: Input: n× n adjacency matrix A and regularization parameter τ . (Default: τ = 3)
2: Output: Regularized adjacency matrix Are.
3: Form the degree sequence Di =

∑n2
j=1 Aij for i = 1, . . . , n and the corresponding order

statistics: D(1) ≥ D(2) ≥ · · · ≥ D(n1).

4: Let D̄ = 1
n1

∑n1
i=1 Di and α = �n1/D̄�.

5: Set d̂1 = τD(α) and I = {i : Di ≥ d̂1}.
6: For every i ∈ I, replace Ai∗ and A∗i by 0 to obtain Are.
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