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Abstract

Facial landmark detection aims to localize the anatomi-

cally defined points of human faces. In this paper, we study

facial landmark detection from partially labeled facial im-

ages. A typical approach is to (1) train a detector on the la-

beled images; (2) generate new training samples using this

detector’s prediction as pseudo labels of unlabeled images;

(3) retrain the detector on the labeled samples and partial

pseudo labeled samples. In this way, the detector can learn

from both labeled and unlabeled data to become robust.

In this paper, we propose an interaction mechanism be-

tween a teacher and two students to generate more reliable

pseudo labels for unlabeled data, which are beneficial to

semi-supervised facial landmark detection. Specifically, the

two students are instantiated as dual detectors. The teacher

learns to judge the quality of the pseudo labels generated

by the students and filter out unqualified samples before the

retraining stage. In this way, the student detectors get feed-

back from their teacher and are retrained by premium data

generated by itself. Since the two students are trained by

different samples, a combination of their predictions will be

more robust as the final prediction compared to either pre-

diction. Extensive experiments on 300-W and AFLW bench-

marks show that the interactions between teacher and stu-

dents contribute to better utilization of the unlabeled data

and achieves state-of-the-art performance.

1. Introduction

Facial landmark detection aims to find some pre-defined

anatomical keypoints of human faces [44, 27, 43, 37].

These keypoints include the corners of a mouth, the bound-

ary of eyes, the tip of a nose, etc [36, 35, 21]. It is usu-

ally a prerequisite of a large number of computer vision

tasks [26, 39, 3]. For example, facial landmark coordi-

nates are required to align faces to ease the visualization

for users when people would like to sort their faces by time
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Figure 1. The interaction mechanism between teacher and stu-

dents. Two student detectors learn to generate pseudo labels for

unlabeled samples, among which qualified samples are selected

by the teacher. These premium pseudo labeled data along with real

labeled data is used for the retraining of the students detectors.

and see the changes over time [9]. Other examples include

face morphing [3], face replacement [39], etc.

The main challenge in recent landmark detection liter-

atures is how to obtain abundant facial landmark labels.

The annotation challenge comes from two perspectives.

First, a large number of keypoints are required for a single

face image, e.g., 68 keypoints for each face in the 300-W

dataset [35]. To precisely depict the facial features for a

whole dataset, millions of keypoints are usually required.

Second, different annotators have a semantic gap. There is

no universal standard for the annotation of the keypoints,

so different annotators give different positions for the same

keypoints. A typical way to reduce such semantic devia-

tions among various annotators is to merge the labels from

several annotators. This will further increase the costs of

the whole annotation work.
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Semi-supervised landmark detection can to some extent

alleviate the expensive and sophisticated annotations by uti-

lizing the unlabeled images. Typical approaches [17, 2, 23]

for semi-supervised learning use self-training or similar

paradigms to utilize the unlabeled samples. For example,

the authors of [23, 17, 28] adopt a heuristic unsupervised

criterion to select the pseudo labeled data for the retrain-

ing procedure. This criterion is the loss of each pseudo la-

beled data, where its predicted pseudo label is treated as the

ground truth to calculate the loss [17, 28]. Since no extra

supervision is given to train the criterion function, this un-

supervised loss criterion has a high possibility of passing in-

accurate pseudo labeled data to the retraining stage. In this

way, these inaccurate data will mislead the optimization of

the detector and make it easier to trap into a local minimum.

A straightforward solution to this problem is to use multiple

models and regularize each other by the co-training strat-

egy [4]. Unfortunately, even if co-training performs well in

simple tasks such as classification [4, 28], in more complex

scenarios such as detection, co-training requires extremely

sophisticated design and careful tuning of many additional

hyper-parameters [12], e.g., more than 10 hyper-parameters

for three models in [28].

To better utilize the pseudo labeled data as well as avoid

the complicated model tuning for landmark detection, we

propose Teacher Supervises StudentS (TS3). As illustrated

in Figure 1, TS3 is an interaction mechanism between one

teacher network and two (or multiple) student networks.

Two student detection networks learn to generate pseudo

labels for unlabeled images. The teacher network learns to

judge the quality of the pseudo labels generated from stu-

dents. Consequently, the teacher can select qualified pseudo

labeled samples and use them to retrain the students. TS3

applies these steps in an iterative manner, where students

gradually become more robust, and the teacher is adap-

tively updated with the improved students. Besides, two

students can also encourage each other to advance their per-

formances in two ways. First, predictions from two stu-

dents can be ensembled to further improve the quality of

pseudo labels. Second, two students can regularize each

other by training on different samples. The interactions

between the teacher and students as well as the students

themselves help to provide more accurate pseudo labeled

samples for retraining and the model does not need careful

hyper-parameter tuning.

To highlight our contribution, we propose an easy-to-

train interaction mechanism between teacher and students

(TS3) to provide more reliable pseudo labeled samples in

semi-supervised facial landmark detection. To validate the

performance of our TS3, we do experiments on 300-W, 300-

VW, and AFLW benchmarks. TS3 achieves state-of-the-art

semi-supervised performance on all three benchmarks. In

addition, using only 30% labels, our TS3 achieves competi-

tive results compared to supervised methods using all labels

on 300-W and AFLW.

2. Related Work

We will first introduce some supervised facial landmark

algorithms in Section 2.1. Then, we will compare our algo-

rithm with semi-supervised learning algorithms and semi-

supervised facial landmark algorithm in Section 2.2. Lastly,

we explain our algorithm in a meta learning perspective in

Section 2.3.

2.1. Supervised Facial Landmark Detection

Supervised facial landmark detection algorithms can be

categorized into linear regression based methods [44, 7] and

heatmap regression based methods [41, 11, 9, 30]. Lin-

ear regression based methods learn a function that maps

the input face image to the normalized landmark coordi-

nates [44, 7]. Heatmap regression based methods produce

one heatmap for each landmark, where the coordinate is the

location of the highest response on this heatmap [41, 11, 9,

30, 5]. All above algorithms can be readily integrated into

our framework, serving as different student detectors.

These supervised algorithms require a large amount of

data to train deep neural networks. However, it is tedious to

annotate the precise facial landmarks, which need to aver-

age different annotations from multiple different annotators.

Therefore, to reduce the annotation cost, it is necessary to

investigate the semi-supervised facial landmark detection.

2.2. Semisupervised Facial Landmark Detection

Some early semi-supervised learning algorithms are dif-

ficult to handle large scale datasets due to the high com-

plexity [8]. Others exploit pseudo-labels of unlabeled

data in the semi-supervised scenario [1, 2, 23, 28]. Since

most of these algorithms studied their effect on small-scale

datasets [8, 1, 23, 28], a question remains open: can they

be used to improve large-scale semi-supervised landmark

detection? In addition, those self-training or co-training ap-

proaches [23, 28, 12] simply leverage the confidence score

or an unsupervised loss to select qualified samples. For ex-

ample, Dong et al. [12] proposed a model communication

mechanism to select reliable pseudo labeled samples based

on loss and score. However, such selection criterion does

not reflect the real quality of a pseudo labeled sample. In

contrast, our teacher directly learns to model the quality,

and selected samples are thus more reliable.

There are only few of researchers study the semi-

supervised facial landmark detection algorithms. A recent

work [16] presented two techniques to improve landmark

localization from partially annotated face images. The first

technique is to jointly train facial landmark network with an

attribute network, which predicts the emotion, head pose,
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etc. In this multi-task framework, the gradient from the at-

tribute network can benefit the landmark prediction. The

second technique is a kind of supervision without the need

of manual labels, which enables the transformation invari-

ant of landmark prediction. Compared to using the supervi-

sion from transformation, our approach leverages a progres-

sive paradigm to learn facial shape information from unla-

beled data. In this way, our approach is orthogonal to [16],

and these two techniques can complement our approach to

further boost the performance.

Radosavovic et al. [31] applied the data augmentation to

improve the quality of generated pseudo landmark labels.

For an unlabeled image, they ensemble predictions from

multiple transformations, such as flipping and rotation. This

strategy can also be used to improve the accuracy of our

pseudo labels and complement our approach. Since the data

augmentation is not the focus of this paper, we did not ap-

ply their algorithms in our approach. Dong et al. [11] pro-

posed a self-supervised loss by exploiting the temporal con-

sistence on unlabeled videos to enhance the detector. This

is a video-based approach and not the focus of our work.

Therefore, we do not discuss more with those video-based

approach [20, 11].

2.3. Meta Learning

In a meta learning perspective, our TS3 learns a teacher

network to learn which pseudo labeled samples are help-

ful to train student detectors. In this sense, we are related to

some recent literature in “learning to learn” [25, 33, 13, 45].

For example, Ren et al. [33] learn to re-weight samples

based on gradients of a model on the clean validation set.

Xu et al. [45] suggest using meta-learning to tune the op-

timization schedule of alternative optimization problems.

Jiang et al. [18] propose an architecture to learn data-driven

curriculum on corrupted labels. Fan et al. [13] leverage rein-

forcement learning to learn a policy to select good training

samples for a single student model. These algorithms are

designed in the supervised scenarios and can not easily be

modified in semi-supervised scenario.

Difference with other teacher-student frameworks

and generative adversarial networks (GAN). Our TS3

learns to utilize the output (pseudo labels) of the student

model qualified by the teacher model to do semi-supervised

learning. Other teacher-student methods [38, 15, 10, 24]

aim to fit the output of the student model to that of the

teacher model. The student and teacher in our work do sim-

ilar jobs as the generator and discriminator in GAN [14],

while we aim to predict/generate qualified pseudo labels in

semi-supervised learning using a different training strategy.

3. Methodology

In this section, we will first introduce the scenario of the

semi-supervised facial landmark detection in Section 3.1.
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Figure 2. A brief overview of the structure between the two stu-

dent detection networks in our TS3. The first network is convolu-

tional pose machine [41] and the second is stacked hourglass [30].

We explain how to design our student detectors and the

teacher network in Section 3.2. Lastly, we demonstrate our

overall algorithm in Section 3.3.

3.1. The SemiSupervised Scenario

We introduce some necessary notations for the

presentation of the proposed method. Let L =
{(x1, y1), (x2, y2), ..., (xnl

, ynl
)} be the labeled data in the

training set and U = {(xnl+1), (xnl+2), ..., (xnl+nu
)} be

the unlabeled data in the training set, where xi denotes the

i-th image, and yi ∈ R2×K denotes the ground-truth land-

mark label of xi. K is the number of the facial landmarks,

and the k-th column of yi indicates the coordinate of the k-

th landmark. nl and nu denote the number of labeled data

and unlabeled data, respectively. The semi-supervised fa-

cial landmark detection aims to learn robust detectors from

both L and U .

3.2. Teacher and Students Design

The Student Detectors. We choose the convolutional

pose machine (CPM) [41] and stacked hourglass (HG) [30]

models as our student detectors. These two landmark detec-

tion architectures are the cornerstone of many facial land-

mark detection algorithms [30, 9, 6, 37]. Moreover, their

architectures are quite different, and can thus complement

each other to achieve a better detection performance com-

pared to using two similar neural architectures. Therefore,

we integrate these two detectors in our TS3 approach. In

this paragraph, we will give a brief overview of these two fa-

cial landmark detectors. We illustrate the structures of CPM

and HG in Figure 2. Both CPM and HG are the heatmap

regression based methods and utilize the cascaded struc-

ture. Formally, suppose there are M convolutional stages

in CPM, the output of CPM is:

f1(xi|w1) = {Hm
i |1 ≤ m ≤ M}, (1)
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Figure 3. The illustration of our teacher network. The input

of the teacher is the concatenation of the original RGB face image

and the heatmap (pseudo label) predicted by the student detector.

The output of teacher is a scalar, representing the quality of the

input pseudo labeled face image. During training, we can calculate

a detection loss using the ideal heatmap and the predicted heatmap.

The teacher aims to fit the negative value of this detection loss

by an L1 loss. During evaluation, a higher value of the quality

represents a lower detection loss, which means this pseudo labeled

image is reliable.

where f1 indicates the CPM student detector whose pa-

rameters are w1. xi is the RGB image of the i-th data-point

and H
m
i ∈ R(K+1)×h′×w′

indicates the heatmap predic-

tion of the m-th stage. h′ and w′ denote the spatial height

and width of the heatmap. Similarly, we use f2 indicates

the HG student detector whose parameters are w2. The de-

tection loss function of the CPM student is:

ℓ(f1(xi|w1), yi) =

M∑

m

||Hm
i −H

∗
i ||

2
F

=
M∑

m

||Hm
i − p(yi)||

2
F , (2)

where p is a function taking the label yi ∈ R2×K as inputs

to generate the the ideal heatmap H
∗
i ∈ R(K+1)×h′×w′

.

Details of p can be found in [41, 30]. During the evaluation,

we take the argmax results over the first K channel of the

last heatmap HM as the coordinates of landmarks, and the

(K + 1)-th channel corresponding to the background will

be omitted.

The Teacher Network. Since our student detectors

are based on heatmap, the pseudo label is in the form of

heatmap and ground truth label is the ideal heatmap. We

build our teacher network using the structure of discrimi-

nators adopted in CycleGAN [46]. As shown in Figure 3,

the input of this teacher network is the concatenation of a

face image and its heatmap prediction H
M
i

1. The output of

this teacher network is a scalar representing the quality of a

pseudo labeled facial image. Since we train the teacher on

1
H

M

i
will be resized into the same spatial size as its face image

Algorithm 1 The Algorithm Description of Our TS3

Input: Labeled data L = {(xi, yi)|1 ≤ i ≤ nl}
1: Unlabeled data U = {(xu

i )|nl + 1 ≤ i ≤ nu + nl}
2: Two student detectors f1 with w1 and f2 with w2

3: The teacher network g with parameters wg

4: The selection ratio r and the maximum step S

5: Initialize the w1 and w2 by minimizing Eq. (2) on L
6: for i = 1; i ≤ S; i++ do

7: Predict HM
i on both L and U using Eq. (5), and

denote U with its pseudo labels as U1 ⊲ update the first

student

8: Optimize teacher with wg by minimizing Eq. (4) on

L with prediction H
M
i and ground truth label H∗

i

9: Compute the quality scalar of each sample in U1

using the optimized teacher via Eq. (3)

10: Pickup the top r× i× |U| samples from U1, named

as L1
ex

11: Retrain w1 on L1 = L∪L1
ex by minimizing Eq. (2)

12: Predict HM
i on both L and U using Eq. (5), and

denote U with its pseudo labels as U2 ⊲ update the

second student

13: Optimize teacher with wg by minimizing Eq. (4) on

L with H
M
i and H

∗
i

14: Compute the quality scalar of each sample in U2

using Eq. (3)

15: Pickup the top r× i× |U| samples from U2, named

as L2
ex

16: Retrain w2 on L2 = L∪L2
ex by minimizing Eq. (2)

17: end for

Output: Students with optimized parameters w1 and w2

the trustworthy labeled data, we could obtain a supervised

detection loss by calculating ||HM
i −H

∗
i ||

2
F . We consider

the negative value of this detection loss as the ground truth

label of the quality, because a high negative value of the

detection loss indicates a high similarity between the pre-

dicted heatmap and the ideal heatmap. In another word, a

higher quality scalar corresponds to a more accurate pseudo

label.

Formally, denote the teacher network as g, we have:

g(xi
⌢
H

M
i |wg) = qi, (3)

ℓt(g(xi
⌢
H

M
i |wg), yi) = |q + ||HM

i −H
∗
i ||

2
F |, (4)

where the parameters of the teacher is wg . “x⌢
H” first re-

sizes the tensor H into the same spatial shape as x and then

concatenates the resized tensor with x to get a new tensor.

This new tensor is regarded as pseudo labeled image and

will be qualified by the teacher later. The teacher outputs a

scalar qi representing the quality of the i-th sample associ-

ated with its pseudo label HM
i . We optimize the teacher on

the trustworthy labeled data by minimizing Eq. (4).
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3.3. The TS3 Algorithm

Our TS3 aims to progressively improve the performance

of the student detector. The key idea is to learn a teacher net-

work that can teach students which pseudo labeled sample

is reliable and can be used for training. In this procedure,

we define the pseudo label of a facial image is as follows:

f(xi) =
1

2
(f1(xi|w1) + f2(xi|w2))

= {
1

2
(H

(1,m)
i +H

(2,m)
i )|1 ≤ m ≤ M},

= {Hm
i |1 ≤ m ≤ M}, (5)

where H
(1,m)
i indicates the heatmap prediction from the

first student at the m-th stage for the i-th sample. H
m
i in

Eq. (5) indicates the ensemble result from both two students

detection networks. It will be used as the prediction during

the inference procedure.

We show our overall algorithm in Algorithm 1. We

first initialize the two detectors f1 and f2 on the labeled

facial images L. Then, in the first round, our algorithm

applies the following procedures: (1) generate pseudo

labels on L via Eq. (5) and train the teacher network from

scratch with these pseudo labels; (2) generate pseudo labels

on U and estimate the quality of these pseudo labeled

using the learned teacher; (3) select some high-quality

pseudo labeled samples to retrain one student network from

scratch. (4) repeat the first three steps to update another

student detection network. In the next rounds, each student

can be improved and generate more accurate pseudo labels.

In this way, we will select more pseudo labeled samples

when retraining the students. As the rounds go, students

will gradually become better, and the teacher will also

be adaptive with the improved students. Our interaction

mechanism helps to obtain more accurate pseudo labels

and select more reliable pseudo labeled samples. As a

result, our algorithm achieves better performance in the

semi-supervised facial landmark detection.

3.4. Discussion

Can this algorithm generalize to other tasks? Our al-

gorithm relies on the design of the teacher network. It re-

quires the input pseudo label to be a structured prediction.

Therefore, our algorithm is possible to be applied to tasks

with structured predictions, such as segmentation and pose

estimation, but is not suitable other tasks like classification.

Limitation. It is challenging for a teacher to judge the

quality of a pseudo label for an image, especially when the

spatial shape of this image becomes large. Therefore, in

this paper, we use an input size of 64×64. If we increase

the input size to 256×256, the teacher will fail and need

to be modified accordingly. There are two main reasons:

(1) the larger resolution requires a deeper architecture or di-

lated convolutions for the teacher network and (2) the high-

resolution faces bring high-dimensional inputs, and conse-

quently, the teacher needs much more training data. This

drawback limits the extension of our algorithm to high-

resolution tasks, such as segmentation. We will explore to

solve this problem in the future.

Further improvements. (1) In our algorithm, during

the retraining procedure, a part of unlabeled samples are

not involved during retraining. To utilize these unlabeled

facial images, we could use self-supervised techniques such

as [16] to improve the detectors. (2) In this framework, we

use only two student detectors, while it is easy to integrate

more student detectors. More student detectors are likely

to improve the prediction accuracy, but this will introduce

more computation costs. (3) The specifically designed data

augmentation [31, 42] is another direction to improve the

accuracy and precision of the pseudo labels.

Will the teacher network over-fit to the labeled data?

In Algorithm 1, since labeled data set L is used to optimize

both teacher and students, the teacher’s judgment could suf-

fer from the over-fitting problem. Most of the students’ pre-

dictions on the labeled data can be similar to the ground

truth labels. In other words, most pseudo labeled samples

on L are “correctly” labeled samples. If the teacher is op-

timized on L with those pseudo labels, it might only learn

what a good pseudo labeled sample is, but overlook what a

bad one is. It would be more reasonable to let students pre-

dict on the unseen validation set, and then train the teacher

on this validation set. However, having an additional valida-

tion set during training is different from the typical setting

of previous semi-supervised facial landmark detection. We

would explore this problem in our future work.

4. Empirical Studies

We perform experiments on three benchmark datasets

to investigate the behavior of the proposed method. The

datasets and experiment settings are introduced in Sec-

tion 4.1 and Section 4.2. We first compare the proposed

semi-supervised facial landmark algorithm with other state-

of-the-art algorithms in Sec. 4.3. We then perform ablation

studies in Sec. 4.4 and visualize our results at last.

4.1. Datasets

The 300-W dataset [35] annotates 68 landmarks from

five facial landmark datasets, i.e., LFPW, AFW, HELEN,

XM2VTS, and IBUG. Following the common settings [11,

9, 27], we regard all the training samples from LFPW, HE-

LEN and the full set of AFW as the training set, in which

there is 3148 training images. The common test subset con-

sists of 554 test images from LFPW and HELEN. The chal-

lenging test subset consists of 135 images from IBUG to

construct . The full test set the union of the common and

challenging subsets, 689 images in total.
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Ratio Method Common Challenging Full

100% MDM [40] 4.83 10.14 5.88

100% Two-Stage [27] 4.36 7.42 4.96

100% RDR [43] 5.03 8.95 5.80

100% Pose-Invariant [19] 5.43 9.88 6.30

100% HF-ResNet [32] - 8.18 -

100% SAN [9] 3.34 6.60 3.98

100%† SBR [11] 3.28 7.58 4.10

100% PCD-CNN [22] 3.67 7.62 4.44

10% RCN+ [16] - 10.35 6.32

10% TS3 4.67 9.26 5.64

20% RCN+ [16] - 9.56 5.88

20% TS3 4.31 7.97 5.03

100% TS3 3.17 6.41 3.78

100%‡ TS3 2.91 5.91 3.49

Table 1. Comparisons of the NME results on the 300-W dataset.

“Ratio” indicates the annotation ratio of the whole training set. A

“Ratio” value of 10% means that only 10% of the training face

images have the landmark coordinate labels. † indicates that SBR

[11] used additional unlabeled video data during training. When

we use partially labeled training images, our TS3 outperforms

other semi-supervised algorithm [16]. ‡ indicates we use 100%

labeled 300-W training data and unlabeled AFLW training data

for our TS3.

The AFLW dataset [21] contains 21997 real-world im-

ages with 25993 faces in total. They provide at most 21

landmark coordinates for each face, but they exclude invis-

ible landmarks. Faces in AFLW usually have a different

head pose, expression, occlusion or illumination, and there-

fore it causes difficulties to train a robust detector. Follow-

ing the same setting as in [27, 47], we do not use the land-

marks of two ears. There are two types of AFLW splits, i.e.,

AFLW-Full and AFLW-Frontal following [47, 9]. AFLW-

Full contains 20000 training samples and 4386 test samples.

AFLW-Front uses the same training samples as in AFLW-

Full, but only use the 1165 samples with the frontal face as

the test set.

The 300-VW dataset [36] is a video-based facial land-

mark benchmark. It contains 50 training videos with 95192

frames. Following [20, 11], we report the results for the 49

inner points on the category C subset of the 300-VW test

set, which has 26338 frames.

4.2. Experimental Settings

Training student detection networks. The first student

detector is CPM [41]. We follow the same model configura-

tion as the base detector used in [41, 9], and the number of

cascaded stages is set as three. Its number of parameters is

16.70 MB and its FLOPs is 1720.98 M. To train CPM, we

apply the SGD optimizer with the momentum of 0.9 and the

weight decay of 0.0005. For each stage, we train the CPM

for 50 epochs in total. We start the learning rate of 0.00005,

and reduce it by 0.5 at 20-th, 25-th, 30-th, and 40-th epoch.

The second student detector is HG [30]. We follow the

same model configuration as [6] but use the number of cas-

caded stages of four to build our HG model, where the num-

ber of parameters is 24.97 MB and FLOPs is 1600.85 M. To

train HG, we apply the RMSprop optimizer with the alpha

of 0.99. For each stage, we train the HG for 110 epochs in

total. We start the learning rate of 0.00025, and reduce it by

0.5 at 50-th, 70-th, 90-th, and 100-th.

For both of these two detectors, we use the batch size of

eight on two GPUs. To generate the heatmap ground truth

labels, we apply the Gaussian distribution with the sigma of

3. Each face image is first resized into the size of 64×64,

and then randomly resized between the scale of 0.9 and 1.1.

After the random resize operation, the face image will be

randomly rotated with the maximum degree of 30, and then

randomly cropped with the size of 64×642. We set selection

ratio r as 0.1 and the maximum step S as 6 based on cross-

validation.

Training the teacher network3. We build our teacher

network using the structure of discriminators adopted in Cy-

cleGAN [46]. Given a 64×64 face image, we first resize

the predicted heatmap into the same spatial size of 64×64.

We use the Adam to train this teacher network. The initial

learning rate is 0.01, and the batch size is 128. Random flip,

random rotation, random scale and crop are applied as data

argumentation.

Evaluation. Normalized Mean Error (NME) is usually

applied to evaluate the performance for facial landmark pre-

dictions [27, 34, 47, 9]. For the 300-W dataset, we use the

inter-ocular distance to normalize mean error following the

same setting as in [35, 27, 11, 9]. For the AFLW dataset,

we use the face size to normalize mean error [27]. Area

Under the Curve (AUC) @ 0.08 error is also employed for

evaluation [6, 40]. When training on the partially labeled

data, the sets of L and U are randomly sampled. During

evaluation, we use Eq. (5) to obtain the final heatmap and

follow [41, 30] to generate the coordinate of each landmark.

We repeat each experiment three times and report the mean

result. The codes will be public available upon the accep-

tance.

4.3. Comparison with stateoftheart

Comparisons on 300-W. We compare our algorithm

with several state-of-the-art algorithms [44, 43, 27, 43, 19,

16], as shown in Table 1. In this table, [9, 22, 11] are

very recent methods, which represent the state-of-the-art

supervised facial landmark algorithms. By using 100% fa-

2Different input image resolution can cause different detection perfor-

mance. We choose 64×64 to ease the training of our teacher network.
3Model codes are publicly available on GitHub: https://github.com/D-

X-Y/landmark-detection
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Methods SDM [44] LBF [34] CCL [47] Two-Stage [27] SBR [9]† SAN [9] DSRN [29]

AFLW-Full 4.05 4.25 2.72 2.17 2.14 1.91 1.86

AFLW-Front 2.94 2.74 2.17 - 2.07 1.85 -

Methods RCN+ [16] (5%) TS3 (5%) TS3(10%) TS3(20%)

AFLW-Full 2.17 2.19 2.14 1.99

AFLW-Front - 2.03 1.94 1.86

Table 2. Comparisons of NME normalized by face size on the AFLW dataset. † indicates that SBR [11] used additional unlabeled video

data during training. The ratio number in the brackets represents the portion of the labels that we use. Compared to the semi-supervised

algorithm [16], our TS3 obtains a similar NME result (2.19 vs. 2.17). Compared to supervised algorithms which use 100% labels, our TS3

obtains competitive NME when using only 20% labels.

Method DGCM [20] SBR [11] TS3

AUC@0.08 59.38 59.39 59.65

Table 3. AUC @ 0.08 error on 300-VW category C. Note that

all compared algorithms [20, 11] use all labels on the 300-VW

training data and 300-W training data, whereas our TS3 only uses

the unlabeled 300-VW training data and labeled 300-W training

data.

cial landmark labels on 300-W training set and unlabeled

AFLW, our algorithm achieves competitive 3.49 NME on

the 300-W common test set, which is competitive to other

state-of-the-art algorithms. In addition, even though our

approach utilizes two detectors, the number of parameters

is much lower than SAN [9]. The robust detection per-

formance of ours can be mainly caused by two reasons.

First, the proposed teacher network can effectively sample

the qualified pseudo labeled data, which enables the model

to exploit more useful information. Second, our framework

leverages two advanced CNN architectures, which can com-

plement each other.

We also compare our TS3 with a recent work on semi-

supervised facial landmark detection [16] in Table 1. When

using 10% of labels, our TS3 obtains a lower NME result on

the challenging test set than RCN+ [16] (5.64 NME vs. 6.32

NME). When using 20% of labels, our TS3 is also superior

to it (5.03 NME vs. 5.88 NME). Note that [16] utilizes a

transformation invariant auxiliary loss function. This aux-

iliary loss can also be easily integrated into our framework.

Therefore, [16] is orthogonal to our work, combining two

methods can potentially achieve a better performance.

Comparisons on AFLW. We also show the NME com-

parison on the AFLW dataset in Table 2. Compared to

semi-supervised facial landmark detection algorithm [16],

we achieve a similar performance. RCN+ [16] can learn

transformation invariant information from a large amount

of unlabeled images, while ours does not consider this in-

formation as it is not our focus. On the AFLW-Full test set,

using 20% annotation, our framework achieves 1.99 NME,

which is competitive to other supervised algorithms. On

the AFLW-Front test set, using only 10% annotation, our

Figure 4. We compare three different algorithms, which can train

two detectors in a progressive manner: SPL [23, 17], SPaCo [28],

and our TS3. All these algorithms iteratively improve detectors

one round by another round. The x-axis shows the results of the

first five rounds. The y-axis indicates the NME results on the 300-

W full test set.

framework achieves competitive NME results to [9]. The

above results demonstrate our framework can train a robust

detector with much less annotation effort.

Comparisons on 300-VW. We experiment our algo-

rithm to leverage a large amount of unlabeled facial video

frames on 300-VW. We use the labeled 300-W training set

and the unlabeled 300-VW training set to train our TS3. We

evaluate the learned detectors on the 300-VW C test sub-

set w.r.t. AUC @ 0.08. Some video-based facial landmark

detection algorithms [20, 11] utilize the labeled 300-VW

training data to improve the base detectors. Compared with

them, without using any label on 300-VW, our TS3 obtains

a higher AUC result than them, i.e., 59.65 vs. 59.39, as

shown in Table 3.

4.4. Ablation Study

The key contribution of our TS3 lies on two components:

(1) the teacher supervising the training data selection of stu-

dents. (2) the complementary effect of two students. In this

subsection, we validate the contribution of these two com-
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Ratio Method Common Challenging Full

10%

CPM 6.86 14.69 8.28

HG 5.16 11.28 6.25

TS3 4.67 9.26 5.64

20%

CPM 5.36 11.31 6.68

HG 5.84 10.15 6.68

TS3 4.31 7.97 5.03

Table 4. Comparisons of the NME results on the 300-W test sets

for different configuration and models. CPM and HG indicate us-

ing only one CPM student or only one HG student in our frame-

work. When using a single detector, we use the heatmap of the last

stage in Eq. (1) as prediction. When using two students (TS3), we

use H
M

i in Eq. (5) as prediction. “Ratio” indicates the proportion

of labeled data in our semi-supervised setting.

ponents to the final detection performance.

The effect of the teacher. Compared to other progres-

sive pseudo label generation strategies [23, 17, 28], our de-

signed teacher can sample pseudo labeled with higher qual-

ity. In Figure 4, we show the detection results after the first

five training rounds (only 10% labels are used). We use

SPL [23, 17] to separately train CPM and HG, and then en-

semble them together as Eq. (5). We use SPaCo [28] to

jointly optimize CPM and HG in a co-training strategy. To

make a fair comparison, at each round, we control the num-

ber of pseudo labels is the same across these three algo-

rithms. From Figure 4, several conclusions can be made:

(1) TS3 obtains the lowest NME, because the quality of se-

lected pseudo labels is better than others. (2) SPL falls into

a local trap at round4 and results in a higher error at round5,

whereas SPaCo and our TS3 not. This could be caused by

that the interaction between two students can help regular-

ize each other. (3) Our TS3 converges faster than SPaCo

and achieves better results. The pseudo labeled data selec-

tion in SPaco is a heuristic unsupervised criterion, whereas

our criterion is a supervised teacher. Since no extra super-

vision is given in SPaCo, their criterion might induce in-

accurate pseudo labeled samples. Besides, as discussed in

Section 3.4, our TS3 can utilize validation set to further im-

prove the performance by avoid over-fitting, but the com-

pared methods may not effectively utilize validation set.

The effect of the interaction between students. From

Table 4, we show the ablative studies on the complementary

effect of multiple students. In these experiments, we use the

same teacher structure, while “CPM” and “HG” are trained

without the interaction between students. Using 10% labels,

CPM achieves 8.28 NME, and HG achieves 6.25 NME on

300-W. Leveraging from their mutual benefits, our TS3 can

boost the performance to 5.64, which is higher than CPM

by about 30% and than HG by 9%. Under different portion

of annotations, we can conclude similar observations. This

ablation study demonstrates the contribution of student in-

teraction to the final performance. Note that, our algorithm

Figure 5. Qualitative results on images in the 300-W test set.

We train our TS3 with 314 labeled facial images and 2834 unla-

beled facial images in the 300-W training set.

can be readily applied to multiple students without introduc-

ing additional hyper-parameters. In contrast, the number of

hyper-parameters in other co-training strategies [28, 12] is

quadratic to the number of detectors.

4.5. Qualitative Analysis

On the 300-W training set, we train our TS3 using only

10% labeled facial images, and we show some qualitative

results of the 300-W test set in Figure 5. The first row

shows seven raw input facial images. The second row shows

the ground truth background heatmaps, and the third row

shows the faces with ground truth landmarks of these im-

ages. We visualize the predicted background heatmap in

the fourth row and the predicted coordinates in the fifth row.

As we can see, the predicted landmarks of our TS3 are very

close to the ground truth. These predictions are already ro-

bust enough, and human may not be able to distinguish the

difference between our predictions (the third line) and the

ground truth (the fifth line).

5. Conclusion

In this paper, we propose an interaction mechanism be-

tween a teacher and multiple students for semi-supervised

facial landmark detection. The students learn to gener-

ate pseudo labels for the unlabeled data, while the teacher

learns to judge the quality of these pseudo labeled data.

After that, the teacher can filter out unqualified samples;

and the students get feedback from the teacher and im-

prove itself by the qualified samples. The teacher is adap-

tive along with the improved students. Besides, multiple

students can not only regularize each other but also be en-

sembled to predict more accurate pseudo labels. We empir-

ically demonstrate that the proposed interaction mechanism

achieves state-of-the-art performance on three facial land-

mark benchmarks.
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