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Abstract
Compressive1 learning is an effective method to deal with very high dimensional
datasets by applying learning algorithms in a randomly projected lower dimensional
space. In this paper, we consider the learning problem where the projected data
is further compressed by scalar quantization, which is called quantized compres-
sive learning. Generalization error bounds are derived for three models: nearest
neighbor (NN) classifier, linear classifier and least squares regression. Besides
studying finite sample setting, our asymptotic analysis shows that the inner product
estimators have deep connection with NN and linear classification problem through
the variance of their debiased counterparts. By analyzing the extra error term
brought by quantization, our results provide useful implications to the choice of
quantizers in applications involving different learning tasks. Empirical study is
also conducted to validate our theoretical findings.

1 Introduction
Random projection (RP) method [36] has become a popular tool for dimensionality reduction in
many machine learning and database applications, e.g., [14, 2, 11, 4, 38, 9], including classification,
matrix sketching, compressive sensing, regression, bioinformatics, matrix factorization, etc. The
great success of random projection lies in the favorable distance preserving property with fairly
elegant statement given by the famous Johnson-Lindenstrauss Lemma [19, 10]. In short, under some
conditions we can always project a set of n pointsX ∈ Rn×d in a high-dimensional space onto a lower
k-dimensional space such that pair-wise distances are approximately preserved, with high probability.
Here k � d is the number of random projections. This nice theoretical guarantee has originated
the study of generalization performance of learning in the reduced dimensional space instead of the
original space. This line of work is called compressive learning [16, 3, 30, 13, 20, 34, 35, 21].

In many cases, it is useful to further condense the projected data, due to storage saving, privacy con-
sideration, etc. Consequently, research on quantized random projections (QRP) has been conducted
for a while, i.e., [24, 25]. QRP itself has been developed into many promising fields in computer
science, such as 1-bit compressive sensing, simhash and so on [32, 1, 6, 23]. More recently, it is
shown that quantized random projection is also very convenient for cosine estimation and similarity
search [27, 26, 28]. However, to the best of our knowledge, theoretical analysis of QRP in learning
mechanisms is still missing in literature. In this paper, we investigate the generalization error bounds
of applying QRP in three models: nearest neighbor classifier, linear classifier and least squares
regression. Apart from finite k analysis, we also consider the case where k is asymptotically large.

Contributions. An important implication of our analysis is to answer the following question—The
generalization performance using quantized random projections is determined by what factors of a
quantizer? Our theoretical analysis illustrates that for nearest neighbor and linear classification, the

1The work of Xiaoyun Li was conducted during the internship at Baidu Research.
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extra loss of quantization decreases as k gets large, and the learning performance is determined by
the variance of debiased inner product estimator when data samples are allocated on the unit sphere.
For regression problems, the distortion of a quantizer becomes crucial. Our theoretical findings are
validated by empirical study. Practically, our results also suggest appropriate quantizing strategies for
different learning models, which would be helpful for various applications.

2 Preliminaries

Problem setting. Assume dataset X,Y ∼ Dn with X = [x1, ..., xn]T ∈ Rn×d, and xi, i =
1, ..., n are i.i.d. drawn from some marginal distribution X . Throughout this paper, we assume that
every sample in X is standardized to have unit Euclidean norm2. Therefore, the domain of X is
the unit Euclidean sphere Sd, which allows us to call “inner product” and ”cosine” interchangeably.
For classification problems, Y ∈ [0, 1]n, while in regression model Y ∈ Rn. We will focus on the
Gaussian random projection matrix R = [r1, ..., rk] ∈ Rd×k with i.i.d. standard normal entries.
Random projection is realized by XR = 1√

k
XR, where the factor 1√

k
is for the ease of presentation.

Quantized RP’s. An M -level scalar quantizer Q(·) : A → C is specified by M + 1 decision borders
t0 < t1 < · · · < tM and M reconstruction levels (or codes) µi, i = 1, ...,M . Given a signal v, the
quantizing operator is defined as Qb(v) = µi ∈ C, such that ti−1 < v ≤ ti. Here, A is the domain of
the original signal and C is the set of codes. The number of bits is defined as b = log2M ≥ 1. We
note that t0 and tM can be either finite or infinite depending on the support of signal. For generality,
in this paper we do not restrict our analysis to any specific quantizer, but cast basic assumption of
increasing and bounded codes, i.e., µ1 < · · · < µM and ti−1 < µi < ti for all i = 1, ...,M .

Definition 1. (Maximal gap) For an M -level quantizer Q defined above and an interval [a, b],
denote α = {i : ti−1 < a ≤ ti} and β = {i : ti < b ≤ ti+1}. The maximal gap on a
interval [a, b] is defined as the largest distance between any two nearby borders in [a, b], gQ(a, b) =
max{ max

i:α≤i≤β−1
|ti+1 − ti|, |tα − a|, |b− tβ |}, if tα ∈ [a, b], and gQ(a, b) = |b− a| otherwise.

In a random signal model, v is assumed to be generated from a probability density V ∼ f . In this
case, the following is an important quantity measuring the information loss of a quantizer.

Definition 2. (Distortion) The distortion of a b-bit quantizer Qb with respect to distribution f is

Db = EV∼f [(V −Qb(v))2] =

∫
(v −Qb(v))2f(v)dv. (1)

Uniform quantizer is the most simple quantizer, whose partitions are equal size bins with length4
(i.e., ti+1 − ti = 4,∀i with finite ti, ti+1) and the reconstruction levels are simply the mid points of
the bins. Lloyd-Max (LM) quantizer [29, 31] is designed to minimize the distortion with respect to
a given distribution. In this present paper, we optimize LM quantizer with respect to standard normal
distribution, since any rTi x with i = 1, .., k, x ∈ X is marginally N(0, 1) under Gaussian RP’s. Now
suppose Q is a quantizing function that operates element-wise on matrix. The quantized RP is defined
as XQ = 1√

k
Q(XR). We are interested in using XQ for learning problems instead of X .

The inner product estimate. It is easy to show that for x1, x2 ∼ X with ρ12 = cos(x1, x2), the

projections (RTx1, R
Tx2) consist of k i.i.d. samples from N

((
0
0

)
,

(
1 ρ
ρ 1

))
. One important

application is to use the projections to estimate ρ12. It is well-known that the inner product of two
projected vectors is an unbiased estimator of ρ12, i.e.,E[ρ̂R] = E[

xT1 RR
T x2

k ] = ρ12. This estimator is
called the full-precision estimator. For quantized RP’s, we analogously define the quantized estimator
as ρ̂Q = Q(RT x1)TQ(RT x2)

k , whose statistical property is studied in [27, 28]. In most cases, ρ̂Q is
biased. The following analytical concept is considered in [28], which is also helpful in our analysis.

Definition 3. (Debiased variance) Denote the space of expectation of estimator ρ̂Q as E . If there
exists a map g : [−1, 1] → E , the debiased estimator is defined by applying the inverse map
ρ̂dbQ = g−1(ρ̂) to correct for the bias. The variance of ρ̂dbQ is called the debiased variance.

2Instance normalization is a standard data preprocessing step for many learning models. In this paper, this
assumption is mainly for convenience. Our analysis can be modified for scenarios without data normalization.
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3 Quantized Compressive Nearest Neighbor Classification

We first look at the generalization error incurred by learning using XQ instead of X on nearest
neighbor (NN) classification problem, which is a simple but powerful non-parametric algorithm
that is popular in practice. Given a dataset S = (X,Y ) and a test sample (x, y) ∼ D where
y is unknown, the algorithm finds the nearest neighbors of x in X , denoted by (x(1), y(1)), and
classifies x as ŷ = y(1). We denote the classifier of NN as hS(x) = y(1), in the original sample
space. Denote the conditional distribution of y given x ∼ X as η(x) = P (y = 1|x). A Bayes
classifier, h∗(x) = 1{η(x) > 1/2}, is well known as the optimal solution in minimizing the risk
L(h(x)) = Ex[1{h(x) 6= y}] over all hypothesis. [8] showed that the risk of NN classifier converges
to 2L(h∗(x)) as sample size n→∞. See additional asymptotic analysis in [15, 37, 18]. In finite
n case, [33, 17, 7] studied the error bounds and convergence rate of NN classifier, all of which
require the sample size n increases exponentially in dimensionality d, under some Lipschitz-type
assumptions on the conditional probability function η(x). As discussed in [33, 21], by the celebrated
No-Free-Lunch Theorem [39], this exponential sample complexity comes from the nature of this
problem and cannot be reduced in general.

Classical finite sample analysis. Yet, the work [21] demonstrates that when data has small “metric
size” measured by metric entropy integral γ (which will be defined later), it is possible to reduce
the sample complexity from O(ed) to O(eγ) by working in the randomly projected space using XR.
This is called compressive NN classification. The following definitions are necessary for our analysis.
Definition 4. Let (T , ‖ · ‖) be a totally bounded metric space, and α > 0. T is α-separated if
∀a − b ∈ T , a 6= b, ‖a − b‖ ≥ α holds. The α-packing number of T is N‖·‖(α, T ) = max{|T ′| :
T ′ is α-separable, T ′ ⊂ T }.
Definition 5. The α-entropy of T is defined as Z(α, T ) = logN(α, T ), and function Z(·, T ) is
called the metric entropy of T .
Theorem 1. [22]. LetX ⊂ Rd, andR ∈ Rd×k a random matrix with i.i.d.Gaussian or Rademacher
entries with mean 0 and variance σ2. T = { a−b

‖a−b‖ : a, b ∈ X} be the set of all pair-wise normalized

chords. Define metric entropy integral as γ(T ) =
∫ 1

0

√
Z(α, T )dα, then there exists an absolute

constant c, such that ∀ω, δ ∈ (0, 1), if k ≥ cω−2(γ(T )2 + log(2/δ)), then with probability at least
1− δ, R is ω-isometry on X , namely,

(1− ω)kσ2‖x− y‖2 ≤ ‖RTx−RT y‖2 ≤ (1 + ω)kσ2‖x− y‖2,∀x, y ∈ X .

Theorem 1 is a generalization of Johnson-Lindenstrauss Lemma, which characterizes the probability
of getting a “good” projection matrix with nice isometry property. By a careful analysis under a
slightly different assumption on the domain X , we present the generalization bound on compressive
NN classifier (learning with XR) in [21] as follows.
Theorem 2. X ∼ Xn, Y ∼ {0, 1}n withX = [x1, ..., xn]T ∈ Rn×d, x is on the unit sphere. Assume
that η(x) = Pr(y = 1|x) is L-Lipschitz. Let R ∈d×k, k < d a random matrix with i.i.d. Gaussian
entries following N(0, 1). (x, y) is a test sample with unknown y. Denote (x

(1)
R , y

(1)
R ) ∈ (X,Y )

the training sample such that 1√
k
RTx

(1)
R is the nearest neighbor of 1√

k
RTx in the projected space,

and the compressive NN classifier hR(x) = y
(1)
R . Denote L(h∗) the risk of Bayes classifier. Then

∀ω, δ ∈ (0, 1), if k = O(ω−2(γ(T )2 + log(2/δ)), with probability 1 − δ we have the risk of
compressive NN classifier

EX,Y [L(hR(x))] ≤ 2L(h∗(x)) + 2
√

2(L

√
1 + ω

1− ω
)

k
k+1 (ne)−

1
k+1

√
k. (2)

Equipped with above tools, we are now ready to state our first result on the risk of uniformly quantized
compressive nearest neighbor classifier, with finite n and k.
Theorem 3. Let X,Y,R and η(x) be the same as in Theorem 2. Q is a b-bit uniform quantizer with
bin width 4. Suppose (x, y) is a test sample with unknown y. Denote (x

(1)
Q , y

(1)
Q ) ∈ (X,Y ) the

training sample such that 1√
k
Q(RTx

(1)
Q ) is the nearest neighbor of 1√

k
Q(RTx) in the quantized

space, and the quantized compressive NN classifier hQ(x) = y
(1)
Q . Let L(h∗) be the risk of Bayes
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rule. Then ∀ω, δ ∈ (0, 1), if k = O(ω−2(γ(T )2 + log(2/δ)), [−
√

1 + ω,
√

1 + ω] ⊂ [t0, t2b ] and
the maximal gap gQ , gQ(−

√
1 + ω,

√
1 + ω) < 2

√
1 + ω, then with probability 1−δ over random

draws of R, the risk of quantized compressive NN classifier is bounded by

EX,Y [L(hQ(x))] ≤ 2L(h∗(x)) + 2
√

2(
L4
gQ

√
1 + ω

1− ω
)

k
k+1 (ne)−

1
k+1

√
k +

2L4
√
k√

1− ω
. (3)

Remark. The assumption that Q is uniform quantizer is only for the ease of presentation. For an
arbitrary quantizer, the bound also holds with4 replaced by a more complicated term.

The proof involves two interleaving covers of the projected space, which, by Theorem 1, has bounded
diameter with high probability. Now we compare Theorem 3 with Theorem 2. Denote the second
term in (3) as the random projection error and the last term as quantization error. We observe: 1) The
bound preserves sample complexity of O(ek), which is favorable. 2) The extra quantization error
decreases with smaller bin length4, which is reasonable since small4 implies better approximation
to the full-precision RP’s in general. 3) When4→ 0 which means no quantization applied, we have
gQ = 4 and the bound reduces to (2) in Theorem 2. Note that, although the factor

√
k in quantization

error term also appears in the RP error term, it implies that the error incurred by quantization becomes
larger as k increases. Intuitively, however, large k provides better estimation of the pair-wise angle and
thus pair-wise distance (since X has domain Sd), which should actually reduce the extra loss, since
nearest neighbors would be more accurately estimated. This unsatisfactory pattern of quantization
error in Theorem 3 comes from the finite sample setting and proof methodology, since the bound is a
worst case bound with n and k both finite. Thus, this bound is less meaningful for practical purposes.

Asymptotic analysis. Notice that the key difference between NN classifier, compressive NN and
quantized compressive NN is simply the space in which we look for the neighbors. More importantly,
this procedure essentially depends on the distance estimation. Given that X is defined on the unit
sphere, finding NN in projected or quantized space is identical to finding xi ∈ X that has largest
estimated cosine between test example x. In this case, we do not need to care about the specific space
from which we derive the estimator, while the statistical property becomes the major concern.
Theorem 4. (Asymptotic k). Let data X,Y and projection matrix R be same as Theorem 3. Let
(x, y) be a test sample with unknown y. Q is any arbitrary quantizer with increasing reconstruction
levels. We estimate the cosine between any two points s, t ∈ X with 〈s, t〉 = ρs,t in the quantized

space by ρ̂Q(s, t) = Q(RT s)TQ(RT t)
k . Assume that ∀s, t ∼ X , E[ρ̂Q(s, t)] = αρs,t for some α > 0.

Denote (x
(1)
Q , y

(1)
Q ) ∈ (X,Y ) the training sample such that 1√

k
Q(RTx

(1)
Q ) is the nearest neighbor of

1√
k
Q(RTx), and the quantized compressive NN classifier hQ(x) = y

(1)
Q . Then we have as k →∞,

EX,Y,R[L(hQ(x))] ≤ EX,Y [L(hS(x))] + rk,

where rk = EX,x[
∑
i:xi∈G

Φ
( √

k(cos(x, xi)− cos(x, x(1)))√
ξ2
x,xi + ξ2

x,x(1) − 2Corr(ρ̂Q(x, xi), ρ̂Q(x, x(1)))ξx,xiξx,x(1)

)
],

with ξ2
x,y/k the debiased variance of ρ̂Q(x, y) and G = X/x(1). L(hS(x)) is the risk of data space

NN classifier, hS(x) = y(1) with (x(1), y(1)) the nearest neighbor of x. Φ(·) is the CDF of N(0, 1).

Remark. We express the bound in terms of EX,Y [L(hS(x))] to highlight the extra quantization error.
The assumption that ρ̂Q has expectation linear in ρ is mainly for the ease of analytical consideration.
Similar result also holds in general situations, under additional minor assumptions.

The bound is intuitive, in the sense that the quantization error term rk represents the probability of
picking different nearest neighbor in data space and quantized space. The benefit of Theorem 4 is
that, we factor out L(hS(x)), instead of L(hR(x)) as in Theorem 3. Conceptually, we get rid of the
error incurred by using the projected space as an intermediate step. The quantization error term rk
is interesting—Note that for ∀i ∈ G = X/x(1), cos(x, xi)− cos(x, x(1)) < 0 holds. Consequently,
when k → ∞, all the Φ(·) terms in rk would decrease towards 0 (since Φ(t) → 0 as t → −∞).
Therefore, we derive a well behaving quantization error term in the asymptotic case: the quantization
error indeed decreases with k and converges to that of the data space nearest neighbor classifier.
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Choice of Q. It can be shown that under some mild conditions, small debiased variance (ξx,xi and
ξx,x(1)) reduces the quantization error rk in Theorem 3. In addition, by the asymptotic normality
of ρ̂Q, given a large k and a query x, points near x(1) (i.e., with small | cos(x, xi) − cos(x, x(1))|)
tend to affect the quantization error more substantially due to the light tail of Gaussian distribution.
Hence, for 1-NN classification, we should ideally choose quantizers with low debiased variance
around ρ∗ = cos(x, x

(1)
i ), provided that it can be known (or estimated) a priori. In particular, if a

quantized estimator has lower debiased variance than the full-precision estimator, then learning with
XQ would outperform learning with XR in 1-NN classification.

Is there a way to reduce the debiased variance of inner product estimates, for better generalization in
NN classification? Recent progress on quantized random projections [28] shows that normalizing the
randomly projected vectors (i.e.,RTxi, i = 1, ..., n) can provide smaller debiased variance, especially
in high similarity region (large |ρ|). This is exactly the situation for most of the NN classifications
where ρ∗ = cos(x, x

(1)
i ) is high. More specifically, we can use the estimator

ρ̂Q,n =
Q(RTx1)TQ(RTx2)

‖Q(RTx1)‖‖Q(RTx2)‖
, (4)

to estimate ρ(x1, x2), instead of the simple inner product estimator ρ̂Q = Q(RT x1)TQ(RT x2)
k used in

Theorem 4. We refer interested readers to [28] for more detailed discussions on this topic.

In the following, we derive a corollary regarding the error of compressive NN classifier hR(x) by
noticing that the full-precision RP corresponds to applying quantization with infinite bits.

Lemma 1. Let full-precision linear estimator ρ̂R be defined as ρ̂R(x1, x2) =
xT1 RR

T x2

k , ∀x1, x2 ∈ X .
Suppose x, y, z ∈ Rd are three data points on a unit sphere with inner products ρxy, ρxz and ρyz
respectively. Then the covariance

Cov(ρ̂R(x, y), ρ̂R(x, z)) =
1

k
(ρyz + ρxyρxz).

Corollary 1. Let the data (X,Y ), (x, y) and projection matrix R be same as Theorem 3, with Q a
quantizer with increasing reconstruction levels. We estimate the cosine between any two points s, t ∈
X with 〈s, t〉 = ρs,t in the projected space by ρ̂R(s, t) = sTRRT t

k . Denote (x
(1)
R , y

(1)
R ) ∈ (X,Y ) the

training sample such that RTx(1)
Q is the nearest neighbor of RTx in the projected space, and the NN

classifier hR(x) = y
(1)
R . Then as k →∞,

EX,Y,R[L(hR(x))] ≤ EX,Y [L(hS(x))] + rk,

where rk = EX,x[
∑
i:xi∈G Φ

( √
k(cos(x,xi)−cos(x,x(1)))√

(cos(x,xi)−cos(x,x(1)))2+2(1−cos(xi,x(1)))

)
], with G = X/x(1).

4 Quantized Compressive Linear Classification with (0,1)-loss

In this section, we consider the generalization error for binary linear classifiers, which include some
of the most popular learning models, e.g., logistic regression, linear SVM, etc. LetH be a hypothesis
class of functions on X → {0, 1}. For original data, we assume that a function H ∈ H separates S
by a hyperplane, and classify each side as a distinct class. Hence, for a test data point x, the predicted
label returned by H is

H(x) = 1{hTx > 0},
where h is a vector in Rd and orthogonal to the separating plane. Since all xi’s are normalized to
unit norm, we may assume that h also lies on the unit sphere passing though the origin. The optimal
classifier, Ĥ , is the minimizer of (0,1)-loss, defined as

L̂(0,1)(S, h) =
1

n

n∑
i=1

L(0,1)(H(xi), yi), L(0,1)(H(xi), yi) =

{
0, if H(xi) = yi,

1, otherwise.
(5)

We denote ĥ ∈ Rd the learned vector associated with Ĥ . (Ĥ, ĥ) is called the empirical risk
minimization (ERM) classifier. In projected space and quantized space, the ERM classifiers are
denoted by similar notation with corresponding subscripts as ĤR, ĥR ∈ Rk, ĤQ and ĥQ ∈ Rk,

Ĥ(x) = 1{ĥTx > 0}, ĤR(x) = 1{ĥTRRTx > 0}, ĤQ(x) = 1{ĥTQQ(RTx) > 0}. (6)
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Figure 1: Sign flipping in quantized space. Points on the right of black decision boundary are
classified as 1, and 0 otherwise. Green dashed lines are boarders of the quantizer. Left: data space
classifier predicts 1. Right: quantized space prediction (using Q(ĥTR) as predictor) changes to 0.

Now suppose x is a test sample with unknown class y, we are interested in the probability of making
a wrong prediction by training the classifier in the quantized space,

Pr[ĤQ(x)) 6= y] = E[L(ĤQ(x), y)].

Existing results on such compressive linear classifier have studied bounds on the same type of
objective in the projected space, under finite k setting [13]. Here, we look at this problem in the
asymptotic domain. When studying the error incurred by learning in the projected space, an important
tool is the following definition.

Definition 6. Let ĥ, x ∈ Rd be defined above, ‖ĥ‖ = ‖x‖ = 1. Let 〈ĥ, x〉 = cos(ĥ, x) = ρ > 0,
and ρ̂R = ĥTRRT x

k . R ∈ Rd×k an i.i.d. standard Gaussian random matrix. The flipping probability
is defined as

fk(ρ) = Pr[ρR < 0|ρ > 0]. (7)

Intuitively, this quantity measures the probability of changed prediction with the compressed model
which learns in the space projected by R when RT ĥ is the classifier. [13] gives the exact formula of
this quantity, which reads as

fk(ρ) =
Γ(k)

Γ(k/2)2

∫ 1−ρ
1+ρ

0

z(k−2)/2

(1 + z)k
dz = Fk,k(

1− ρ
1 + ρ

), (8)

where F is the cumulative distribution function (CDF) of F-distribution with (k, k) degrees of
freedom. This formula also holds for ρ < 0 by simply plugging in ρ = −ρ. By symmetry, it
suffices to consider ρ > 0. As it is well-known that E[ρ̂R] = ρ and V ar[ρ̂R] = 1+ρ2

k , ρ̂R should

asymptotically follow N(ρ, 1+ρ2

k ) as k →∞. So the asymptotic flipping probability should be

f̃k(ρ) = Φ(−
√
kρ√

1 + ρ2
). (9)

The following proposition confirms this asymptotic convergence.

Proposition 1. As k →∞, we have fk(ρ)→ f̃k(ρ) for ρ > 0.

For quantized compressive classifier, sign flipping may also happen (an illustrative example is given
in Figure 1). By analyzing this event, in the following we state the asymptotic generalization error
bound for linear classifiers when working in quantized space instead of data space.
Theorem 5. Let the (0,1)-loss and ERM classifier be defined as (5) and (6). R ∈ Rd×k is i.i.d
standard normal random matrix. Let L̂(0,1)(S, ĥ) = 1

n

∑n
i=1 L(0,1)(H(xi), yi) be the empirical loss

in the data space. Q is a quantizer and the quantized estimator ρ̂Q = Q(RT s)TQ(RT t)
k has mean αρ,
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α > 0, and debiased variance ξ2
ρ/k at ρ = cos(s, t), ∀s, t ∼ X . Given (x, y) a test sample with y

unknown, when k →∞, with probability at least 1− 2δ we have

Pr[ĤQ(x) 6= y] ≤ L̂(0,1)(S, ĥ) + 2

√
(k + 1) log 2en

k+1 + log 1
δ

n

+
1

n

n∑
i=1

fk,Q(ρi) + min

{√
3 log

1

δ

√√√√ 1

n

n∑
i=1

fk,Q(ρi),
1− δ
δn

n∑
i=1

fk,Q(ρi)

}
,

where the flipping probability fk,Q(ρi) = Φ(−
√
k|ρi|
ξρi

), with ρi the cosine between training sample

xi and ERM classifier ĥ in the data space.

In Theorem 5, the first term is the empirical loss in the data space, and the second term is the generic
sample complexity in learning theory. The last two terms are called the quantization error. When
b → ∞ (full-precision RP’s), the bound reduces to that derived in [13] for compressive linear
classifier, according to Proposition 1. One important observation is that the quantization error again
depends on the debiased variance of the quantized inner product estimator, at different ρi, i = 1, ..., n.
This result provides some insights on the influence of quantization for linear classification.

Choice of Q. Unlike NN classifier, the extra generalization error depends more on the region near
0 for linear classifier. To see this, we notice that the flipping probabilities (8) and (9) decrease as ρ
increases. Intuitively, label flipping is much more likely to occur for the points near the boundary (i.e.,
with small ĥTx). As a result, one may choose a quantizer with small debiased variance around ρ = 0
for linear classification. In fact, by the analysis and results from [28], one can show that Lloyd-Max
(LM) quantizer gives minimal debiased variance of ρ̂Q at ρ = 0, among all quantizers with same bits.
Hence, LM quantization is recommended for linear classification problems.

5 Quantized Compressive Least Squares Regression

Compressive least squares (CLS) regression has been studied in several papers, e.g., [30, 20]. [34]
shows that in many cases, CLS can match the performance of principle component regression (PCR)
but runs faster by avoiding large scale SVD or optimization, especially on high-dimensional data. In
CLS, the projected design matrix XR, instead of the original X , is used for ordinary least squares
(OLS) regression. We are interested in the extra error brought by further quantizing the projections,
where XQ is used as the new design matrix. We call this approach QCLS. In particular, we consider
a fix design problem where data X ∈ Rn×d is determinant and Y ∈ Rn are treated as random. OLS
regression with Gaussian error is modeled by

Y = Xβ + ε, (10)

with β ∈ Rd and ε ∈ Rn contains i.i.d. Gaussian noise with mean 0 and variance γ. For projected
data and quantized data, we also fit a OLS with same response Y , while the predictors becomes

1√
k
RTxi and 1√

k
Q(RTxi) respectively. Furthermore, define the expected squared losses as

L(β) =
1

n
EY [‖Y−Xβ‖2], LR(βR) =

1

n
EY |R[‖Y − 1√

k
XRβR‖2],

LQ(βQ) =
1

n
EY |R[‖Y − 1√

k
Q(XR)βQ‖2].

(11)

Note that in the above the expectation is taken w.r.t. Y , and R is given. Denote the true minimizers
of above losses as β∗, β∗R and β∗Q, respectively. The risk of an estimator in the data space is defined
as r(w) = L(w)− L(β∗), and analogues rR(wR) and rQ(wQ) can be also defined in projected and
quantized spaces. On the other hand, we have the empirical losses

L̂(β) =
1

n
‖Y−Xβ‖2, L̂R(βR) =

1

n
‖Y− 1√

k
XRβR‖2, L̂Q(βQ) =

1

n
‖Y− 1√

k
Q(XR)βQ‖2,

(12)
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which are computed from the data. The least squares estimates minimize the empirical losses in a
given space, namely,

β̂∗ = argmin
β∈Rd

L̂(β), β̂∗R = argmin
β∈Rk

L̂R(β), β̂∗Q = argmin
β∈Rk

L̂Q(β). (13)

In particular, β̂ is the OLS estimator, and β̂∗R and β̂∗Q are called the CLS estimator and QCLS
estimator, respectively. The following result bounds the expected loss of β̂∗Q, over Y and R.
Theorem 6. Let the regression problems be defined as in (10), (11), (12) and (13), with γ being the
variance of Gaussian noise. Suppose all samples in X has unit norm, Σ = XTX/n, and R ∈ Rd×k
are i.i.d. standard normal with k < n. Q is a Lloyd-Max quantizer with distortion DQ w.r.t.
standard Gaussian. Further define ξ2,2 = E[Q(x)2x2] with x ∼ N(0, 1). Then, the expected QCLS
risk over loss of data space learner is bounded by

EY,R[LQ(β̂∗Q)]− L(β∗) ≤ γ k
n

+
1

k
‖β∗‖2Ω, (14)

where Ω = [
ξ2,2−1+DQ

(1−DQ)2 − 1]Σ + 1
1−DQ Id, with ‖w‖Ω =

√
wTΩw the Mahalanobis norm and Id the

identity matrix with rank d.
Remark. Lloyd-Max quantizer is considered for the ease of presentation. Similar result can be
derived for general quantizers under extra technical assumptions. When DQ = 0 (no quantization is
applied), ξ2,2 = 3 holds and the bound reduces to the classical bound [20] for CLS.

Choice of Q. In Theorem 6, we see that the distortion in general controls the excess risk. In
particular, smaller DQ would reduce expected loss. Although the bound is for LM quantizer, we
expect similar results for other quantizers, since smaller distortion in general implies less deviation
from the compressed signals. Hence, with a fix number of bits, Lloyd-Max (LM) quantizer, which is
built naturally for the purpose of distortion minimization, should be the first choice for QCLS.

6 Numerical study
In this section, we validate the theoretical findings through experiments on real-world datasets from
UCI repository [12]. Table 1 provides summary statistics, where mean ρ is the average pair-wise
cosine of all pairs of samples. Mean 1-NN ρ is the average cosine of each point to its nearest neighbor.

Table 1: Summary statistics of datasets, all standardized to unit norm.

Dataset # samples # features # classes Mean ρ Mean 1-NN ρ
arcene 200 10000 2 0.63 0.86

BASEHOCK 1993 4862 2 0.33 0.59
orlraws10P 100 10304 10 0.80 0.89
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Figure 2: Empirical debiased variance.
To be divided by k.

Classification setup. We test three quantizers: 1-bit
Lloyd-Max quantizer, 3-bit Lloyd-Max quantizer and 3-
bit uniform quantizer. LM quantizers are optimized w.r.t.
standard normal distribution, and the uniform quantizer
is symmetric about 0 with 4 = 1, and cut-off points
x = −3.5 if x < −3; x = 3.5 if x > 3. As discussed
in [28], the debiased variance of ρ̂Q = Q(XR)TQ(XR)

k
cannot be computed exactly. Here we approximate it by
simulation as in Figure 2. For 1-NN classification, we take
each data point as test sample and the rest as training data
over all the examples, and report the mean test accuracy.
For linear classifier, we feed the inner product estimation
matrix XQX

T
Q as the kernel matrix into a linear SVM

solver [5]. We randomly split the data to 60% for training and 40% for testing, and the best test
accuracy among all hyper-parameter C is reported, averaged over 5 repetition’s.

Linear SVM. At ρ = 0, Figure 2 shows that the debiased variances of estimators using different
quantizers admit the order 1-bit LM>3-bit uniform>3-bit LM>full-precision. Therefore, following
the discussion in Theorem 5, we expect test error in the same order, which is confirmed by Figure 5.
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Figure 4: Test accuracy of quantized compressive nearest neighbor classification.
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Figure 5: Test accuracy of quantized compressive linear SVM.
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Figure 3: Test MSE of QCLS.

NN classification. Theorem 4 states that small debi-
ased variance around the “mean 1-NN ρ” should be
beneficial for 1-NN classification. BASEHOCK dataset
has mean 1-NN ρ = 0.59, the point at which the debi-
ased variance is compared as 1-bit LM > 3-bit uniform
> full-precision≈ 3-bit LM. Hence, we see in Figure 4
that the NN classification error is in the same sequence
on this dataset. On the other hand, the mean 1-NN ρ
of arcene and orlraws10P is high (around 0.9). At this
point, 1-bit LM quantizer has much smaller debiased
variance than others. Therefore, we expect 1-bit LM
to provide highest test accuracy on these two datasets,
which is again consistent with Figure 4. In conclusion,
our empirical observations validate the theoretical results and analysis in Theorem 4 and Theorem 5
on the influence of debiased estimator variance on NN and linear classifiers, at different ρ level.

Simulated QCLS. We simulate data X ∈ R3000×1200 and β both following i.i.d. N(0, 1), and
noise ε ∼ N(0, 0.2). We compare LM quantizers with equal-bit uniform quantizers, for b = 3, 4, 5.
The distortion is (0.035, 0.009, 0.002) for LM quantizers and (0.043, 0.026, 0.019) for uniform
quantizers. In Figure 3, we see that the order of test MSE perfectly agrees with the order of distortion
from high to low, and LM quantizers always outperform uniform quantizers with same bits. As the
distortion gets smaller, the performance of QCLS approaches that of CLS. These observations verify
the conclusion in Theorem 6 that quantizers with smaller distortion generalize better for QCLS.

7 Concluding Remarks
This paper studies the generalization error of various quantized compressive learning models, includ-
ing nearest neighbor classifier, linear classifier and linear regression. Our theoretical results provide
useful guidance for choosing appropriate quantizers for different models, which in particular depicts
an interesting connection between debiased variance of inner product estimates and the generalization
performance on classification tasks. Quantizers with small debiased variance are favorable for NN
classifier and linear classifier, in high similarity region and around ρ = 0, respectively. For linear
regression, quantizers with smaller distortion tend to perform better. As a consequence, Lloyd-Max
(LM) quantizer is recommended for both linear classification and regression, and normalizing the
projections may help with nearest neighbor classification. Our work contributes to understanding
the underlying statistical aspects of learning with quantized random projections, and provides useful
implications to various machine learning applications where data compression is useful.

9



References
[1] Petros Boufounos and Richard G. Baraniuk. 1-bit compressive sensing. In 42nd Annual

Conference on Information Sciences and Systems (CISS), pages 16–21, Princeton, NJ, 2008.

[2] Jeremy Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing. Bioin-
formatics, 17(5):419–428, 2001.

[3] Robert Calderbank, Sina Jafarpour, and Robert Schapire. Compressed learning: Universal
sparse dimensionality reduction and learning in the measurement domain. preprint, 2009.

[4] Emmanuel J. Candès and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE Trans. Information Theory, 52(12):5406–5425, 2006.

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[6] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
on 34th Annual ACM Symposium on Theory of Computing (STOC), pages 380–388, Montreal,
Canada, 2002.

[7] Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for nearest neighbor clas-
sification. In Advances in Neural Information Processing Systems (NIPS), pages 3437–3445,
Montreal, Canada, 2014.

[8] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification. IEEE Trans.
Information Theory, 13(1):21–27, 1967.

[9] George E. Dahl, Jack W. Stokes, Li Deng, and Dong Yu. Large-scale malware classification
using random projections and neural networks. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3422–3426, Vancouver, Canada, 2013.

[10] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of
Johnson and Lindenstrauss. Random Structures and Algorithms, 22(1):60 – 65, 2003.

[11] David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, April 2006.

[12] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[13] Robert J. Durrant and Ata Kabán. Sharp generalization error bounds for randomly-projected
classifiers. In ICML, pages 693–701, 2013.

[14] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity search and classification
via rank aggregation. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 301–312, San Diego, CA, 2003.

[15] Jozsef Fritz. Distribution-free exponential error bound for nearest neighbor pattern classification.
IEEE Trans. on Information Theory, 21(5):552–557, 1975.

[16] Ashutosh Garg, Sariel Har-Peled, and Dan Roth. On generalization bounds, projection profile,
and margin distribution. In ICML, pages 171–178, 2002.

[17] Lee-Ad Gottlieb, Aryeh Kontorovich, and Pinhas Nisnevitch. Near-optimal sample compression
for nearest neighbors. In Advances in Neural Information Processing Systems (NIPS), pages
370–378, Montreal, Canada, 2014.

[18] László Györfi and Zoltán Györfi. An upper bound on the asymptotic error probability on
the k-nearest neighbor rule for multiple classes (corresp.). IEEE Trans. Information Theory,
24(4):512–514, 1978.

[19] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mapping into Hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

10



[20] Ata Kabán. New bounds on compressive linear least squares regression. In Proceedings of
the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), pages
448–456, Reykjavik, Iceland, 2014.

[21] Ata Kabán. A new look at nearest neighbours: Identifying benign input geometries via random
projections. In Proceedings of The 7th Asian Conference on Machine Learning (ACML), pages
65–80, Hong Kong, China, 2015.

[22] B Klartag and Shahar Mendelson. Empirical processes and random projections. Journal of
Functional Analysis, 225(1):229–245, 2005.

[23] Ping Li. One scan 1-bit compressed sensing. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 1515–1523, Cadiz, Spain, 2016.

[24] Ping Li. Binary and multi-bit coding for stable random projections. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1430–1438,
Fort Lauderdale, FL, 2017.

[25] Ping Li, Michael Mitzenmacher, and Anshumali Shrivastava. Coding for random projections.
In Proceedings of the 31th International Conference on Machine Learning (ICML), Beijing,
China, 2014.

[26] Ping Li, Michael Mitzenmacher, and Martin Slawski. Quantized random projections and non-
linear estimation of cosine similarity. In Advances in Neural Information Processing Systems
(NIPS), pages 2748–2756, Barcelona, Spain, 2016.

[27] Ping Li and Martin Slawski. Simple strategies for recovering inner products from coarsely
quantized random projections. In Advances in Neural Information Processing Systems (NIPS),
pages 4567–4576, Long Beach, CA, 2017.

[28] Xiaoyun Li and Ping Li. Random projections with asymmetric quantization. In Advances in
Neural Information Processing Systems (NeurIPS), Vancouver, Canada, 2019.

[29] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information Theory, 28(2):129–
136, 1982.

[30] Odalric-Ambrym Maillard and Rémi Munos. Compressed least-squares regression. In Advances
in Neural Information Processing Systems (NIPS), pages 1213–1221, 2009.

[31] Joel Max. Quantizing for minimum distortion. IRE Trans. Information Theory, 6(1):7–12, 1960.

[32] Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic regres-
sion: A convex programming approach. IEEE Transactions on Information Theory, 59(1):482–
494, 2013.

[33] Shai Shalev-Shwartz and Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[34] Martin Slawski. Compressed least squares regression revisited. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1207–1215,
Fort Lauderdale, FL, 2017.

[35] Gian-Andrea Thanei, Christina Heinze, and Nicolai Meinshausen. Random projections for
large-scale regression. In Big and complex data analysis, pages 51–68. Springer, 2017.

[36] Santosh S. Vempala. The Random Projection Method. American Mathematical Society, 2004.

[37] Terry J. Wagner. Convergence of the nearest neighbor rule. IEEE Trans. Information Theory,
17(5):566–571, 1971.

[38] Fei Wang and Ping Li. Efficient nonnegative matrix factorization with random projections. In
Proceedings of the SIAM International Conference on Data Mining (SDM), pages 281–292,
Columbus, Ohio, 2010.

[39] David H. Wolpert and William G. Macready. No free lunch theorems for optimization. IEEE
Trans. Evolutionary Computation, 1(1):67–82, 1997.

11


	Introduction
	Preliminaries
	Quantized Compressive Nearest Neighbor Classification
	Quantized Compressive Linear Classification with (0,1)-loss
	Quantized Compressive Least Squares Regression
	Numerical study
	Concluding Remarks

