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Abstract

Unsupervised Domain Adaptation (UDA) makes predic-

tions for the target domain data while manual annotations

are only available in the source domain. Previous methods

minimize the domain discrepancy neglecting the class infor-

mation, which may lead to misalignment and poor general-

ization performance. To address this issue, this paper pro-

poses Contrastive Adaptation Network (CAN) optimizing a

new metric which explicitly models the intra-class domain

discrepancy and the inter-class domain discrepancy. We de-

sign an alternating update strategy for training CAN in an

end-to-end manner. Experiments on two real-world bench-

marks Office-31 and VisDA-2017 demonstrate that CAN

performs favorably against the state-of-the-art methods and

produces more discriminative features.

1. Introduction

Recent advancements in deep neural networks have suc-

cessfully improved a variety of learning problems [40, 8,

26, 19, 20]. For supervised learning, however, massive la-

beled training data is still the key to learning an accurate

deep model. Although abundant labels may be available for

a few pre-specified domains, such as ImageNet [7], manual

labels often turn out to be difficult or expensive to obtain

for every ad-hoc target domain or task. The absence of in-

domain labeled data hinders the application of data-fitting

models in many real-world problems.

In the absence of labeled data from the target domain,

Unsupervised Domain Adaptation (UDA) methods have

emerged to mitigate the domain shift in data distributions

[2, 1, 5, 37, 30, 18, 3, 17]. It relates to unsupervised learn-

ing as it requires manual labels only from the source domain

and zero labels from the target domain. Among the recent

work on UDA, a seminal line of work proposed by Long

et al. [22, 25] aims at minimizing the discrepancy between

the source and target domain in the deep neural network,

where the domain discrepancy is measured by Maximum
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Figure 1. Comparison between previous domain-discrepancy

minimization methods and ours. Left: The domain shift exists be-

tween the source and target data before adaptation. Middle: Class-

agnostic adaptation aligns source and target data at the domain-

level, neglecting the class label of the sample, and hence may lead

to sub-optimal solutions. Consequently, the target samples of one

label may be misaligned with source samples of a different la-

bel. Right: Our method performs class-aware alignment across

domains. To avoid the misalignment, only the intra-class domain

discrepancy is minimized. The inter-class domain discrepancy is

maximized to enhance the model’s generalization ability.

Mean Discrepancy (MMD) [22] and Joint MMD (JMMD)

[25]. MMD and JMMD have proven effective in many com-

puter vision problems and demonstrated the state-of-the-art

results on several UDA benchmarks [22, 25].

Despite the success of previous methods based on MMD

and JMMD, most of them measure the domain discrep-

ancy at the domain level, neglecting the class from which

the samples are drawn. These class-agnostic approaches,

hence, do not discriminate whether samples from two do-

mains should be aligned according to their class labels

(Fig. 1). This can impair the adaptation performance due

to the following reasons. First, samples of different classes

may be aligned incorrectly, e.g. both MMD and JMMD

can be minimized even when the target-domain samples are

misaligned with the source-domain samples of a different

class. Second, the learned decision boundary may gener-

alize poorly for the target domain. There exist many sub-

optimal solutions near the decision boundary. These solu-

tions may overfit the source data well but are less discrimi-

native for the target.
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To address the above issues, we introduce a new Con-

trastive Domain Discrepancy (CDD) objective to enable

class-aware UDA. We propose to minimize the intra-class

discrepancy, i.e. the domain discrepancy within the same

class, and maximize the inter-class margin, i.e. the domain

discrepancy between different classes. Considering the toy

example in Fig. 1, CDD will draw closer the source and tar-

get samples of the same underlying class (e.g. the blue and

red triangles), while pushing apart the samples from differ-

ent classes (e.g. the blue triangle and the red star).

Unfortunately, to estimate and optimize with CDD, we

may not train a deep network out-of-the-box as we need

to overcome the following two technical issues. First, we

need labels from both domains to compute CDD, however,

target labels are unknown in UDA. A straightforward way,

of course, is to estimate the target labels by the network out-

puts during training. However, because the estimation can

be noisy, we find it can harm the adaptation performance

(see Section 4.3). Second, during the mini-batch training,

for a class C, the mini-batch may only contain samples from

one domain (source or target), rendering it infeasible to es-

timate the intra-class domain discrepancy of C. This can

result in a less efficient adaptation. The above issues require

special design of the network and the training paradigm.

In this paper, we propose Contrastive Adaptation Net-

work (CAN) to facilitate the optimization with CDD. Dur-

ing training, in addition to minimizing the cross-entropy

loss on labeled source data, CAN alternatively estimates

the underlying label hypothesis of target samples through

clustering, and adapts the feature representations according

to the CDD metric. After clustering, the ambiguous target

data (i.e. far from the cluster centers) and ambiguous classes

(i.e. containing few target samples around the cluster cen-

ters) are zeroed out in estimating the CDD. Empirically we

find that during training, an increasing amount of samples

will be taken into account. Such progressive learning can

help CAN capture more accurate statistics of data distri-

butions. Moreover, to facilitate the mini-batch training of

CAN, we employ the class-aware sampling for both source

and target domains, i.e. at each iteration, we sample data

from both domains for each class within a randomly sam-

pled class subset. Class-aware sampling can improve the

training efficiency and the adaptation performance.

We validate our method on two public UDA bench-

marks: Office-31 [30] and VisDA-2017 [29]. The ex-

perimental results show that our method performs favor-

ably against the state-of-the-art UDA approaches, i.e. we

achieve the best-published result on the Office-31 bench-

mark and very competitive result on the challenging VisDA-

2017 benchmark. Ablation studies are presented to verify

the contribution of each key component in our framework.

In a nutshell, our contributions are as follows,

• We introduce a new discrepancy metric Contrastive

Domain Discrepancy (CDD) to perform class-aware

alignment for unsupervised domain adaptation.

• We propose a network Contrastive Adaptation Net-

work to facilitate the end-to-end training with CDD.

• Our method achieves the best-published result on

the Office-31 benchmark [30] and competitive perfor-

mance compared to the state-of-the-art on the chal-

lenging VisDA-2017 benchmark [29].

2. Related Work

Class-agnostic domain alignment. A common practice for

UDA is to minimize the discrepancy between domains to

obtain domain-invariant features [10, 4, 25, 22, 24, 36, 21].

For example, Tzeng et al. [38] proposed a kind of do-

main confusion loss to encourage the network to learn both

semantically meaningful and domain invariant representa-

tions. Long et al. proposed DAN [22] and JAN [25] to mini-

mize the MMD and Joint MMD distance across domains re-

spectively, over the domain-specific layers. Ganin et al. [10]

enabled the network to learn domain invariant representa-

tions in adversarial way by back-propagating the reverse

gradients of the domain classifier. Unlike these domain-

discrepancy minimization methods, our method performs

class-aware domain alignment.

Discriminative domain-invariant feature learning. Some

previous works pay efforts to learn more disciminative fea-

tures while performing domain alignment [35, 13, 31, 32,

28, 39]. Adversarial Dropout Regularization (ADR) [31]

and Maximum Classifier Discrepancy (MCD) [32] were

proposed to train a deep neural network in adversarial way

to avoid generating non-discriminative features lying in the

region near the decision boundary. Similar to us, Long et

al. [23] and Pei et al. [28] take the class information into

account while measuring the domain discrepancy. How-

ever, our method differs from theirs mainly in two aspects.

Firstly, we explicitly model two types of domain discrep-

ancy, i.e. the intra-class domain discrepancy and the inter-

class domain discrepancy. The inter-class domain discrep-

ancy, which has been ignored by most previous methods,

is proved to be beneficial for enhancing the model adapta-

tion performance. Secondly, in the context of deep neural

networks, we treat the training process as an alternative op-

timization over target label hypothesis and features.

Intra-class compactness and inter-class separability

modeling. This paper is also related to the work that explic-

itly models the intra-class compactness and the inter-class

separability, e.g. the contrastive loss [12] and the triplet loss

[33]. These methods have been used in various applications,

e.g. face recognition [6], person re-identification [16], etc.

Different from these methods designed for a single domain,

our work focuses on adaptation across domains.
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3. Methodology

Unsupervised Domain Adaptation (UDA) aims at im-

proving the model’s generalization performance on target

domain by mitigating the domain shift in data distribution

of the source and target domain. Formally, given a set of

source domain samples S = {(xs
1, y

s
1), · · · , (x

s
Ns

, ysNs
)},

and target domain samples T = {xt
1, · · · ,x

t
Nt
}, xs, xt

represent the input data, and ys ∈ {0, 1, · · · ,M − 1} de-

note the source data label of M classes. The target data

label yt ∈ {0, 1, · · · ,M − 1} is unknown. Thus, in UDA,

we are interested in training a network using labeled source

domain data S and unlabeled target domain data T to make

accurate predictions {ŷt} on T .

We discuss our method in the context of deep neural net-

works. In deep neural networks, a sample owns hierarchical

features/representations denoted by the activations of each

layer l ∈ L. In the following, we use φl(x) to denote the

outputs of layer l in a deep neural network Φθ for the in-

put x, where φ(·) denotes the mapping defined by the deep

neural network from the input to a specific layer.

In the rest of this section, we start our discussions by

briefly reviewing the relevant concepts in MMD in Section

3.1. Section 3.2 introduces a new domain discrepancy met-

ric. Finally, Section 3.3 and Section 3.4 discuss the objec-

tive and the training procedure of proposed deep network.

3.1. Maximum Mean Discrepancy Revisit

In Maximum Mean Discrepancy (MMD), {xs
i} and

{xt
i} are i.i.d. sampled from the marginal distributions

P (Xs) and Q(Xt) respectively. Based on the observed

samples, MMD [34] performs a kernel two-sample test to

determine whether to accept the null hypothesis P = Q or

not. MMD is motivated by the fact that if two distributions

are identical, all of their statistics should be the same. For-

mally, MMD defines the difference between two distribu-

tions with their mean embeddings in the reproducing kernel

Hilbert space (RKHS), i.e.

DH(P,Q) , sup
f∼H

(EXs [f(Xs)]− EXt [f(Xt)])H, (1)

whereH is class of functions.

In practice, for a layer l, the squared value of MMD is

estimated with the empirical kernel mean embeddings

D̂mmd
l =

1

n2
s

ns∑

i=1

ns∑

j=1

kl(φl(x
s
i ), φl(x

s
j))

+
1

n2
t

nt∑

i=1

nt∑

j=1

kl(φl(x
t
i), φl(x

t
j))

−
2

nsnt

ns∑

i=1

nt∑

j=1

kl(φl(x
s
i ), φl(x

t
j)), (2)

where xs ∈ S ′ ⊂ S , xt ∈ T ′ ⊂ T , ns = |S ′|, nt = |T
′|.

The S ′ and T ′ represent the mini-batch source and target

data sampled from S and T respectively. And kl denotes

the kernel selected for the l-th layer of deep neural network.

3.2. Contrastive Domain Discrepancy

We propose to explicitly take the class information into

account and measure the intra-class and inter-class discrep-

ancy across domains. The intra-class domain discrepancy

is minimized to compact the feature representations of sam-

ples within a class, whereas the inter-class domain discrep-

ancy is maximized to push the representations of each other

further away from the decision boundary. The intra-class

and inter-class discrepancies are jointly optimized to im-

prove the adaptation performance.

The proposed Contrastive Domain Discrepancy (CDD)

is established on the difference between conditional data

distributions across domains. Without any constraint on

the type (e.g. marginal or conditional) of data distribu-

tions, MMD is convenient to measure such difference be-

tween P (φ(Xs)|Y s) and Q(φ(Xt)|Y t), i.e. DH(P,Q) ,
supf∼H (EXs [f(φ(Xs)|Y s)]− EXt [f(φ(Xt)|Y t)])H.

Supposing µcc′(y, y
′) =

{
1 if y = c, y′ = c′;
0 otherwise.

, for

two classes c1, c2 (which can be same or different), the ker-

nel mean embedding estimation for squared DH(P,Q) is

D̂c1c2(ŷt1, ŷ
t
2, · · · , ŷ

t
nt
, φ) = e1 + e2 − 2e3 (3)

where

e1 =

ns∑

i=1

ns∑

j=1

µc1c1(y
s
i , y

s
j )k(φ(x

s
i ), φ(x

s
j))

∑ns

i=1

∑ns

j=1 µc1c1(y
s
i , y

s
j )

e2 =

nt∑

i=1

nt∑

j=1

µc2c2(ŷ
t
i , ŷ

t
j)k(φ(x

t
i), φ(x

t
j))

∑nt

i=1

∑nt

j=1 µc2c2(ŷ
t
i , ŷ

t
j)

e3 =

ns∑

i=1

nt∑

j=1

µc1c2(y
s
i , ŷ

t
j)k(φ(x

s
i ), φ(x

t
j))

∑ns

i=1

∑nt

j=1 µc1c2(y
s
i , ŷ

t
j)

. (4)

Note that Eq. (3) defines two kinds of class-aware domain

discrepancy, 1) when c1 = c2 = c, it measures intra-

class domain discrepancy; 2) when c1 6= c2, it becomes

the inter-class domain discrepancy. To compute the mask

µc2c2(ŷ
t
i , ŷ

t
j) and µc1c2(y

s
i , ŷ

t
j), we need to estimate target

labels {ŷti}, which will be discussed in Section 3.4.

Based on the above definitions, the CDD is calculated as

(The ŷt1, ŷ
t
2, · · · , ŷ

t
nt

is abbreviated as ŷt1:nt
)
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D̂cdd =
1

M

M∑

c=1

D̂cc(ŷt1:nt
, φ)

︸ ︷︷ ︸

intra

−
1

M(M − 1)

M∑

c=1

M∑

c′=1
c′ 6=c

D̂cc′(ŷt1:nt
, φ)

︸ ︷︷ ︸

inter

, (5)

where the intra- and inter-class domain discrepancies will

be optimized in the opposite direction.

Note although the estimation of the labels {ŷti} can be

noisy, the CDD (which is established on MMD) in itself

is robust the the noise to an extent. Because MMD is de-

termined by the mean embeddings of distributions in the

RKHS, the sufficient statistics is less likely to be severely

affected by the label noise, especially when the amount of

data is large. We will discuss and verify this in Section 4.3.

3.3. Contrastive Adaptation Network

Deep convolutional neural networks (CNNs) is able

to learn more transferable features than shallow methods.

However, the discrepancy still exists for domain-specific

layers. Specifically, the convolutional layers extracting

general features are more transferable, while the fully-

connected (FC) layers which exhibit abstract and domain-

specific features should be adapted [22, 25].

In this paper, we start from ImageNet [7] pretrained

networks, e.g. ResNet [14, 15], and replace the last FC

layer with task-specific ones. We follow the general prac-

tice that minimizes the domain discrepancy of last FC lay-

ers and fine-tunes the convolutional layers through back-

propagation. Then our proposed CDD can be readily incor-

porated into the objective as an adaptation module over the

activations of FC layers. We name our network Contrastive

Adaptation Network (CAN).

The overall objective. In a deep CNN, we need to min-

imize CDD over multiple FC layers, i.e. minimizing

D̂cdd
L =

L∑

l=1

D̂cdd
l . (6)

Besides, we train the network with labeled source data

through minimizing the cross-entropy loss,

ℓce = −
1

n′
s

n′

s∑

i′=1

logPθ(y
s
i′ |x

s
i′) (7)

where ys ∈ {0, 1, · · · ,M − 1} is the ground-truth label

of sample x
s. Pθ(y|x) denotes the predicted probability of

label y with the network parameterized by θ, given input x.

Therefore, the overall objective can be formulated as

min
θ

ℓ = ℓce + βD̂cdd
L (8)

where β is the weight of the discrepancy penalty term.

Through minimizing D̂cdd
L , the intra-class domain discrep-

ancy is minimized and the inter-class domain discrepancy

is maximized to perform class-aware domain alignment.

Note that we independently sample the labeled source

data to minimize the cross-entropy loss ℓce and those to esti-

mate the CDD D̂cdd
L . In this way, we are able to design more

efficient sampling strategy (see Section 3.4) to facilitate

the mini-batch stochastic optimization with CDD, while not

disturbing the conventional optimization with cross-entropy

loss on labeled source data.

3.4. Optimizing CAN

The framework of CAN is illustrated in Fig. 2. In this

section, we mainly focus on discussing how to minimize

CDD loss in CAN.

Alternative optimization (AO). As shown in Eq. (5),

we need to jointly optimize the target label hypothesis ŷt1:nt

and the feature representations φ1:L. We adopt alternative

steps to perform such optimization. In detail, at each loop,

given current feature representations, i.e. fixing θ, we up-

date target labels through clustering. Then, based on the

updated target labels ŷt, we estimate and minimize CDD to

adapt the features, i.e. update θ through back-propagation.

We employ the input activations φ1(·) of the first task-

specific layer to represent a sample. For example, in

ResNet, each sample can be represented as the outputs of

the global average pooling layer, which are also the inputs

of the following task-specific layer. Then the spherical K-

means is adopted to perform the clustering of target sam-

ples and attach corresponding labels. The number of clus-

ters is the same as the number of underlying classes M .

For each class, the target cluster center Otc is initialized

as the source cluster center Osc, i.e. Otc ← Osc, where

Osc =
∑Ns

i=1 1ys

i
=c

φ1(x
s

i
)

‖φ1(xs

i
)‖ , 1ys

i
=c

{
1 if ysi = c

0 otherwise
and

c = {0, 1, · · · ,M − 1}. For the metric measuring the dis-

tance between points a and b in the feature space, we apply

the cosine dissimilarity, i.e. dist(a, b) = 1
2 (1−

〈a,b〉
‖a‖‖b‖ ).

Then the clustering process is iteratively 1) at-

taching labels for each target samples: ŷti ←
argminc dist(φ1(x

t
i), O

tc), and 2) updating the clus-

ter centers: Otc ←
∑Nt

i=1 1ŷt

i
=c

φ1(x
t

i
)

‖φ1(xt

i
)‖

, till convergence

or reaching the maximum clustering steps.

After clustering, each target sample x
t
i is assigned

a label ŷti same as its affiliated clusters. Moreover,

ambiguous data, which is far from its affiliated clus-

ter center, is discarded, i.e. we select a subset T̃ =
{(xt, ŷt)|dist(φ1(x

t), Ot(ŷt)) < D0,x
t ∈ T }, where

D0 ∈ [0, 1] is a constant.

Moreover, to give a more accurate estimation of the dis-

tribution statistics, we assume that the minimum number

of samples in T̃ assigned to each class, should be guaran-
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Figure 2. The training process of CAN. To minimize CDD, we perform alternative optimization between updating the target label

hypothesis through clustering and adapting feature representations through back-propagation. For the clustering, we apply spherical K-

means clustering of target samples based on their current feature representations. The number of clusters equal to that of underlying classes

and the initial center of each class cluster is set to the center of source data within the same class. Then ambiguous data (i.e. far from the

affiliated cluster centers) and ambiguous classes (i.e. containing few target samples around affiliated cluster centers) are discarded. For

the feature adaptation, the labeled target samples provided by the clustering stage , together with the labeled source samples, pass through

the network to achieve their multi-layer feature representations. The features of domain-specific FC layers are adopted to estimate CDD

(Eq. (5)). Besides, we apply cross-entropy loss on independently sampled source data. Back-propagating with minimizing CDD and

cross-entropy loss (Eq. (8)) adapts the features and provides class-aware alignment. Detailed descriptions can be found in Section 3.4.

teed. The class which doesn’t satisfy such condition will

not be considered in current loop, i.e. at loop Te, the se-

lected subset of classes CTe
= {c|

∑|T̃ |
i 1ŷt

i
=c > N0, c ∈

{0, 1, · · · ,M − 1}}, where N0 is a constant.

At the start of training, due to the domain shift, it is more

likely to exclude partial classes. However, as training pro-

ceeds, more and more classes are included. The reason is

two folds: 1) as training proceeds, the model becomes more

accurate and 2) benefiting from the CDD penalty, the intra-

class domain discrepancy becomes smaller, and the inter-

class domain discrepancy becomes larger, so that the hard

(i.e. ambiguous) classes are able to be taken into account.

Class-aware Sampling (CAS). In the conventional

training of deep neural networks, a mini-batch of data is

usually sampled at each iteration without being differenti-

ated by their classes. However, it will be less efficient for

computing the CDD. For example, for class C, there may

only exist samples from one domain (source or target) in

the mini-batch, thus the intra-class discrepancy could not

be estimated.

We propose to use class-aware sampling strategy to en-

able the efficient update of network with CDD. It is easy

to implement. We randomly select a subset of classes C
′

Te

from CTe
, and then sample source data and target data for

each class in C
′

Te
. Consequently, in each mini-batch of data

during training, we are able to estimate the intra-class dis-

crepancy for each selected class.

Algorithm. Algorithm 1 shows one loop of the AO pro-

cedure, i.e. alternating between a clustering phase (Step 1-

4), and a K-step network update phase (Step 5-11). The

loop of AO is repeated multiple times in our experiments.

Because the feature adapting process is relatively slower,

we asynchronously update the target labels and the network

parameters to make the training more stable and efficient.

Algorithm 1: Optimization of CAN at loop Te.

Input:

source data: S = {(xs
1, y

s
1), · · · , (x

s
Ns

, ysNs
)},

target data: T = {xt
1, · · · ,x

t
Nt
}

Procedure:

1 Forward S and compute the M cluster centers Osc ;

2 Initialize Otc: Otc ← Osc ;

3 Cluster target samples T using spherical K-means;

4 Filter the ambiguous target samples and classes;

5 for (k ← 1; k ≤ K; k ← k + 1) do

6 Class-aware sampling based on C
′

Te
, T̃ , and S;

7 Compute D̂cdd
L using Eq. (6);

8 Sample from S and compute ℓce using Eq. (7);

9 Back-propagate with the objective ℓ (Eq.(8));

10 Update network parameters θ.

11 end
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Amazon Dslr Webcam Synthetic Real

Office-31 VisDA-2017

Figure 3. The gallery of Office-31 and VisDA-2017 datasets.

4. Experiments

4.1. Setups

Datasets: We validate our method on two public bench-

marks. Office-31 [30] is a common dataset for real-world

domain adaptation tasks. It consists of 4,110 images be-

longing to 31 classes. This dataset contains three distinct

domains, i.e., images which are collected from the 1) Ama-

zon website (Amazon domain), 2) web camera (Webcam

domain), and 3) digital SLR camera (DSLR domain) under

different settings, respectively. The dataset is imbalanced

across domains, with 2,817 images in A domain, 795 im-

ages in W domain, and 498 images in D domain.

VisDA-2017 [29] is a challenging testbed for UDA with the

domain shift from synthetic data to real imagery. In this

paper, we validate our method on its classification task. In

total there are ∼280k images from 12 categories. The im-

ages are split into three sets, i.e. a training set with 152,397

synthetic images, a validation set with 55,388 real-world

images, and a test set with 72,372 real-world images. The

gallery of two datasets is shown in Fig. 3

Baselines: We compare our method with class-agnostic dis-

crepancy minimization methods: RevGrad [10, 11], DAN

[22], and JAN [25]. Moreover, we compare our method

with the ones which explicitly or implicitly take the class in-

formation or decision boundary into consideration to learn

more discriminative features: MADA [28], MCD [32],

and ADR [31].The descriptions of these methods can be

found in Section 2. We implement DAN and JAN us-

ing the released code 1. For a comparison under opti-

mal parameter setting, we cite the performance of MADA,

RevGrad, MCD and ADR reported in their corresponding

papers [28, 31, 32, 10].

Implementation details: We use ResNet-50 and ResNet-

101 [14, 15] pretrained on ImageNet [7] as our backbone

networks. We replace the last FC layer with the task-

specific FC layer, and finetune the model with labeled

source domain data and unlabeled target domain data. All

1https://github.com/thuml/Xlearn

the network parameters are shared between the source do-

main and target domain data other than those of the batch

normalization layers which are domain-specific. The hyper-

parameters are selected following the same protocol as de-

scribed in [22], i.e. we train a domain classifier and perform

selection on a validation set (of labeled source samples and

unlabeled target samples) by jointly evaluating the test er-

rors of the source classifier and the domain classifier.

We use mini-batch stochastic gradient descent (SGD)

with momentum of 0.9 to train the network. We follow the

same learning rate schedule as described in [10, 22, 25], i.e.

the learning rate ηp is adjusted following ηp = η0

(1+ap)b
,

where p linearly increases from 0 to 1. The η0 is the initial

learning rate, i.e. 0.001 for the convolutional layers and 0.01

for the task-specific FC layer. For Office-31, a = 10 and

b = 0.75, while for VisDA-2017, a = 10 and b = 2.25. The

β selected is 0.3. The thresholds (D0, N0) are set to (0.05,

3) for Office-31 tasks A→W and A→D. And we don’t filter

target samples and classes for other tasks during training.

4.2. Comparison with the stateoftheart

Table 1 shows the classification accuracy on six tasks

of Office-31. All domain adaptation methods yield notable

improvement over the ResNet model (first row) which is

fine-tuned on labeled source data only. CAN outperforms

other baseline methods across all tasks, achieving the state-

of-the-art performance. On average, it boosts the accuracy

of JAN by a absolute 6.3% and that of MADA by 5.4%.

We visualize the distribution of learned features by t-

SNE [27]. Fig. 4 illustrates a representative task W → A.

Compared to JAN, as expected, the target data representa-

tions learned by CAN demonstrate higher intra-class com-

pactness and much larger inter-class margin. This suggests

that our CDD produces more discriminative features for the

target domain and substantiates our improvement in Table 1.

Table 2 lists the accuracy over 12 classes on VisDA-2017

with the validation set as the target domain. Our method

outperforms the other baseline methods. The mean accu-

racy of our model (87.2%) outperforms the self-ensembling

(SE) method [9] (84.3%) which wins the first place in the

VisDA-2017 competition, by 2.9%. It is worth noting that

SE mainly deals with UDA by ensemble and data augmen-

tation, which is orthogonal to the topic of this paper and thus

can be easily combined to boost the performance further.

Moreover, we also perform adaptation on the VisDA-

2017 test set (as the target domain), and submit our pre-

dictions to official evaluation server. Our goal is to evalu-

ate the effectiveness of our proposed technique based on a

vanilla backbone (ResNet-101). We choose not to use en-

semble or additional data augmentation which is commonly

used to boost the performance in the competition. Anyhow,

our single model achieves a very competitive accuracy of

87.4%, which is comparable to the method which ranks at
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Method A → W D → W W → D A → D D → A W → A Average

Source-finetune 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1

RevGrad [10, 11] 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2

DAN [22] 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6 ± 0.3 62.8 ± 0.2 80.4

JAN [25] 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3

MADA [28] 90.0 ± 0.2 97.4 ± 0.1 99.6 ± 0.1 87.8 ± 0.2 70.3 ± 0.3 66.4 ± 0.3 85.2

Ours (intra only) 93.2 ± 0.2 98.4 ± 0.2 99.8 ± 0.2 92.9 ± 0.2 76.5 ± 0.3 76.0 ± 0.3 89.5

Ours (CAN) 94.5 ± 0.3 99.1 ± 0.2 99.8 ± 0.2 95.0 ± 0.3 78.0 ± 0.3 77.0 ± 0.3 90.6

Table 1. Classification accuracy (%) for all the six tasks of Office-31 dataset based on ResNet-50 [14, 15]. Our methods named “intra only”

and “CAN” are trained with intra-class domain discrepancy and contrastive domain discrepancy, respectively.
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Average

Source-finetune 72.3 6.1 63.4 91.7 52.7 7.9 80.1 5.6 90.1 18.5 78.1 25.9 49.4

RevGrad [10, 11] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

DAN [22] 68.1 15.4 76.5 87.0 71.1 48.9 82.3 51.5 88.7 33.2 88.9 42.2 62.8

JAN [25] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7

MCD [32] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

ADR [31] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8

SE [9] 95.9 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3

Ours (intra only) 96.5 72.1 80.9 70.8 94.6 98.0 91.7 84.2 90.3 89.8 89.4 47.9 83.9

Ours (CAN) 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2

Table 2. Classification accuracy (%) on the VisDA-2017 validation set based on ResNet-101 [14, 15]. Our methods named “intra only” and

“CAN” are trained with intra-class domain discrepancy and contrastive domain discrepancy, respectively.

Figure 4. Visualization with t-SNE for different adaptation meth-

ods (bested viewed in color). Left: t-SNE of JAN. Right: CAN.

The input activations of the last FC layer are used for the compu-

tation of t-SNE. The results are on Office-31 task W → A.

the second place on the leaderboard (87.7%).

From Table 1 and 2, we have two observations: 1)

Taking class information/decision boundary into account is

beneficial for the adaptation. It can be seen that MADA,

MCD, ADR and our method achieve better performance

than class-agnostic methods, e.g. RevGrad, DAN, JAN, etc.

2) Our way of exploiting class information is more effec-

tive. We achieve better accuracy than MADA (+5.4%),

ADR (+12.4%), and MCD (+15.3%).

4.3. Ablation studies

Effect of inter-class domain discrepancy. We compare

our method (“CAN”) with that trained using intra-class dis-

crepancy only (“intra only”), to verify the merits of intro-

ducing inter-class domain discrepancy measure. The results

are shown in the last two rows in Table 1 and 2. It can be

seen that introducing the inter-class domain discrepancy im-

proves the adaptation performance. We believe the reason is

that it is impossible to completely eliminate the intra-class

domain discrepancy, maximizing the inter-class domain dis-

crepancy may alleviate the possibility of the model overfit-

ting to the source data and benefits the adaptation.

Effect of alternative optimization and class-aware

sampling. Table 3 examines two key components of

CAN, i.e. alternative optimization (or “AO”), and class-

aware sampling (or “CAS”). We perform ablation study by

leaving-one-component-out of our framework at a time. In

Table 3, the method “w/o. AO” directly employs the outputs

of the network at each iteration as pseudo target labels to

estimate CDD and back-propagates to update the network.

It can be regarded as updating the feature representations

and pseudo target labels simultaneously. The method “w/o.

CAS” uses conventional class-agnostic sampling instead of

CAS. The comparisons to these two special cases verify the

contributions of AO and CAS in our method.

Interestingly, even without alternative optimization, the

method “w/o. AO” improves over class-agnostic methods,

e.g. DAN, JAN, etc. This suggests our proposed CDD in

itself is robust to the label noise to some extent, and MMD

is a suitable metric to establish CDD (see Section 3.2).
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(a) (b) (c) (d)

Figure 5. (a-b) The curve of CDD and accuracy during training on task A → D of the Office-31 dataset. The “CDD-G” denotes the

contrastive domain discrepancy computed with ground-truth target labels. (c-d) The sensitivity of accuracy of CAN to β. The results for

A → D (Left) and D → A (Right) are illustrated as examples. The trends for other tasks are similar.

Dataset w/o. AO w/o. CAS CAN

Office-31 88.1 89.1 90.6

VisDA-2017 77.5 81.6 87.2

Table 3. The effect of alternative optimization (AO) and CAS. The

mean accuracy over six tasks on Office-31 and the mean accuracy

over 12 classes on VisDA-2017 validation set are reported.

Method A → W A → D D → A W → A Average

pseudo0 85.8 86.3 74.9 72.3 79.8

pseudo1 90.2 ± 1.6 92.5 ± 0.4 75.7 ± 0.2 75.3 ± 0.6 83.4

CAN 94.5 ± 0.3 95.0 ± 0.3 78.0 ± 0.3 77.0 ± 0.3 86.1

Table 4. Comparison with different ways of utilizing pseudo tar-

get labels.The “pseudo0” means training with pseudo target labels

(achieved by our initial clustering) directly. The “pseudo1” is to

alternatively update target labels through clustering and minimize

the cross-entropy loss on pseudo labeled target data. In “pseudo1”,

the cross-entropy loss on source data is also minimized.

Ways of using pseudo target labels. The estimates for

the target labels can be achieved through clustering, which

enables various ways to train a model. In Table 4, we com-

pare our method with two different ways of training with

pseudo target labels achieved by the clustering. One way

(“pseudo0”) is to fix these pseudo labels to train a model

directly. The other (“pseudo1”) is to update the pseudo tar-

get labels during training, which is the same as CAN, but to

train the model based on the cross-entropy loss over pseudo

labeled target data rather than estimating the CDD.

As shown in Table 4, “pseudo0” leads to a model whose

accuracy exactly matches with that of the initial cluster-

ing, due to the large capacity of deep neural networks.

The “pseudo1” achieves significantly better results than

“pseudo0”, but is still worse than our CAN, which verifies

that our way of explicitly modeling the class-aware domain

discrepancy makes the model better adapted and less likely

to be affected by the label noise.

CDD value during training. In our training, we gen-

erate target label hypothesis to estimate CDD. We expect

that the underlying metric computed with the ground-truth

target labels would decrease steadily during training until

convergence. To do so, during training, we evaluate the

ground-truth CDD (denoted by CDD-G) for JAN and CAN

with the ground-truth target labels. The trend of CDD and

the test accuracy during training are plotted in Fig. 5.

As we see, for JAN (the blue curve), the ground-truth

CDD rapidly becomes stable at a high level after a short

decrease. This indicates that JAN cannot minimize the con-

trastive domain discrepancy effectively. For CAN (the red

curve), although we can only estimate the CDD using in-

accurate target label hypothesis, its CDD value steadily de-

creases along training. The result illustrates our estimation

works as a good proxy of ground-truth contrastive domain

discrepancy. And from the accuracy curve illustrated in Fig.

5, we see that minimizing CDD leads to notable accuracy

improvement of CAN, compared to JAN.

Hyper-parameter sensitivity. We study the sensitivity

of CAN to the important balance weight β on two example

tasks A → D and D → A in Fig. 5. Generally, our model

is less sensitive to the change of β. In a vast range, the

performance of CAN outperforms the baseline method with

a large margin (the blue dashed curve). As the β gets larger,

the accuracy steadily increases before decreasing. The bell-

shaped curve illustrates the regularization effect of CDD.

5. Conclusion

In this paper, we proposed Contrastive Adaptation Net-

work to perform class-aware alignment for UDA. The intra-

class and inter-class domain discrepancy are explicitly mod-

eled and optimized through end-to-end mini-batch training.

Experiments on real-world benchmarks demonstrate the su-

periority of our model compared with the strong baselines.
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