
Random Projections with Asymmetric Quantization

Xiaoyun Li
Department of Statistics

Rutgers University
Piscataway, NJ 08854, USA
xiaoyun.li@rutgers.edu

Ping Li
Cognitive Computing Lab

Baidu Research
Bellevue, WA 98004, USA
liping11@baidu.com

Abstract
The method of random projection has been a popular tool for data compression,
similarity search, and machine learning. In many practical scenarios, applying
quantization on randomly projected data could be very helpful to further reduce
storage cost and facilitate more efficient retrievals, while only suffering from
little loss in accuracy. In real-world applications, however, data collected from
different sources may be quantized under different schemes, which calls for a need
to study the asymmetric quantization problem. In this paper, we investigate the
cosine similarity estimators derived in such setting under the Lloyd-Max (LM)
quantization scheme. We thoroughly analyze the biases and variances of a series of
estimators including the basic simple estimators, their normalized versions, and
their debiased versions. Furthermore, by studying the monotonicity, we show that
the expectation of proposed estimators increases with the true cosine similarity,
on a broader family of stair-shaped quantizers. Experiments on nearest neighbor
search justify the theory and illustrate the effectiveness of our proposed estimators.

1 Introduction
The method of random projections (RP) [35] has become a popular technique to reduce data dimen-
sionality while preserving distances between data points, as guaranteed by the celebrated Johnson-
Lindenstrauss (J-L) Lemma and variants [24, 12, 1]. Given a high dimensional dataset, the algorithm
projects each data point onto a lower-dimensional random subspace. There is a very rich literature of
research on the theory and applications of random projections, such as clustering, classification, near
neighbor search, bio-informatics, compressed sensing, etc. [22, 10, 4, 6, 8, 17, 18, 28, 15, 7, 19, 11, 9].

In recent years, “random projections + quantization” has been an active research topic. That is, the
projected data, which are in general real-valued (i.e., infinite precision), are quantized into integers in
a small number of bits. Applying quantization on top of random projections has at least two major
advantages: (i) the storage cost is further (substantially) reduced; and (ii) some important applications
such as hashing-table-based near neighbor search, require using quantized data for indexing purposes.

The pioneering example of quantized random projections should be the so-called “1-bit” (sign)
random projections, initially used for analyzing the MaxCut problem [20] and then was adopted for
near neighbor search [8] and compressed sensing [5, 23, 25]. As one would expect, storing merely
1-bit per projected data value in many situations might suffer from a substantial loss of accuracy,
compared to using random projections with full (infinite) precision. There have been various studies
on (symmetrically) quantized random projections beyond the 1-bit scheme, e.g., [13, 37, 26, 29, 31].
In this paper, we further move to studying “asymmetric quantization” of random projections, a
relatively new problem arising from practical scenarios which is also mathematically very interesting.

Everyday, the process of data collection is taking place in every possible place that one can think
of, but it is often impractical to cast a universal encoding strategy on data storage methods for every
place. As a consequence, it becomes a meaningful task to look into the estimation problems with
data encoded by different algorithms, or namely, the asymmetric case. In this paper, we provide
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some insights on this type of problems, and particularly, we consider recovering inner products from
asymmetrically quantized random projections, arising from the following two practical scenarios.

• Scenario 1: quantization vs. full-precision. Consider, for example, a retrieval system
which uses random projections to process every data vector. To save storage, the projected
data stored in the repository are quantized into a small number of bits. When a query
data vector arrives, it is first processed by random projections. We then have the option of
quantizing the projected query data vector before conducting the similarity search (with
vectors in the repository); but we do not have to do the quantization step since we still have
the projected query data vector in full-precision (why waste?). This situation hence creates
the “quantization vs. full-precision” estimation problem. This setting is natural and practical,
and the estimation problem has been studied in the literature, for example [14, 21, 27].

• Scenario 2: quantization with different bits. In applications such as large ad hoc
networks [36, 30], data are collected and processed by different nodes (e.g., sensors or
mobile devices) at different locations before sent to the central unit or cloud server. However,
distinct nodes may use different quantization methods (or different bits) due to many possible
reasons, e.g., memory capacity or purpose of data usage. In this situation, information
retrieval among data sources using different quantization schemes could be on the cards.
As a tightly related topic, asymmetric distributed source coding (with different bits from
different sources) has also been considered in [3, 34] among others for sensor networks.

Scenario 1 is in fact an important special case of Scenario 2, where one source of data is quantized
with infinite bits. In this paper, we provide thorough statistical analysis on the above two scenarios.

Our contributions. The major contributions of this paper include the following:

• In Section 3, we provide the bias and variance of linear and normalized inner product
estimators in Scenario 1. We reveal an interesting connection between the variance of
debiased inner product estimator and similarity search, which is very helpful in practice.

• In Sections 4 and 5, we conduct statistical analysis in Scenario 2, and prove the monotonicity
of a large family of asymmetric quantized inner product estimators, which assures their
validity for practical use. A new bound on the bias is also derived in the symmetric case.
• In Section 6, an empirical study on various real-world datasets confirms the theoretical

findings and well illustrates the effectiveness of proposed quantized estimators.

2 Preliminaries
Random Projections. Let U = [u1, ..., un]T ∈ Rn×d be the original data matrix (with d possibly
being large). Random projections are realized by Z = [z1, ..., zn]T = U × R, where R ∈ Rd×k,
k � d is a random matrix with i.i.d. standard Gaussian entries. Let ‖·‖2 denote the l2 Euclidean norm.
Throughout this paper, we assume that every data point is normalized to unit norm1, i.e., ‖ui‖2 = 1,
1 ≤ i ≤ n. We will hence use the terms “inner product” and “cosine similarity” interchangeably.

For the convenience of presentation, our results (estimators and properties) will be given for two pairs
of data vectors, ui and uj (and correspondingly zi and zj). Let ρ = 〈ui, uj〉 be the inner product
between ui and uj . We also denote x = zi and y = zj . It is then easy to verify that (x, y) is bi-variate
normal: (

x
y

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
. (1)

Lloyd-Max (LM) quantization [33, 32]. Assume a random signal model with signals generated
from a probability distribution with densityX ∼ f . AnM -level scalar quantizer qM (·) is specified by
M + 1 decision borders t0 < t1 < · · · < tM and M reconstruction levels (or codes) µi, i = 1, ...,M ,
with the quantizing operator defined as

qM (x) = µi∗ , i
∗ = {i : ti−1 < x ≤ ti, 1 ≤ i ≤M}. (2)

1Normalizing each data vector to the unit norm is a standard data preprocessing procedure for many
applications such as clustering and classification. In this paper, we adopt this assumption merely for convenience.
When data is not normalized, our results still hold, although we will need to store the values of the norms.
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The “distortion” is an important quantity that measures how much information is lost from the original
signal due to quantization. In this paper, we will also assume M = 2b, with b = 1, 2, ..., being the
number of bits used for the quantizer. Thus, we will write qb(·) instead of qM (·).
Definition 1. The distortion of a b-bit quantizer Qb(·) with respect to distribution f is defined as

E
(
(X − qb(X))2

)
=

∫
(x− qb(x))2f(x)dx =

2b∑
i=1

∫ ti

ti−1

(x− µi)2f(x)dx. (3)

In this paper, f is the standard normal, i.e., f(x) = φ(x) = 1√
2π
e−x

2/2 in the conventional notation
for Gaussian. Also, we will use Qb to denote Lloyd-Max (LM) quantizer which minimizes the
distortion and Db to denote the corresponding value of distortion:

Qb = argmin
q

E
(
(X − qb(X))2

)
, Db = E

(
(X −Qb(X))2

)
(4)

A basic identity of LM quantizer is that E(Q2
b(X)) = E(Qb(X)X). In practice, Lloyd’s algo-

rithm [32] is used to find the solution, which alternates between updating borders and reconstruction
points until convergence (and the convergence is guaranteed).

Estimates using full-precision RP’s. Consider observations
(
xi
yi

)
i.i.d.∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

1 ≤ i ≤ k, as in (1). The task is to estimate ρ. One can use the usual simple estimator

ρ̂f =
1

k

k∑
i=1

xiyi, with E(ρ̂f ) = ρ, V ar(ρ̂f ) =
1 + ρ2

k
. (5)

where E(ρ̂) is the expectation and V ar(ρ̂) is the variance. Note that the variance grows as |ρ|
increases. One can take advantage of the following so-called “normalized estimator”:

ρ̂f,n =

∑k
i=1 xiyi√∑k

i=1 x
2
i

√∑k
i=1 y

2
i

, E(ρ̂f,n) = ρ+O(
1

k
), V ar(ρ̂f,n) =

(1− ρ2)2

k
+O(

1

k2
). (6)

ρ̂f,n is nearly unbiased but it substantially reduces the variance especially near two extreme points
ρ = ±1. We refer readers to the classical textbook [2] and recent papers [28, 27] for more details.

Estimates using symmetric LM quantized RP’s. [29] study the inner product estimator under
LM quantization scheme, by analyzing the biases and variances of estimators in the symmetric case.
That is, the observations xi and yi are quantized by the same LM scheme with the same number of
bits (b). In this paper, we study the asymmetric setting by using b1 number of bits for quantizing
xi and b2 number of bits for yi. Apparently, the work of [29] is a special case of our results (i.e.,
b1 = b2). Interestingly, our analysis also leads to a more refined bound on the estimation bias in the
symmetric case compared to the corresponding bound in [29]. See Section 4 for the detailed results.

3 Scenario 1: Quantization vs. Full-precision
Recall that, we have i.i.d. observations {xi, yi}, i = 1, 2, ..., k, from a standard bi-variate normal with
xi ∼ N(0, 1), yi ∼ N(0, 1), and E(xiyi) = ρ. In this section, we study Scenario 1: quantization vs.
full-precision. That is, we quantize xi with b bits and we leave yi intact. The task is to estimate ρ
from {Qb(xi), yi}, i = 1, 2, ..., k. We can still try to use the simple estimator similar to (5):

ρ̂b,f =
1

k

k∑
i=1

Qb(xi)yi. (7)

As one would expect, this estimator ρ̂b,f is no longer unbiased. We can show that E (ρ̂b,f ) = ξ1,1ρ.
Hence, we can attempt to remove the bias by using the following “debiased estimator”

ρ̂dbb,f =
ρ̂b,f
ξ1,1

=
1

k

1

ξ1,1

k∑
i=1

Qb(xi)yi. (8)

We will need to define ξ1,1. More generally and analogous to the notation in [29], we define

γα,β = E
(
Qb(x)αyβ

)
, ξα,β = E

(
Qb(x)αxβ

)
. (9)
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That is, ξ1,1 = E (Qb(x)x). Note that ξα,β can be represented by γα,β , but we use both for
convenience. Also note that ξ1,1 = ξ2,0 = 1 −Db from definitions. For b = 1, 2, 3, 4,∞, we can
compute ξ1,1 = 0.6366, 0.8825, 0.9655, 0.9905, 1, respectively (keeping four decimal points). In
fact, it is also known that Db = 33/22π

12 2−2b, i.e., the bias decays at the rate of O(2−2b). In the
following, Theorem 1 summarizes the expectations and variances of the two estimators ρ̂b,f and ρ̂dbb,f .
Theorem 1.

E (ρ̂b,f ) = ξ1,1ρ, E
(
ρ̂dbb,f

)
= ρ, (10)

V ar (ρ̂b,f ) =
Vb,f
k
, with Vb,f = (ξ2,2 − ξ2,0 − ξ21,1)ρ2 + ξ2,0 (11)

V ar
(
ρ̂dbb,f

)
=
V dbb,f
k
, with V dbb,f =

(ξ2,2 − ξ2,0 − ξ21,1)ρ2 + ξ2,0

ξ21,1
. (12)

Normalized Estimator. We also attempt to take advantage of the (beneficial) effect of normaliza-
tion by defining two normalized estimators and their variances, as summarized in Theorem 2.
Theorem 2. As k →∞, we have

ρ̂b,f,n =

∑k
i=1Qb(xi)yi√∑k

i=1Q
2
b(xi)

√∑k
i=1 y

2
i

, E(ρ̂b,f,n) =
√
ξ1,1ρ+O(

1

k
), (13)

ρ̂dbb,f,n =
ρ̂b,f,n√
ξ1,1

, E(ρ̂dbb,f,n) = ρ+O(
1

k
), (14)

V ar (ρ̂b,f,n) =
Vb,f,n
k

+O(
1

k2
), V ar(ρ̂dbb,f,n) =

V dbb,f,n
k

+O(
1

k2
), (15)

Vb,f,n =

(
γ4,0
4γ2,0

+
3

4
γ2,0 +

1

2
γ2,2

)
ρ2 −

(
γ3,1
γ2,0

+ γ1,3

)
ρ+

γ2,2
γ2,0

, V dbb,f,n =
Vb,f,n
ξ1,1

. (16)

3.1 Benefits of normalized estimators and debiased estimators

Figure 1 plots (in the left two panels) the variances for two debiased estimators ρ̂dbb,f and ρ̂dbb,f,n, to
illustrate the benefits of normalization. The right panel of Figure 1 demonstrates that the variance of
the normalized estimator is always smaller, and substantially so as ρ away from zero.
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Figure 1: Scenario 1: Comparisons of theoretical variances between two (debiased) estimators ρ̂dbb,f
and ρ̂dbb,f,n. Left panel: the variance factor V dbb,f for b = 1, 2, 3, 4, 5,∞. Middle panel: the variance

factor V dbb,f,n (for the normalized estimator). Right panel: the variance ratio:
V dbb,f
V dbb,f,n

.

To elaborate on the benefit of debiased estimators, we evaluate the mean square errors (MSE): bias2 +
variance. Given the benefit of normalization, we consider the two normalized estimators:

MSE (ρ̂b,f,n) =
(

1−
√
ξ1,1

)2
ρ2 +

Vb,f,n
k

+O(
1

k2
), MSE

(
ρ̂dbb,f,n

)
=
Vb,f,n
ξ1,1k

+O(
1

k2
).

Thus, to compare their mean square errors, we can examine the ratio: ξ1,1 + kρ2
ξ1,1(1−

√
ξ1,1)

2

Vb,f,n
,

which will be larger than 1 quickly as k increases. Note that ξ1,1 ≤ 1 but it is very close to 1 when
b ≥ 3. In summary, the MSE of the debiased estimator quickly becomes smaller as k increases.
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3.2 Analysis of mis-ordering probabilities in similarity search
In similarity search, the estimates of inner products are subsequently used for ordering data vectors to
identify the nearest neighbor for a given query. Intuitively, a more accurate estimator should provide
a more accurate ordering, but a precise analysis is needed for the “mis-ordering” probabilities.
Definition 2. Suppose u1, u2, u3 ∈ Rd are three data points (with u1 being a query) with unit norm
and pair-wise cosine similarity ρ12, ρ13 and ρ23 respectively. For an estimator ρ̂, the probability of
mis-ordering is defined as

PM(u1;u2, u3) = Pr (ρ̂12 > ρ̂13|ρ12 < ρ13) .

Consider a case where u3 is the nearest point of u1 in the data space (which implies ρ12 < ρ13). If the
estimation gives ρ̂12 > ρ̂13, we then make a wrong decision that u3 is not the nearest neighbor of u1.

Theorem 3. (Asymptotic mis-ordering) Suppose u1, u2, u3 ∈ Rd are three data points (with u1
being the query) on a unit sphere with pair-wise inner products ρ12, ρ13 and ρ23 respectively.
Denote two estimators ρ̂ and ρ̂′ based on k random projections such that as k →∞, the normality

ρ̂ ∼ N(αρ, σ̂2
ρ) and ρ̂′ ∼ N(α′ρ, σ̂′2ρ ) hold, with constants α, α′ > 0. Denote δ2ρ =

σ̂2
ρ

α2 , δ′2ρ =
σ̂′2ρ
α′2

and the correlations C = corr(ρ̂12, ρ̂13), C ′ = corr(ρ̂′12, ρ̂
′
13), respectively. If

δ′ρ12 = aδρ12 , δ′ρ13 = a′δρ13 , C − aa′C ′ <
(1− a2)δ2ρ12 + (1− a′2)δ2ρ13

2δρ12δρ13
, (17)

with some 0 < a < 1, 0 < a′ < 1, then as k → ∞ we have P̂M(u1;u2, u3) > P̂ ′M(u1;u2, u3),
where P̂M(u1;u2, u3) and P̂ ′M(u1;u2, u3) are the mis-ordering probability of ρ̂ and ρ̂′, respectively.

Remark. There is an interesting connection with the variances of the aforementioned “debiased
estimators”. Condition (17) basically assumes that the variance of the debiased ρ̂′ is smaller than
that of the debiased ρ̂ at ρ12 and ρ13 respectively by factors a and a′. In a special case where a = a′

and C = C ′, the last constraint in (17) reduces to C <
δ2ρ12

+δ2ρ13
2δρ12δρ13

, which always holds since the
right-hand side is greater than 1. Also, note that, by Central Limit Theorem, the normality assumption
is true for all the estimators we have discussed in this paper.

Although Theorem 3 is asymptotic, we are able to obtain valuable insights in finite sample case, since
statistically a sufficiently large k is enough to provide good approximation to the normal distribution.
The important message given by Theorem 3 is that estimators with lower “debiased variance” (δ) tend
to have lower mis-ordering probability, which leads to a more accurate estimation of nearest neighbors
in the original data space. This could be extremely feasible in numerous real world applications.

4 Scenario 2: Quantization with Different Bits

We now consider the more general case (Scenario 2) where the data vectors are LM quantized with
different numbers of bits. That is, given observations {xi, yi}, 1 ≤ i ≤ n, we quantize xi using b1
bits and yi using b2 bits. Without loss of generality, we assume b1 < b2. Furthermore, we denote
two Lloyd-Max quantizers as Qb1 and Qb2 and distortion Db1 and Db2 , respectively. Similar to
Scenario 1, we define the asymmetric estimator and the corresponding normalized estimator as

ρ̂b1,b2 =
1

k

k∑
i=1

Qb1(xi)Qb2(yi), ρ̂b1,b2,n =

∑k
i=1Qb1(xi)Qb2(yi)√∑k

i=1Q
2
b1

(xi)
√∑k

i=1Q
2
b2

(yi)
. (18)

As one might expect, the analysis will become somewhat more difficult. Similar to the analysis for
Scenario 1, in this section we will use the following notations:

ξα,β = E
(
Qb1(x)αxβ

)
, γα,β = E

(
Qb2(x)αxβ

)
, ζα,β = E

(
Qb1(x)αQb2(y)β

)
, (19)

which allow us to express the expectation and variance of ρ̂b1,b2 as follows.

E (ρ̂b1,b2) = ζ1,1, V ar (ρ̂b1,b2) =
Vb1,b2
k

, Vb1,b2 = ζ2,2 − ζ21,1 (20)

ζ1,1 can be expressed as an infinite sum, but it appears difficult to be further simplified. Nevertheless,
we are able to quantify the expectation of ρ̂b1,b2 in Theorem 4.
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Theorem 4. The following two bounds hold for ρ ∈ [−1, 1]:∣∣E (ρ̂b1,b2)− (1−Db1)(1−Db2)ρ
∣∣ ≤ ∆1, and (21)

∆2 −∆1 ≤ |E (ρ̂b1,b2)− ρ| ≤ ∆1 + ∆2, where (22)

∆1 =
√
Db1Db2

√
1−Db1

√
1−Db2 |ρ|3, ∆2 = (Db1 +Db2 −Db1Db2)|ρ|.

Remark. When b2 →∞ (i.e., Scenario 1), we have Db2 → 0 and the bound reduces to an equality
E (ρ̂b1,∞) = (1−Db1)ρ, which matches the result in Section 3.

Eq. (22) provides upper and lower bounds for the absolute bias of ρ̂b1,b2 . When b1 = b2 (i.e., the
symmetric quantization case), Theorem 5 presents more refined bounds of the bias of ρ̂b1,b2 .

Theorem 5. (Symmetric quantization) Suppose b1 = b2 = b. For ρ ∈ [−1, 1], we have

(2Db −D2
b )|ρ| −Db(1−Db)|ρ|3 ≤ |E (ρ̂b,b)− ρ| ≤ (2Db −D2

b )|ρ|. (23)

Remark. Compared to [29], which derived |E(ρ̂b,b)− ρ| ≤ 2Db|ρ|, our bounds are more tight.

What about the debiased estimator of ρ̂b1,b2? It is slightly tricky because E(ρ̂b1,b2) = ζ1,1 cannot be
explicitly expressed as cρ for some constant c (otherwise the debiased estimator would be simply
ρ̂b1,b2/c). In Theorem 4, Eq. (21) implies that the expectation of ρ̂b1,b2 is close to (1−Db1)(1−Db2)ρ.
Thus, we recommend ρ̂b1,b2

(1−Db1 )(1−Db2 )
as the surrogate for the debiased estimator.

Next, we provide the expectation and variance of the normalized estimator in Theorem 6.

Theorem 6. (Normalized estimator) As k →∞, we have

E (ρ̂b1,b2,n) =
ζ1,1√
ξ2,0γ2,0

+O(
1

k
), V ar (ρ̂b1,b2,n) =

Vb1,b2,n
k

+O(
1

k2
), (24)

Vb1,b2,n =
ζ2,2 − ζ21,1
ξ2,0γ2,0

−
ζ1,1ζ3,1 − ζ21,1ξ2,0

ξ22,0γ2,0
−
ζ1,1ζ1,3 − ζ21,1γ2,0

ξ2,0γ22,0
(25)

+
ζ21,1ζ2,2 − ζ21,1ξ2,0γ2,0

2ξ22,0γ
2
2,0

+
ζ21,1ξ4,0 − ζ21,1ξ22,0

4ξ32,0γ2,0
+
ζ21,1γ4,0 − ζ21,1γ22,0

4ξ2,0γ32,0
.

Remark. When b2 = ∞, the expected value of ρ̂b1,b2,n reduces to that of ρ̂b1,f,n in Scenario 1.
Additionally, we have ζ1,1 = ζ2,0ρ, γ2,0 = 1, and γ4,0 = 3. It is easy to check that the expression of
the variance will reduce to the corresponding formula in Theorem 2. Also, note that ξ2,0 = 1−Db1 ,
γ2,0 = 1 − Db2 , and ζ1,1 ≈ (1 − Db1)(1 − Db2)ρ. This means that we can practically use

ρ̂b1,b2,n√
(1−Db1 )(1−Db2 )

as surrogate for the debiased estimator of ρ̂b1,b2,n.

We plot the related results in Figure 2, which verifies the theories in Theorems 4, 5 and 6.
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Figure 2: Left panel: the absolute bias (solid curves, in log10 scale) of ρ̂b1,b2 by simulations, along
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5 Monotonicity of Inner Product Estimates
In applications such as nearest neighbor retrieval, the order of distances tends to matter more than
the exact values. Given an estimator ρ̂, one would hope that E(ρ̂) is monotone in ρ. This is indeed
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the case in the full-precision situation. Recall that, in Section 2, given i.i.d. observations {xi, yi},
i = 1, 2, ...k, the full-precision estimator ρ̂f = 1

k

∑k
i=1 xiyi is monotone in ρ in the expectation

because E(ρ̂f ) = ρ. Naturally, one will ask if the expectations of our quantized estimators, e.g.,
ρ̂b1,b2 = 1

k

∑k
i=1Qb1(xi)Qb2(yi), are also monotone in ρ. This turns out to be non-trivial question.

We solve this important problem rigorously through several stages. Our analysis will not be restricted
to LM quantizers. To do so, we will need the following definition about “increasing quantizer”.

Definition 3. (Increasing quantizer) Let Q be an M -level quantizer with boarders t0 < · · · < tM
and reconstruction levels µ1, ..., µM . We say that Q is an increasing quantizer if µ1 < · · · < µM .

To proceed, we will prove the following three Lemmas for increasing quantizers.

Lemma 1. (1-bit vs. others) Suppose Qb1 , Qb2 are increasing quantizers symmetric about 0, with
b1 ≥ 1, and b2 = 1. Then E(Qb1(x)Qb2(y)) is strictly increasing in ρ on [−1, 1].

Lemma 2. (2-bit vs. 2-bit) Suppose Qb1 , Qb2 are any two increasing quantizers symmetric about 0,
with b1 = b2 = 2. Then E(Qb1(x)Qb2(y)) is strictly increasing in ρ on [−1, 1].

Lemma 3. (Universal decomposition) For any increasing discrete quantizer Qb, b ≥ 3 which is
symmetric about 0, there exist a 2-bit symmetric increasing quantizer Q2 and a (b-1)-bit symmetric
increasing quantizer Qb−1 such that Qb = Qb−1 +Q2.

Once we have the above lemmas, we are ready to prove the monotonicity of E(Qb1(x)Qb2(y)).

Theorem 7. (Monotonicity) For any increasing quantizers Qb1 and Qb2 symmetric about 0 with bits
b1 ≥ 1 and b2 ≥ 1, the function E(Qb1(x)Qb2(y)) is increasing in ρ.

Proof. By Lemma 1, we know that the statement is valid for b1 = 1, and arbitrary b2. Now we look
at the case where b1 ≥ 2, b2 ≥ 2. By Lemma 3, we can always write

Qb1(x) =

b1−1∑
i=1

Q̃
(i)
2 (x), Qb2(y) =

b2−1∑
j=1

Q̂
(j)
2 (y),

where Q̃1
2, ..., Q̃

b1−1
2 and Q̂1

2, ..., Q̂
b2−1
2 are two sets of symmetric increasing 2-bit quantizers. Thus,

∂E(Qb1(x)Qb2(y))

∂ρ
=
∂E(

∑b1−1
i=1 Q̃

(i)
2 (x)

∑b2−1
j=1 Q̂

(j)
2 (y))

∂ρ

=

b1−1∑
i=1

b2−1∑
j=1

∂E(Q̃
(i)
2 (x)Q̂

(j)
2 (y))

∂ρ
> 0,

where the last equality is due to linearity of expectation and derivative, and the inequality holds
because of Lemma 2. Therefore, E(Qb1(x)Qb2(y)) is increasing in ρ for any b1 ≥ 1 and b2 ≥ 1.

Recall that, in Section 3.2, we have proved the result for the mis-ordering probability, i.e., Theorem 3,
which actually assumes estimators have expectations monotone in ρ. Therefore, Theorem 7 provides
the necessary proof to support the assumption in Theorem 3.

6 Empirical Study: Similarity Search
In this section, we test proposed estimators on 3 datasets from the UCI repository (Table 1) [16]. The
experiments clearly confirm that the normalization step uniformly improves the search accuracy. The
results also, to an extent, illustrate the influence of mis-ordering probability studied in Theorem 3.

Table 1: Datasets used in the empirical study. Mean ρ is the average pair-wise cosine similarity for
sample pairs. Mean 1-NN ρ is the average cosine similarity of each point to its nearest neighbor.

Dataset # samples # features # classes Mean ρ Mean 1-NN ρ
Arcene 200 10000 2 0.63 0.86

BASEHOCK 1993 4862 2 0.33 0.59
COIL20 1440 1024 20 0.61 0.93
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Figure 3: Nearest neighbor search recovery results using cosine similarity and quantized estimators,
from random projections. Columns 1 and 2 (Scenario 1): the estimator ρ̂b,f and its normalized
version ρ̂b,f,n. Columns 3 and 4 (Scenario 2): the estimator ρ̂b1,b2 and its normalized version ρ̂b1,b2,n.

For each dataset, all the examples are preprocessed to have unit norm. The evaluation metric we
adopt is the 1-NN precision, which is the proportion of nearest neighbors (NN) we can recover from
the nearest neighbor estimated using quantized random projections, averaged over all the examples.

We summarize the results in Figure 3. First of all, we can see that, as the number of bits increases,
the performance of the quantized estimators converges to that of the estimator with full-precision,
as expected. Importantly, the normalization step of the estimators substantially improves the perfor-
mances, by comparing Column 2 with Column 1 (for Scenario 1), and Column 4 with Column 3 (for
Scenario 2). In addition, we can to an extent validate the assertions in Theorem 3, which states that
smaller variance of debiased estimators could improve NN recovery precision.

• In Figure 1 (left panel), we see that the variance of debiased estimate ρ̂dbb,f with b = 1 is
much smaller than using b ≥ 2 in high similarity region (e.g. |ρ| > 0.8), and roughly
the same at ρ = 0.6. Since Arcene and COIL20 have high mean 1-NN ρ (0.86 and 0.93
respectively), Theorem 3 may imply that cosine estimation of ρ̂db1,f should (in general) have
smaller mis-ordering probability than b ≥ 2, implying higher 1-NN precision. On the other
hand, the average 1-NN ρ of BASEHOCK is 0.59, so ρ̂dbb,f with all b = 1, 2, ...,∞ would
likely give similar performance. These claims are consistent with Column 1 of Figure 3.

• The variance of the debiased normalized estimator ρ̂dbb,f,n (Figure 1, middle panel) decreases
as b increases, uniformly for any ρ. Hence by Theorem 3 we expect the 1-NN precision
should increase with larger b on all 3 datasets, as confirmed by Column 2 of Figure 3.

7 Conclusion
In this paper, we conduct a comprehensive study of estimating inner product similarities from random
projections followed by asymmetric quantizations. This setting is theoretically interesting and also
has many practical applications. For example, in a retrieval system, data vectors (after random
projections) in the repository are quantized to reduce storage and communications; when a new query
vector arrives, it does not have to be quantized. Another example of asymmetric quantization may
come from data collected from different sources with own quantization strategies. In this study, we
propose a series of estimators for asymmetric quantization, starting with the simple basic estimator,
then the normalized estimator, and then the debiased estimators. We provide a thorough analysis
of the estimation errors. Furthermore, we analyze the problems of “mis-ordering” probabilities and
monotonicity properties of estimators. While our methods and analyses are largely based on the
classical Lloyd-Max (LM) method, they can be extended to other more general quantization schemes.
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