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Abstract—1 In “Unlabeled Sensing”, one observes a set of
linear measurements of an underlying signal with incomplete or
missing information about their ordering, which can be modeled
in terms of an unknown permutation. Previous work on the
case of a single noisy measurement vector has exposed two main
challenges: 1) a high requirement concerning the signal-to-noise
ratio (snr), i.e., approximately of the order of n5, and 2) a massive
computational burden in light of NP-hardness in general. In this
paper, we study the case of multiple noisy measurement vectors
(MMVs) resulting from a common permutation and investigate
to what extent the number of MMVs m facilitates permutation
recovery by “borrowing strength”. The above two challenges
have at least partially been resolved within our work. First, we
show that a large stable rank of the signal significantly reduces
the required snr which can drop from a polynomial in n for
m = 1 to a constant for m = Ω(log n), where m denotes the
number of MMVs and n denotes the number of measurements
per MV. This bound is shown to be sharp and is associated with a
phase transition phenomenon. Second, we propose computational
schemes for recovering the unknown permutation in practice. For
the “oracle case” with the known signal, the maximum likelihood
(ML) estimator reduces to a linear assignment problem whose
global optimum can be obtained efficiently. For the case in which
both the signal and permutation are unknown, the problem is
reformulated as a bi-convex optimization problem with an aux-
iliary variable, which can be solved by the Alternating Direction
Method of Multipliers (ADMM). Numerical experiments based
on the proposed computational schemes confirm the tightness of
our theoretical analysis.

I. INTRODUCTION

Noisy linear sensing with m measurement vectors is described

by the relation
Y = XB∗ +W, (1)

where Y ∈ R
n×m represents the observed n measurements,

X ∈ R
n×p represents the sensing matrix, and the columns of

B∗ ∈ R
p×m contain m signals of interest with dimension p

each, and W ∈ R
n×m represents additive noise. Model (1)

also arises in linear regression modeling with m response

variables and p explanatory variables [1]. Least squares re-

gression yields the estimator B̂ = (X)†Y, where (·)† denotes

the Moore-Penrose inverse. The properties of B̂ under various

assumptions on the noise W are well-known. In this paper, we

consider the more challenging situation in which we observe n
measurements with missing or incomplete information about

their ordering, i.e., the correspondence between the rows of Y

and the rows of X has been lost. Put differently, we observe

data according to (1) up to an unknown permutation:

1Partial preliminary results appeared in 2019 IEEE International Sympo-
sium on Information Theory (ISIT’19), Paris, France.

Y = Π∗XB∗ +W, (2)

where Π∗ is an n-by-n permutation matrix. Ignoring the un-

known permutation can significantly impair performance with

regard to the estimation of B∗. We herein consider recovery of

Π∗ given (X,Y). The latter suffices for signal recovery since

with restored correspondence the setup becomes standard. In

addition, recovery of Π∗ may be of its own interest, e.g.,

in record linkage in which two data sets containing different

pieces of information about a common set of entities are

integrated into a single comprehensive data set [2].

A. Related Work

The work [3] discusses signal recovery under setup (2)

referred to as “Unlabeled Sensing” therein for the case of a

single measurement vector (m = 1) and no noise (W = 0).

It is shown that if the entries of the sensing matrix X are

drawn from a continuous distribution over R, the condition

n ≥ 2p is required for signal recovery by means of exhaustive

search over all permutation matrices. The authors also motivate

the problem from a variety of applications, including the

reconstruction of spatial fields using mobile sensors, time-

domain sampling in the presence of clock jitter, and multi-

target tracking in radar. Alternative proofs of the main result

in [3] are shown in [4], [5].

A number of recent papers discuss the case m = 1 and

Gaussian W. The paper [6] establishes the statistical limits

of exact and approximate permutation recovery based on the

ratio of signal energy and noise variance henceforth referred

to as “snr”. In [6], it is also demonstrated that the least squares

estimation of Π∗ is NP-hard in general. In [7], a polynomial-

time approximation algorithm is proposed, and lower bounds

on the required snr for approximate signal recovery in the

noisy case are shown; related results can be found in [8],

[9]. The works [9]–[12] discuss both signal and permutation

recovery if Π∗ only permutes a small fraction of the rows of

the sensing matrix. An interesting variation of (2) in which

Π∗ is an unknown selection matrix that selects a fraction

measurements in an order-preserving fashion is studied in [13].

The paper [14] develops the approach in [13] further by

combining it with a careful branch-and-bound scheme to solve

general unlabeled sensing problems.

Several papers [10], [11], [15], [16] have studied the setting

of multiple measurement vectors (m > 1) and associated

potential benefits for permutation recovery. The paper [15]

discusses a practical branch-and-bound scheme for permuta-

tion recovery but does not provide theoretical insights. The

http://arxiv.org/abs/1909.02496v1
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work [16] analyzes the denoising problem, i.e., recovery of

Π∗XB∗, rather than individual recovery of Π∗ and B∗.

In [10], [11] the number of permuted rows in the sensing

matrix is assumed to be small, and are treated as outliers.

Methods for robust regression and outlier detection are pro-

posed to perform signal recovery. While both [10], [11] also

contain achievability results for permutation recovery given

an estimate of the signal, none of these works provides

information-theoretic lower bounds to assess the sharpness of

the results. Moreover, the method in [10] limits the fraction

of permuted rows to a constant multiple of the reciprocal of

the signal dimension p, while the method in [11] requires

the number of MMVs m to be of the same order of p and

additionally exhibits an unfavorable running time that is cubic

in the number of measurements. In the present paper, we

eliminate the limitations in [10], [11] to a good extent.

B. Contribution

Results in [6] on the case m = 1 indicate that the maximum

likelihood (ML) estimator in Eq. (5) can be regarded as

impractical from both statistical and computational viewpoints.

On one hand, successful recovery of Π∗ requires snr ∼ nc,

where c > 0 is a constant that is approximately equal to

5 according to simulations. As n grows, this requirement

becomes prohibitively strong. On the other hand, the ML

estimator Eq. (5) has been proven to be NP-hard except for the

special case m = 1 and p = 1. To the best of our knowledge,

no efficient algorithm has been proposed yet. In this paper,

by contrasting m = 1 and m ≫ 1, our goal is to tackle both

obstacles. Before giving a detailed account of our contribution,

we first define a crucial quantity, the signal-to-noise-ratio (snr)

snr = ‖B∗‖2F/(m · σ2). (3)

• We improve the requirement snr ∼ nc to roughly snr ∼
nc/̺(B∗), where ̺(B∗) = ‖B∗‖2F/‖B∗‖2OP is the stable

rank of B∗. Once ̺(B∗) is of the order Ω(logn), we

conclude that the requirement on the snr is well-controlled

even when n approaches infinity. The underlying intuition

is that larger values of m lead to relaxed requirements on

the snr since (i) the overall signal energy increases, (ii) all

MMVs result from the same permutation matrix Π∗, which

is expected to yield extra information. In our analysis, (i) is

reflected by conditions on permutation recovery involving

dependence on the overall signal energy, while (ii) enters

via a dependence on the stable rank of the signal matrix B∗.

• We propose practical algorithms for recovery of Π∗ and

B∗ via least squares fitting, which is an NP-hard problem

except for the special case with p = m = 1. In our

approach, we introduce an auxiliary variable, which prompts

a bi-convex optimization problem that can be tackled via

an efficient ADMM (alternating direction method of multi-

pliers) scheme [17]. To achieve computational speed-ups,

we propose two initialization estimators, the “averaging

estimator” and the “eigenvalue estimator”, as warm-starts

for ADMM. The empirical study suggests that convergence

will be obtained within 10 steps in most cases.

C. Outline

The rest of the paper is organized as follows. In Section II,

we review the sensing model. In Section III, we consider the

“oracle case”, where the signal matrix B∗ is known, and study

the conditions for exact recovery of Π∗. In Section IV, the

practical case in which B∗ is unknown as well is investigated.

Practical algorithms for approximate recovery of Π∗ are

developed in Section V. Simulations and concluding remarks

are provided in Section VI and Section VII, respectively.

II. SYSTEM MODEL

We recall that the sensing model under consideration reads

Y = Π∗XB∗ +W, (4)

where Y ∈ R
n×m represents the results of the sensing pro-

cess, Π∗ ∈ R
n×n denotes the unknown permutation matrix,

X ∈ R
n×p (n ≥ 2p) is the sensing matrix, B∗ ∈ R

p×m is

the matrix of signals, and W ∈ R
n×m is the sensing noise.

For what follows, we assume that the entries (Xij) of X are

i.i.d. standard Gaussian random variables, i.e., Xij ∼ N (0, 1),
1 ≤ i ≤ n, 1 ≤ j ≤ p. Likewise, we assume that the entries

of W are i.i.d. N (0, σ2)-random variables, where σ2 > 0
denotes the noise variance. The maximum likelihood (ML)

estimator of (Π∗,B∗) then results as the least squares solution

(Π̂, B̂) = argmin(Π,B) ‖Y −ΠXB‖2F. (5)

Note that for a fixed permutation matrix Π, we obtain

B̂(Π) = (ΠX)†Y, (6)

From the above, we can see the importance of accurate

estimation of Π∗ in a least squares approach since errors

may significantly degrade the quality of the corresponding

estimator B̂, while exact permutation recovery, i.e., Π̂ = Π∗

yields the same quality as the usual least squares estimator

in the absence of Π∗. In the following, we put estimation of

B∗ aside and concentrate on analyzing the determining factors

for estimation of Π∗. Broadly speaking, permutation recovery

involves two main sources of difficulty.

• Sensing noise W. Even in the oracle case in which B∗ is

known and computation of the ML estimator of Π∗ reduces

to the linear assignment problem [18]

Π̂ = argmax
Π

〈
Π, YB∗⊤X⊤〉 , (7)

whose solution can be obtained efficiently, recovery of Π∗

is still likely to fail if the noise level σ2 is large enough.

• Unknown B∗. Compared with the oracle case above, we

have no access to B∗ in practice, which makes recovery

more challenging.

In the sequel, we will show that the sensing noise W consti-

tutes the major difficulty in recovering Π∗ rather than missing

knowledge of B∗. But first, we define the following notations.

Notations: Positive constants are denoted by c, c′, c0, c1, etc.

We write a . b if there is a constant c0 such that a ≤ c0b.
Similarly, we define &. If both a . b and a & b hold, we write

a ≍ b. The maximum of a and b is denoted by a∨ b while the

minimum of a and b is denoted by a∧ b. The Frobenius norm
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of a matrix is represented as ‖·‖F while the operator norm

is denoted as ‖·‖OP, whose definition can be found in [19]

(Section 2.3, P71). The ratio ̺(·) = ‖·‖2F/‖·‖
2
OP represents

the stable-rank while r(·) represents the rank. The signal-to-

noise-ratio (snr) is defined as snr = ‖B∗‖2F/(mσ2). Additional

notation can be found in Appendix A.

III. FAILURE OF RECOVERY

This section presents conditions under which exact or

approximate recovery of Π∗ is expected to fail with high

probability. Investigation of this case is intended to provide

valuable insights into the fundamental statistical limits. We

consider the “oracle case” with information of B∗, whose

limits apply to the case of unknown B∗ as well, since it is

hopeless to recover Π∗ even if the knowledge of B∗ does not

suffice for recovery.

Compared with the case m = 1 in which snr is the only

prominent factor in determining the recovery performance [6],

our analysis uncovers another very important factor, namely,

the energy distribution over singular values. Our work shows

that a more uniform spread of the signal energy over singular

values can greatly facilitate the recovery of Π∗.

A. Recovery of Π∗

For our first result, Π∗ is supposed to be a random vari-

able independent of X and W, drawn from a probability

distribution supported on a subset H of the set of n-by-n
permutation matrices. Using Fano’s inequality, the following

inachievability result can be shown.

Theorem 1. Consider the condition

1

2

∑

i

log

(
1 +

λ2i
σ2

)
+

log (|H |)
2n

<
H(Π∗)− 1

n
, (8)

where λi denotes the i-th singular value of B∗, and H and

H(Π∗) denote the support and the entropy of the random per-

mutation matrix Π∗, respectively. Under (8), for any estimator

Π̂ of Π∗, it holds that Pr(Π̂ 6= Π∗) > 1/2.

In Thm. 1, the set H and the entropy H(Π∗) capture

the amount of prior information about Π∗. In the absence of

prior knowledge, Π∗ can be regarded as uniformly distributed

among all possible permutation matrices, which corresponds

to maximal entropy log(n!) ≈ n log(n). The availability of

prior information leads to reduced entropy. For example, it

may be known that dH(I,Π∗) ≤ D, where dH(I,Π) ,∑n
i=1 1(Πi,i 6= 1) denotes the Hamming distance between a

permutation matrix Π and the identity. In this case, the entropy

is upper bounded by log(n!/(n−D)!), which means that the

inachievability condition (8) is less likely to be fulfilled.

The second major ingredient in condition (8) is the term∑
i log

(
1 + λ2i /σ

2
)
. Since each singular value λi is deter-

mined by the matrix B∗ as whole rather than by individ-

ual columns, we conclude that linear independence among

multiple measurements can positively impact the recovery of

Π∗, which implies extra benefits apart from mere energy

accumulation.

When maximizing the term
∑

i log
(
1 + λ2i /σ

2
)

given fixed

signal energy ‖B∗‖2F =
∑

i λ
2
i , it is easy to determine the most

favorable configuration to avoid failure of recovery: the signal

energy is evenly spread over all singular values. In contrast,

if B∗ has rank one with all signal energy concentrated on the

principal singular value, condition (8) reduces to the same as

for a single MV (m = 1) with signal energy ‖B∗‖2F since

∑

i

log

(
1 +

λ2i
σ2

)
= log

(
1 +

λ21
σ2

)
= log

(
1 +

‖B∗‖2F
σ2

)
.

This indicates that in accordance with the intuition of “bor-

rowing strength” across different sets of measurements, per-

formance is expected to improve as the rank of B∗ increases.

Moreover, the result of Thm. 1 constitutes a fundamental limit

as it applies to any estimator.

The statement below provides a condition for failure of

recovery when using the ML estimator in Eq. (5), which is

computationally feasible if B∗ is known. In this statement, Π∗

is considered as fixed (non-random) as is the case throughout

the paper with the exception of Thm. 1 and Corol. 3.

Proposition 2. Given knowledge of B∗, the ML estimator Π̂

in Eq. (7) satisfies Pr
(
Π̂ 6= Π∗

)
≥ 49(1−n−1)

64 for n ≥ 10 if

‖B∗‖2F
σ2

≤ 2 logn

4
(
1 + 2

√
log 2

c̺(B∗)

)2 , (9)

where ̺(B∗) = ‖B∗‖2F/‖B∗‖2OP is the stable rank of B∗.

The proposition states that the total signal energy given by

m× snr should be at least of the order logn to avoid failure

in recovery. This is in agreement with what can be concluded

from Thm. 1 in the full-rank case and a uniform prior for Π∗.

B. Approximate recovery of Π∗

Exact recovery of Π∗ may not always be necessary. The

following corollary of Thm. 1 yields a condition under which

even a close approximation w.r.t. the Hamming distance, i.e.,

dH(Π̂, Π∗) ≤ D, cannot be guaranteed.

Corollary 3. Provided that

1

2

∑

i

log

(
1 +

λ2i
σ2

)
+

log 2

n
≤ log(n−D + 1)!

2n
,

where λi denotes the i-th singular value of B∗, we have

Pr
(
dH(Π̂, Π∗) ≥ D

)
≥ 1

2 for any estimator Π̂ of Π∗.

Comparing the above result with Thm. 1, one can see that

the essentially only difference is the replacement of the term

H(Π∗) by log(n−D+1)!. Here is an intuitive interpretation:

• The set of n-by-n permutation matrices under consideration

can be covered by a subset {Π(1),Π(2), · · · , Π((n−D+1)!)}
such that for any permutation matrix Π, there exists an

element Π† ∈ {Π(1),Π(2), · · · , Π((n−D+1)!)} such that

dH(Π, Π†) ≤ D.

• We would like to recover Π† from data (X,Y).

As a result, since the cardinality of the covering is (n −
D + 1)!, we encounter the term log(n −D + 1)! in place of

H(Π∗) ≤ log(n!); setting D = 0 or 1 gives back Thm. 1.

To conclude this section, we would like to emphasize that

the above conditions reflect the price to compensate for the
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uncertainty induced by the sensing noise W, as there is no

uncertainty in B∗ involved. In the next section, we will study

conditions for the successful recovery.

IV. SUCCESSFUL RECOVERY

In the previous section, we have studied conditions under

which recovery is expected to fail. In this section, we state

conditions under which the true permutation Π∗ can be

recovered with high probability, for the oracle case with known

B∗ as well as the realistic case with unknown B∗. For the

sake of transparency, we provide explicit values for numerical

constants in most cases even though no specific effort was

made to optimize these constants. We believe these constants

can be improved further.

A. Oracle case: known B∗

In this case, the ML estimator in Eq. (5) is re-written as

Eq. (7). The condition on the snr in the following statement

can serve both as an upper bound for the failure of permutation

recovery and as a lower bound for the more challenging case

with unknown B∗.

Theorem 4. Given knowledge of B∗, the ML estimator in

Eq. (5) satisfies

Pr
(
Π̂ 6= Π∗

)
≤ 2α

2κ̺(B∗)
0

n2
,

provided

log

(
‖B∗‖2F
σ2

)
≥ 8

κ̺(B∗)
log(n) + 4 log(α−1

0 )

+ log
(
32
(
2 logn+ κ̺(B∗) logα−1

0

))
,

(10)

where 0 < α0 < 1, κ > 0 are universal constants.

We would like to compare this result with the bound on

incorrect recovery in Thm. 1. First, we consider the full-rank

case with constant singular values, i.e., B∗⊤B∗ = γI, where

γ is a positive constant; in particular, ̺(B∗) = m. Then a

simple term re-arrangement of Eq. (10) suggests that having

log

(
‖B∗‖2F
̺(B∗)σ2

)
= log

(
‖B∗‖2F
mσ2

)
&

log(n)

̺(B∗)
(11)

ensures success, while Thm. 1 suggests that

log

(
1 +

‖B∗‖2F
mσ2

)
.

log(n)

̺(B∗)
(12)

implies failure. Conditions (11) and (12) thus match up to

multiplicative factors.

Next, we consider the rank-1 case. Eq. (10) suggests that

log(‖B∗‖2F/σ2) & logn ensures success, while Thm. 1 sug-

gests that log(1+‖B∗‖2F/σ2) . logn leads to failure. Putting

them together, we conclude tightness for this case.

Finally, we would like to provide an illustration of the

benefits brought by large stable rank ̺(B∗). We compare the

snr requirement for different ̺(B∗) and list them in Tab. I.

To obtain successful recovery,
log det(I+B

∗⊤
B

∗/σ2)
log(n) should be

roughly 5. We can see that as ̺(B∗) increases from 1 to 100,

the requirement on the snr drops from 1015 to 0.41.

log det
(

I+B
∗⊤

B
∗/σ2

)

log(n)
1 2 3 4 5 6

̺(B∗) = 1 103 106 109 1012 1015 1018

̺(B∗) = 10 1 2.98 6.94 14.85 30.62 62.10
̺(B∗) = 20 0.41 1.00 1.82 2.98 4.62 6.94
̺(B∗) = 50 0.15 0.32 0.51 0.74 1.00 1.29
̺(B∗) = 100 0.07 0.15 0.23 0.32 0.41 0.51

TABLE I: snr requirement when n = 1000, p = 100, and

B∗
:,i = ei, where ei denotes the i-th canonical basis vector.

B. Realistic case: unknown B∗

For this case of unknown B∗, we first present a basic result

that will be improved upon later under additional assumptions.

Theorem 5. Fix ǫ > 0. Provided that snr × n− 2n
n−p ≥ 1, if

log(m× snr)

380
≥
(
1 + ǫ+

n

190(n− p)

)
log(n)+

1

2
log r(B∗),

(13)
then the ML estimator (5) satisfies

Pr
(
Π̂ 6= Π∗

)
≤ 10.36

(
1

nǫ(nǫ − 1)
∨ 1

nǫ

)
,

as long as n > C(ǫ), where C(ǫ) > 0 is a positive constant

depending only on ǫ.

Note that since we have r(B∗) ≤ (m ∧ p) and p ≤ n/2,

the bound in Eq. (13) can be simplified to log(m × snr) ≥
380

(
3
2 + ǫ+ n

190(n−p)

)
log(n), which suggests that perfect

recovery can be achieved with high probability if log(m ×
snr) & logn.

Comparing the above result with Thm. 1, we can see that

our bound is tight for the rank-1 case, since both theorems

show that the total energy should be of the order log(1 +
m × snr) & logn to obtain correct recovery. However, the

above theorem fails to capture potential improvement brought

by higher measurement diversity, namely, larger stable rank

̺(B∗). Thm. 5 suggests that multiple measurements behave

like a single measurement with the same energy level, which

can be far from the actual behavior beyond the rank-1 case.

In the sequel, we state an improved bound under additional

assumptions on dH(I,Π∗) and ̺(B∗).

Theorem 6. For a fixed ǫ > 0, provided that snr > 26.2,

dH(I,Π∗) ≤ hmax, ̺(B∗) ≥ 5(1 + ǫ) log(n)/c0, and

hmaxr(B
∗) ≤ n/8, then if

log (snr) ≥ 288(1 + ǫ) log(n)

̺(B∗)
+ 33.44, (14)

the constrained ML estimator (5) subject to the constraint

dH(I,Π) ≤ hmax satisfies

Pr
(
Π̂ 6= Π∗

)
≤ 10

(
1

nǫ(nǫ − 1)
∨ 1

nǫ

)
,

as long as n > C(ǫ), where C(ǫ) > 0 is a positive constant

depending only on ǫ.

We here comment on the new constraint dH(I,Π∗) ≤ hmax.

To ensure that signal diversity as quantified by ̺(B∗) improves

the recovery performance, we require ̺(B∗) = Ω (logn). In

this case, we obtain the condition snr ≥ C for some constant
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C > 0, which then also matches the assertion in Thm. 4. At

the same time, hmax is required to be of the order

hmax .
n

log(n)
,

which is only slightly sub-optimal compared to the order

O(n). Simulation results (p = 1,m = 1) imply the upper

bound hmax in the constraint dH(I,Π∗) ≤ hmax can be safely

relaxed to a linear fraction of n. We believe these simulation

results hold universally and the constraint on dH (I,Π∗) can

be avoided with more advanced tools.

Since the order for the required snr to achieve correct

recovery remains the same as in Thm. 4, we can draw the

conclusion that the major difficulty in recovering (Π∗,B∗) is

due to the sensing noise W while the fact that B∗ is not given

a priori does not change the level of difficulty significantly.

Additionally, comparison with the condition for failure

in Thm. 1 lets us conjecture a phase transition since

log(snr) & log(n)/̺(B∗) leads to success while log(snr) .
log(n)/̺(B∗) leads to failure, where the right hand sides only

differ in multiplicative constants.

Having established the statistical limits, we will then turn to

numerical aspects and present several computational schemes

to recover the permutation matrix Π∗ in the next section.

V. COMPUTATIONAL APPROACH

In this section, we discuss the computational aspects of the

problem. Note that for p = 1, m = 1, the ML estimator Π̂

in (5) can be computed by solving a linear assignment prob-

lem [6]. For all other cases, namely p ≥ 2, the computation

has been proved to be NP-hard in general [6]. To the best of

our knowledge, no efficient algorithm is known.

A. Oracle recovery

In this part, we discuss how to recover the permutation

matrix Π∗ with known B∗. Note that in this case the ML es-

timator in Eq. (7) reduces to a linear assignment problem [18]

that can be solved by the Hungarian algorithm [20] or the

auction algorithm [21].

B. Sorting-based method for p = 1

In this part, we restrict ourselves to the case p = 1 and

propose to recover Π̂ by sorting. Note that when p = 1 and

m = 1, the solution of Eq. (5) can be found by sorting X with

respect to Y as in [6]. For the case m ≥ 2, we relax the orig-

inal problems and obtain approximate solutions via sorting.

Two estimators are proposed whose details are summarized in

Alg. 1 and Alg. 2, respectively. In the following, we present

the intuition underlying the respective designs.

a) Averaging estimator: With a fixed Π given, we can

estimate B:,i as 〈ΠX,Y:,i〉/‖X‖2F. Back-substitution gives us

‖Y −ΠXB‖2F =

m∑

i=1

(
‖Y:,i‖22 −

(〈Y:,i,ΠX〉)2

‖X‖22

)
,

which means that we can recover Π̂ by

Π̂ ∈ argmax
Π

m∑

i=1

〈Y:,i, ΠX〉2. (15)

Given that B∗
:,i is positive, we assume 〈Y:,i,ΠX〉 ≈

E 〈Y:,i,ΠX〉 = E 〈Π∗X,ΠX〉B∗
:,i > 0, and relax (15) to

m∑

i=1

|〈Y:,i, ΠX〉|2 ≤
〈

m∑

i=1

Y:,i, ΠX

〉2

. (16)

We then compute an estimator Π̂ by maximizing the above

upper bound in Eq. (16), which can be formulated as a

linear assignment problem as in Eq. (7). The computational

complexity of this estimator is Ω(m + n logn), since only

averaging and sorting are needed [22].

Algorithm 1 Averaging estimator.

• Compute the average 1
m

∑m
i=1 Y:,i.

• Compute Π̂ by maximizing
(〈
m−1

∑m
i=1 Y:,i,ΠX

〉)2
.

b) Eigenvalue estimator: We consider 1
m

∑m
i=1 Y:,iY

⊤
:,i,

which can be expressed as

∑
i Y:,iY

⊤
:,i

m
=

∑m
i=1

∥∥B∗
:,i

∥∥2
F

m

(
Π∗XX⊤Π∗⊤)+T1+T2+T3,

where T1, T2, and T3 are defined as

T1 , Π∗X

(∑m
i=1 B

∗
:,iW:,i

m

)⊤

T2 ,

(∑m
i=1 B

∗
:,iW:,i

m

)
X⊤Π∗⊤

T3 ,

∑m
i=1 W:,iW

⊤
:,i

m
,

respectively. As m → ∞, we have T1,T2 → 0 and T3 →
σ2I. Hence we can approximate m−1

(∑m
i=1 Y:,iY

⊤
:,i

)
as

∑m
i=1 Y:,iY

⊤
:,i

m
≈
∑m

i=1

∥∥B∗
:,i

∥∥2
F

m

(
Π

∗
XX

⊤
Π

∗⊤
)
+

σ2
I

m
. (17)

Since the principal eigenvector u of the matrix on the right-

side of Eq. (17) is aligned with Π∗X, we can find Π̂ by

maximizing 〈u, ΠX〉2.

Algorithm 2 Eigenvalue estimator.

• Compute the principal eigenvector u of

m−1
(∑m

i=1 Y:,iY
⊤
:,i

)
.

• Recover Π̂ by maximizing (〈u, ΠX〉)2.

C. ADMM algorithm for p ≥ 2

In this subsection, we relax the ML estimation problem (5)

to a bi-convex problem and solve it via an ADMM algorithm

(cf. Alg. 3). A detailed derivation is given in the sequel.

a) ADMM formulation: First, in light of Eq. (6) we have

min
Π,B

‖Y −ΠXB‖2F =
∥∥P⊥

ΠX
Y
∥∥2

F
(18)

where P⊥
ΠX

is defined as I − ΠX
(
X⊤X

)−1
X⊤Π⊤. Note

that we can decompose Y as P⊥
ΠX

Y+PΠXY. Since ‖Y‖2F =∥∥P⊥
ΠX

Y
∥∥2

F
+ ‖PΠXY‖2F can be treated as a constant, mini-

mizing
∥∥P⊥

ΠX
Y
∥∥2

F
is equivalent to maximizing ‖PΠXY‖2F.
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By introducing two redundant variables Π1 and Π2, we

formulate Eq. (18) as

min
Π1, Π2

−trace
(
Π1PXΠ⊤

2 YY⊤) , s.t. Π1 = Π2, (19)

where PX , X
(
X⊤X

)−1
X⊤. We propose to solve Eq. (19)

with the ADMM algorithm [17] and present the details of the

algorithm in Alg. 3.

Algorithm 3 ADMM algorithm for the recovery of Π.

• Input: Initial estimate for the permutation matrix Π(0).

• For time t+ 1: Update Π
(t+1)
1 ,Π

(t+1)
2 as

Π
(t+1)
1 =argmin

Π1

〈
Π1,−YY

⊤
Π

(t)
2 P

⊤
X + µ

(t) − ρΠ
(t)
2

〉

Π
(t+1)
2 =argmin

Π2

〈
Π2, YY

⊤
Π

(t+1)
1 PX − µ

(t) − ρΠ
(t+1)
1

〉

µ
(t+1) = µ

(t) + ρ
(
Π

(t+1)
1 −Π

(t+1)
2

)
.

• Termination: Stop the ADMM algorithm once Π
(t+1)
1

is identical to Π
(t+1)
2 .

b) Acceleration: Since ADMM may exhibit slow con-

vergence [17], we adopt a warm start strategy to accelerate

the algorithm, which consists of two steps:

• Compute the average value X = 1
p

∑p
i=1 X:,i.

• Obtain a rough estimate Π(0) by substituting X in Alg. 1

or Alg. 2 with X.

Then we choose Π(0) as the starting point of the ADMM

scheme in Alg. 3 to obtain an acceleration.

VI. NUMERICAL RESULTS

In this section, we present simulation results, which can be

divided into two parts: 1) the oracle case (known B∗) and 2)

the realistic case with B∗ being unknown. In virtue of Thm. 1,

we here plot

log det(I+B∗⊤B∗/σ2)

logn
=

∑
i log

(
1 + λ2i /σ

2
)

logn

on the horizontal axis, and the empirical probability of per-

mutation recovery on the vertical axis.

A. Oracle case

In this subsection, we study the relation between the error

probability Pr
(
Π̂ 6= Π∗

)
and the snr in the oracle case with

known B∗, which is shown in Fig. 1. The simulation results

confirm our theoretical results in Thm. 1 and Prop. 2.

a) Rank-1 case: In this case, we assume that all columns

{B∗
:,i}mi=1 of B∗ are identical.

b) Full-rank case: In this case, we consider the case

B∗
:,i ⊥ B∗

:,j , 1 ≤ i 6= j ≤ m. For simplicity, we set B∗
:,i ‖ ei,

where {ei} denotes the canonical basis.

B. Comparison between different estimators

In this subsection, we compare the performance of four

different estimators: the averaging estimator (Alg. 1), the

eigenvalue estimator (Alg. 2), averaging ADMM (ADMM

estimator with averaging estimator as warm start, Alg. 3),

and eigenvalue ADMM (ADMM estimator with eigenvalue

estimator as warm start, Alg. 3).
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Fig. 1: Oracle case: relation between correct probability

Pr
(
Π̂ = Π∗

)
and

log det(I+B
∗⊤

B
∗/σ2)

logn for different n values.

a) One-dimensional case (p = 1): The simulation result

is shown in Fig. 2. The empirical study suggests that both

averaging ADMM and eigenvalue ADMM converge in one

step in most cases, which suggests that the rough initial



7

0 1 2 3 4 5 6 7 8
0
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0.4

0.6

0.8

1
n = 100, 
p = 1, m = 100

averaging estimator
eigenvalue estimator
averaging ADMM
eigenvalue ADMM

Fig. 2: Relation between correct probability Pr
(
Π̂ = Π∗

)
and

log(1+m×snr)
logn for four estimators (n = 100, p = 1, m = 100).

estimate is already a local optimum. We also observe that:

• The averaging estimator performs better than the eigenvalue

estimator.

• Averaging ADMM exhibits a similar performance as eigen-

value ADMM when p = 1. As p ≥ 2, averaging ADMM

outperforms eigenvalue ADMM as shown in Fig. 3.

• The relative frequency of the event {Π̂ = Π∗} becomes

positive when log (1 +m× snr) ≥ 2, which is much larger

than that shown in Fig. 3 and Fig. 4. One potential reason is

that our estimator can only find a spurious local optimum.

In the low-dimensional case (p = 1), ADMM is more likely

to get trapped in such bad local optima, and hence a higher

snr is required to reach the global optimum.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

n = 100, p = 10, m = 100

averaging ADMM
eigenvalue ADMM

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

n = 150, p = 10, m = 100

averaging ADMM
eigenvalue ADMM

Fig. 3: Relation between correct probability Pr
(
Π̂ = Π∗

)
and

log(1+m×snr)
logn for different estimators (p = 10 and m = 100).

b) Dimension larger than one (p ≥ 2): The simulation

results are shown in Fig. 3. We notice that averaging ADMM

outperforms eigenvalue ADMM. A potential reason for this

observation is that the eigenvalue estimator heavily relies on

the fact that p = 1. When p ≥ 2, the principal eigenvector

may not align with the direction of Π∗X, which implies a

poor start and hence a slow convergence rate.

C. Realistic case

In Fig. 4, we consider averaging ADMM and study the

relation between the relative frequency of the event {Π̂ = Π∗}
and snr for different n. We observe a transition in the region

[0.5, 1.5], which is consistent with our results in Thm. 5

which asserts that log (m× snr) ∼ log(n) is needed to ensure

successful recovery. However, it needs to be emphasized that

minΠ,B ‖Y −ΠXB‖2F is NP-hard [6] when p ≥ 1 and

hence the computed solution may not be the global optimum.

Less energy, i.e., ̺(B∗) log(1+snr) ∼ logn, may be sufficient

to achieve correct recovery.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

n = 150
n = 125
n = 100

Fig. 4: Realistic case: relation between correct probability

Pr
(
Π̂ = Π∗

)
and the signal snr for different n values (m =

100 and p = 10).

VII. CONCLUSION

In this paper, we have studied the unlabeled sensing problem

given multiple measurement vectors. First, we established

the statistical limits in terms of conditions on the snr im-

plying failure of recovery with high probability, namely,

̺(B∗) log (snr) . log(n). The tightness of these conditions

is consolidated by the corresponding condition for correct

recovery with B∗ being known. Without knowledge of B∗,

we needed log (m× snr) & logn for correct recovery, which

matches the lower bound for the oracle case with ̺(B∗) = 1.

By imposing the additional assumption dH(I,Π∗) ≤ hmax,

it can be proved that ̺(B∗) log (snr) & log(n) is sufficient

for correct recovery. Moreover, we proposed a computational

framework based on ADMM to tackle the computational dif-

ficulties associated with the computation of the ML estimator.

Simulation results largely corroborated our theoretical findings

with the exception of gaps that are likely attributable to the fact

that ADMM may deliver spurious local optima with potentially

different statistical properties compared to the global optimum

that is the object of our theoretical analysis. In future work, we

aim to bridge this gap by designing improved computational

schemes, e.g., based on more reliable initialization procedures

to avoid spurious local optima.
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APPENDIX A

NOTATIONS

For an arbitrary matrix A ∈ R
m×n, we denote by A:,i ∈ R

n

the i-th column of A while Ai,: ∈ R
m denotes the i-th

row, treated as column vector. Moreover, Aij denotes the

(i, j)-th element of the matrix A. The pseudo-inverse A†

of the matrix A is defined as
(
A⊤A

)−1
A⊤. We define

PA = AA† as the projection onto the column space of

A, while P⊥
A

= I − PA denotes the projection onto its

orthogonal complement. The singular value decomposition

(SVD) of the matrix A [19] (Section 2.4, P76) is represented

by SVD(A), such that SVD(A) = UΣV⊤, U ∈ R
m×m,

Σ ∈ R
m×n, and V ∈ R

n×n, where U⊤U = UU⊤ = Im×m,

V⊤V = VV⊤ = In×n. The operator vec(A) denotes

the vectorization of A that is obtained by concatenating the

columns of A into a vector.

We write ‖·‖F for the Frobenius norm while ‖·‖OP is used

for the operator norm, whose definitions can be found in [19]

(Section 2.3, P71). The ratio ̺(·) = ‖·‖2F/‖·‖
2
OP represents the

stable rank while r(·) represents the usual rank of a matrix.

We write π(·) for a permutation of {1, 2, · · · , n} that

moves index i to π(i), 1 ≤ i ≤ n. The corresponding

permutation matrix is denoted by Π. We use dH(·, ·) to denote

the Hamming distance between two permutation matrices, i.e.,
dH(Π1,Π2) =

∑n
i=1 1 (π1(i) 6= π2(i)).

For an event E , we denote its complement by E . In addition,

we use a ∨ b to denote the maximum of a and b while a ∧ b
to denote the minimum of a and b.

APPENDIX B

PROOF OF THM. 1

Proof. Without loss of generality, we assume that B∗ is

known. Note that if we cannot recover Π∗ even when B∗

is known, it is hopeless to recover Π∗ with unknown B∗. We

can reformulate the sensing relation Eq. (4)

Y = Π∗XB∗ +W,

as the following transmission process

Π∗ (i)→ Π∗XB∗ (ii)→ Π∗XB∗ +W︸ ︷︷ ︸
Y

, (20)

where in (i) the signal Π∗ is encoded to the code word

Π∗XB∗
:,i, and in (ii) the n codewords Π∗XB∗

:,i are transmit-

ted through n i.i.d Gaussian channels. With this reformulation,

we can treat the recovery of Π∗ as a decoding problem. Denote

the recovered permutation matrix as Π̂. Following a similar

approach as in [23] (Section 7.9, P206), we have

H(Π∗)
(a)
= H(Π∗ | X)

(b)
= H(Π∗ | Π̂,X) + I(Π∗; Π̂ | X)

(c)

≤ H(Π∗ | Π̂) + I(Π∗; Π̂ | X)

(d)

≤ 1 + log (|H |)Pr(Π̂ 6= Π∗) + I(Π∗; Π̂ | X)

(e)

≤ 1 + log (|H |)Pr(Π̂ 6= Π∗) + I(Π∗; Y | X)

(f)

≤ 1 + log (|H |)Pr(Π̂ 6= Π∗) +
n

2

∑

i

log

(
1 +

λ2i
σ2

)
,

where λi denote the i-th singular value of B∗, in (a) we use

the fact that X and Π∗ are independent, in (b) we use the

definition of the conditional mutual information I(Π∗; Π̂ |X),
in (c) we use H(Π∗ | Π̂,X) ≤ H(Π∗ | Π̂), in (d)
we use Fano’s inequality, in (e) we use the data-processing

inequality, noting that Π∗ → Π∗XB → Y forms a Markov

chain [23], and in (f) we use Lemma 7 to upper bound the
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conditional mutual information I(Π∗; Y | X). Background

on the tools used in steps (b)-(e) is provided in Appendix I

for the convenience of the reader.

We thus obtain the following lower bound on Pr(Π̂ 6= Π∗)

Pr(Π̂ 6= Π∗) ≥ H(Π∗)− 1− (n/2)
∑

i log
(
1 + λ2i /σ

2
)

log (|H |) ,

which is bounded below by 1/2 provided

H(Π∗) > 1 +
n

2

∑

i

log

(
1 +

λ2i
σ2

)
+

log (|H |)
2

,

and complete the proof.

Lemma 7. For the channel described in Eq. (20), we have

I(Π∗; Y:,1,Y:,2, . . . ,Y:,m| X) ≤ n

2

∑

i

log

(
1 +

λ2i
σ2

)
,

where λi denotes the i-th singular value of B∗.

Proof. Let vec (Y) (vec (W)) be the vector formed by con-
catenating Y:,1,Y:,2, · · · ,Y:,m (W:,1,W:,2, · · · ,W:,m), ac-
cording to the definition in Appendix A. For simplicity
of notation, we use I (Π∗; vec (Y) |X) as a shortcut for
I (Π∗; Y:,1,Y:,2, . . . ,Y:,m| X). We then calculate the con-
ditional mutual information I (Π∗; vec (Y) |X) as

I (Π∗; vec (Y) |X)
(i)
= h(vec(Y)|X)− h(vec(Y)|X,Π

∗)

(ii)
= EΠ∗,X,Wh (vec(Y)|X = x)− h(vec(W))

(iii)
= EΠ∗,X,Wh (vec(Y)|X = x)− mn

2
log σ2

(iv)

≤ EX

1

2
log det

(
EΠ∗,W|X=xvec (Y) vec (Y)⊤

)
− mn

2
log σ2

,

(v)

≤ 1

2
log detEΠ∗,X,Wvec (Y) vec (Y)⊤ − mn

2
log σ2

, (21)

where in (i) we use the definition of the conditional mutual

information I(Π∗; vec (Y) | X), in (ii) we have used that

h(vec (Y) | X,Π∗) = h(vec (Π∗XB+W) |X,Π∗)

= h(vec (W) |X,Π∗),

in (iii) we use that the mn entries of vec(W) are i.i.d

Gaussian distributed with entropy is 1
2 log(σ

2) each, in (iv)
we use a result in [23] (Thm 8.6.5, P254) which yields

h(Z) ≤ 1

2
log det cov(Z) ≤ 1

2
log detE[ZZ⊤],

where Z is an arbitrary RV with finite covariance matrix

cov(Z), and we use the concavity: E log det(·) ≤ log detE(·).
In the sequel, we compute the entries of the matrix

EΠ∗,X,Wvec (Y) vec (Y)⊤. For simplicity of notation, the

latter matrix will henceforth be denoted by Σ. First note

that vec (Y) equals the concatenation of Y:,1,Y:,2, · · · ,Y:,m.

We decompose the matrix Σ into sub-matrices Σi1,i2 =
EΠ∗,X,WY:,i1Y

⊤
:,i2 , 1 ≤ i1, i2 ≤ m, which corresponds to

the covariance matrix between Y:,i1 and Y:,i2 . The (j1, j2)-
th element of sub-matrix Σi1,i2 is defined as Σi1,i2,j1,j2 . The

latter can be expressed as

Σi1,i2,j1,j2 = EΠ∗,X,W (Yj1,i1Yj2,i2)

= EΠ∗,X,W

[(
XB∗

:,i1

)
π∗(j1)

+Wj1,i1

]

×
[(
XB∗

:,i2

)
π∗(j2)

+Wj2,i2

]

= EΠ∗,X

(〈
Xπ∗(j1),:,B

∗
:,i1

〉 〈
Xπ∗(j2),:,B

∗
:,i2

〉)

+ EWWj1,i1Wj2,i2 ,

where π∗ is the permutation corresponding to the permutation

matrix Π∗ as defined in Appendix A. We then split the

calculation into four sub-cases:




Case i1 = i2, j1 = j2: Σi1, i1, j1, j1 =
∥∥B∗

:,i1

∥∥2
2
+ σ2.

Case i1 6= i2, j1 = j2: Σi1,i2,j1,j1 =
〈
B∗

:,i1
,B∗

:,i2

〉
.

Case j1 6= j2: Σi1,i2,j1,j2 = 0.

In conclusion, the matrix Σ can be expressed as

Σ =




∥∥B∗
:,1

∥∥2
2
+ σ2

〈
B∗

:,1,B
∗
:,2

〉
· · ·

〈
B∗

:,1,B
∗
:,m

〉
〈
B∗

:,2,B
∗
:,1

〉 ∥∥B∗
:,2

∥∥2
2
+ σ2 · · ·

〈
B∗

:,2,B
∗
:,m

〉

...
. . .

...〈
B∗

:,m,B
∗
:,1

〉 〈
B∗

:,m,B
∗
:,2

〉
· · ·

∥∥B∗
:,m

∥∥2
2
+ σ2




︸ ︷︷ ︸
Σ1

⊗ In×n

where ⊗ denotes the Kronecker product [19] (Section 1.3.6,

P27). According to [19] (Section 12.3.1, P709), we have

det (Σ) = (det (Σ1))
n

(det (In×n))
m

(a)
=σ2nm

(
det

(
I+

B∗⊤B∗

σ2

))n

, (22)

where in (a) we have calculated det(Σ1) as

det (Σ1) = det
(
σ2I+B∗⊤B∗) = σ2m det

(
I+

B∗⊤B∗

σ2

)
.

By combining Eq. (21) and Eq. (22), we have obtained the

upper bound

I (Π∗; vec (Y) |X) ≤ n

2
log det

(
I+

B∗⊤B∗

σ2

)

(b)
=

∑

i

log

(
1 +

λ2i
σ2

)
,

where (b) can be verified via the singular value decomposition

SVD (B∗) = UΣV⊤ as introduced in Appendix A) and by

using basic properties of the matrix determinant [24] (Sec. 0.3,

P8).

APPENDIX C

PROOF OF PROP. 2

Proof. Observe that the sensing relation Y = Π∗XB+W is

equivalent to Π∗⊤Y = XB +Π∗⊤W. As a consequence of

the rotational invariance of the Gaussian distribution, Π∗⊤W
follows the same distribution as W. Since our proof applies to

any instance of the permutation matrix Π∗, we may assume

Π∗ = I w.l.o.g. We begin the proof by first presenting the

roadmap.
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• Stage I: Define W̃i,j as

W̃i,j =

〈
Wj,: −Wi,:,

B∗⊤(Xi,: −Xj,:)

‖B∗⊤(Xi,: −Xj,:)‖2

〉
,

for 1 ≤ i < j ≤ n, we would like to prove that
{
∃ (i, j), s.t. W̃i,j ≥

∥∥B∗⊤ (Xi,: −Xj,:)
∥∥
2

}
⊆
{
Π̂ 6= I

}
.

We then lower bound the probability Pr
(
Π̂ 6= I

)
as

Pr
(
Π̂ 6= I

)
≥ Pr

(
∃ (i, j), s.t. W̃i,j ≥

∥∥∥B∗⊤ (Xi,: −Xj,:)
∥∥∥
2

)
.

• Stage II: We lower bound the probability

Pr
(
∃ (i, j), s.t. W̃i,j ≥

∥∥B∗⊤ (Xi,: −Xj,:)
∥∥
2

)
by two

separate probabilities, namely

Pr
(
∃ (i, j), s.t. W̃i,j ≥

∥∥B∗⊤ (Xi,: −Xj,:)
∥∥
2

)

≥ Pr
(
W̃1,j0 ≥ ρ0

)
Pr
(∥∥B∗⊤ (X1,: −Xj0,:)

∥∥
2
≤ ρ0

)
,

where j0 is picked as argmaxjW̃1,j , and ρ0 is one positive

parameter waiting to be set.

• Stage III: Provided Condition (9) holds, we are allowed to

set ρ0 = 2
√
2σ2 log(n) without violating the requirement

of Lemma 9. We thereby conclude the proof by setting ρ0 =
2
√
2σ2 log(n) and invoking Lemma 8 and Lemma 9.

Detailed calculation comes as follows.

Stage I: We conclude the proof by showing if{
W̃i,j ≥

∥∥B∗⊤ (Xi,: −Xj,:)
∥∥
2

}
holds, we would have

∥∥Yi,: −B∗⊤Xj,:

∥∥2
2
+
∥∥Yj,: −B∗⊤Xi,:

∥∥2
2

≤
∥∥Yi,: −B∗⊤Xi,:

∥∥2
2
+
∥∥Yj,: −B∗⊤Xj,:

∥∥2
2
,

which implies that minΠ ‖Y −ΠXB∗‖2F ≤ ‖Y −XB∗‖2F
since Π can be chosen as the transposition that swaps Yi,: and

Yj,:. This implies failure of recovery, i.e., the event {Π̂ 6= I}.

Stage II: We lower bound the error probability Pr
(
Π̂ 6= I

)

as

Pr
(
Π̂ 6= I

)

≥ Pr
(
∃ (i, j), s.t. W̃i,j ≥

∥∥B∗⊤ (Xi,: −Xj,:)
∥∥
2

)

(i)

≥ Pr
(
W̃1,j0 ≥

∥∥B∗⊤ (X1,: −Xj0,:)
∥∥
2

)

≥ Pr
(
W̃1,j0 ≥ ρ0 |

∥∥B∗⊤ (X1,: −Xj0,:)
∥∥
2
≤ ρ0

)

× Pr
(∥∥B∗⊤ (X1,: −Xj0,:)

∥∥
2
≤ ρ0

)

(ii)
= Pr

(
W̃1,j0 ≥ ρ0

)
Pr
(∥∥B∗⊤ (X1,: −Xj0,:)

∥∥
2
≤ ρ0

)
,

where in (i) we pick j0 as argmaxjW̃1,j and in (ii) we use the

independence between W̃i,j and
∥∥B∗⊤ (Xi,: −Xj,:)

∥∥
2
.

Lemma 8. When n is large (n ≥ 10), we have

Pr

(
sup
j
W̃1,j ≥ 2

√
2σ2 log(n)

)
≥ 1− n−1.

Proof. This result is quite standard and can be easily proved

by combining Sec. 2.5 (P31) and Thm 5.6 (P126) in [25]. We

omit the details for the sake of brevity.

Lemma 9. Given that ρ0 ≥ 2
(
1 + 2

√
log 2

c1̺(B∗)

)
‖B∗‖F, we

have

Pr
(∥∥B∗⊤ (Xi,: −Xj,:)

∥∥
2
≤ ρ0

)
≥ 49

64
,

where c1 > 0 is some constant, and ̺(B∗) is the stable rank

of the matrix B∗.

Proof. First we define A
(i,j)
ρ0

and the set B as

A
(i,j)
ρ0

,
{∥∥B∗⊤ (Xi,: −Xj,:)

∥∥
2
≤ ρ0

}
, 1 ≤ i < j ≤ n;

B ,
{
x|
∥∥B∗⊤x

∥∥
2
≤ ρ0

2

}
.

We then define a RV ui for each Xi,: via ui = 1(Xi,: ∈ B). It

is not hard to verify that {ui = 1, uj = 1} ⊆ A
(i,j)
ρ0

because

∥∥B∗⊤ (Xi,: −Xj,:)
∥∥
2
≤
∥∥B∗⊤Xi,:

∥∥
2
+
∥∥B∗⊤Xj,:

∥∥
2
≤ ρ0.

We hence have the relation

Pr
(
A

(i,j)
ρ0

)
≥ Pr (ui = 1, uj = 1)

(i)
= Pr (ui = 1)Pr (uj = 1) = ζ2, (23)

where ζ is defined as Pr(uk = 1), k ∈ {1, . . . , n}, is

an arbitrary integer, and (i) is because of the independence

between Xi,: and Xj,:. It thus remains to lower bound

the probability Pr
(∥∥B∗⊤x

∥∥
2
≤ ρ0/2

)
. Setting ρ0 such that

ρ0/2 ≥ (1 + t)‖B∗‖F, we need to establish that

Pr
(∥∥B∗⊤x

∥∥
2
≤ ρ0

2

)
≥ Pr

(∥∥B∗⊤x
∥∥
2
≤ (1 + t)‖B∗‖F

)
.

(24)

According to Thm 2.1 in [26], we have

Pr
(∥∥B∗⊤x

∥∥
2
≥ (1 + t)‖B∗‖F

)

≤ Pr

(∣∣∣∣
∥∥B∗⊤x

∥∥
2
− ‖B∗‖F

∣∣∣∣ ≥ t‖B∗‖F

)

≤ 2e−c1t
2̺(B∗) ∀t ≥ 0.

Hence, we have

ζ = Pr
(∥∥B∗⊤x

∥∥
2
≤ ρ0

2

)
≥ Pr

(∥∥B∗⊤x
∥∥
2
≤ (1 + t)‖B∗‖F

)

≥ 1− 2e−c1t
2̺(B∗).

Setting t = 2
√

log 2
c1̺(B∗) , we have ζ ≥ 7/8, which implies

Pr
(∥∥B∗⊤ (Xi,: −Xj,:)

∥∥
2
≤ ρ0

)
≥ ζ2 ≥ 49/64 in view of

Eq. (23) and completes the proof.

APPENDIX D

PROOF OF COROL. 3

Proof. First we define E = 1

{
dH(Π̂,Π∗) ≥ D

}
, which

corresponds to the failure in obtaining an approximation of Π∗

within a Hamming ball of radius D. Moreover, we suppose

that Π∗ follows a uniform distribution over the set of all n!
possible permutation matrices.
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Then we consider the conditional entropy

H(E ,Π∗| Π̂,Y,X). The latter can be decomposed as

H(E ,Π∗| Π̂,Y,X)

= H(Π∗ | Π̂,Y,X) +H(E | Π∗, Π̂,Y,X)

(i)
= H(Π∗ | Π̂,Y,X)

(ii)
= H(Π∗ | Y,X), (25)

where in (i) we have used that H
(
E | Π∗, Π̂,Y,X

)
= 0

since E is deterministic once Π∗, Π̂,Y,X are given, and in

(ii) we use the fact I(Π̂;Π∗ | Y,X) = 0 since Π̂ and Π∗

are independent given X and Y.

At the same time, we have

H
(
E ,Π∗| Π̂,Y,X

)

= H
(
E | Π̂

)
+H

(
Π∗ | E , Π̂,Y,X

)

(a)

≤ log 2 +H
(
Π∗ | E , Π̂,Y,X

)

≤ log 2 + Pr(E = 1)H(Π∗ | E = 1, Π̂,Y,X)

+ Pr(E = 0)H(Π∗ | E = 0, Π̂,Y,X)

≤ log 2 + Pr (E = 1)H(Π∗ | E = 1, Π̂)

+ Pr (E = 0)H(Π∗ | E = 0, Π̂)

≤ log 2 + (1− Pr (E = 0))H(Π∗)

+ Pr (E = 0) log
n!

(n−D + 1)!
(b)
= log 2 +H(Π∗)− Pr (E = 0) log(n−D + 1)!, (26)

where in (a) we use the fact that E is binary and hence

H(E |Π̂) ≤ log(2), and in (b) we use the fact that H(Π∗) =
log(n!). Combing Eq. (25) and Eq. (26) yields that

Pr (E = 0) ≤ I(Π∗; Y, X) + log 2

log(n−D + 1)!

(c)
=

I(Π∗;X) + I(Π∗;Y|X) + log 2

log(n−D + 1)!

(d)
=

I(Π∗;Y|X) + log 2

log(n−D + 1)!
(e)

≤ (n/2)
∑

i log
(
1 + λ2i /σ

2
)
+ log 2

log(n−D + 1)!
, (27)

where (c) is because of the chain rule of I(Π∗;Y,X), (d) is

because Π∗ and X are independent and hence I(Π∗;X) = 0,

and (e) is because of Lemma 7. According to Eq. (27), if we

have n
∑

i log
(
1 + λ2i /σ

2
)
+ log 4 ≤ log(n − D + 1)!, we

conclude that Pr(E = 1) ≥ 1/2.

APPENDIX E

PROOF OF THM. 4

Proof. Following a similar argument as in Appendix C, we

assume that Π∗ = I w.l.o.g. and consider correct recovery

{Π̂ = I}. We start by providing a brief roadmap of the proof.

• Stage I: Define the event E as

E ,
n⋂

i=1

{∥∥Yi,: −B∗⊤Xi,:

∥∥2
2
< min

j 6=i

∥∥Yi,: −B∗⊤Xj,:

∥∥2
2

}
.

We first show that
{
Π̂ 6= I

}
⊆ E .

• Stage II: We would like to upper bound the probability

of error Pr(Π̂ 6= I) by Pr(E ). By re-arranging terms, we

can upper bound E by E ⊆ E1

⋃
E2, where E1 and E2 are

defined as

E1 ,
n⋃

i=1

⋃

j 6=i

{
2

〈
Wi,:,

B∗⊤ (Xj,: −Xi,:)

‖B∗⊤ (Xj,: −Xi,:)‖2

〉
≥ δ

}

E2 ,
n⋃

i=1

⋃

j 6=i

{∥∥B∗⊤ (Xj,: −Xi,:)
∥∥
2
≤ δ
}
,

where δ > 0 is an arbitrary positive number. We then upper

bound Pr (E1) and Pr (E2) separately.

• Stage III: Treating the above upper bounds as functions of

δ, we complete the proof by choosing δ appropriately and

invoking the Condition (10).

We now turn to the details of the proof.

Stage I: We first establish that
{
Π̂ 6= I

}
⊆ E c by showing

that E ⊆
{
Π̂ = I

}
. Notice that E can be rewritten as

E =

n⋂

i=1

⋂

j 6=i

{∥∥Yi,: −B∗⊤Xi,:

∥∥2
2
<
∥∥Yi,: −B∗⊤Xj,:

∥∥2
2

}
.

Based on the definition of the ML estimator (5), we must have

∥∥∥Y − Π̂XB∗
∥∥∥
2

2
≤ ‖Y −XB∗‖22, (28)

Assuming that Π̂ 6= I, then for each term
∥∥Yi,: −B∗⊤Xi,:

∥∥
2

we have
∥∥Yi,: −B∗⊤Xi,:

∥∥2
2
≤ min

j 6=i

∥∥Yi,: −B∗⊤Xj,:

∥∥2
2

<

∥∥∥∥Yi,: −B∗⊤
(
Π̂X

)
i,:

∥∥∥∥
2

2

,

which leads to ‖Y −XB∗‖22 <
∥∥∥Y − Π̂XB∗

∥∥∥
2

2
, contradict-

ing Eq. (28). Hence we have proved that E ⊆
{
Π̂ = I

}
.

Stage II: In this stage, we will prove that E ⊆ E1

⋃
E2. First,

we expand E as

E ,
n⋃

i=1

⋃

j 6=i

{∥∥Yi,: −B∗⊤Xi,:

∥∥2
2
≥
∥∥Yi,: −B∗⊤Xj,:

∥∥2
2

}
.

Note that for each event in the union, the left hand side can
be rewritten as ‖Wi,:‖22 and the right hand side can be written
as
∥∥∥Yi,: −B

∗⊤
Xj,:

∥∥∥
2

2
=
∥∥∥B∗⊤

Xi,: +Wi,: −B
∗⊤

Xj,:

∥∥∥
2

2

= ‖Wi,:‖22 +
∥∥∥B∗⊤ (Xi,: −Xj,:)

∥∥∥
2

2
+ 2

〈
Wi,:, B

∗⊤ (Xi,: −Xj,:)
〉
.

Hence, the event E is equivalent to

E =

n⋃

i=1

⋃

j 6=i

{
2

〈
Wi,:,

B∗⊤ (Xj,: −Xi,:)

‖B∗⊤ (Xj,: −Xi,:)‖2

〉

≥
∥∥B∗⊤ (Xj,: −Xi,:)

∥∥
2

}
⊆ E1

⋃
E2,
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since otherwise we will have the inequality reversed. Hence,

we can upper bound Pr(E ) as

Pr
(
E
)
≤ Pr(E1) + Pr(E2)

≤
n∑

i=1

∑

j 6=i

Pr

{
2

〈
Wi,:,

B∗⊤ (Xj,: −Xi,:)

‖B∗⊤ (Xj,: −Xi,:)‖2

〉
≥ δ

}

︸ ︷︷ ︸
,P1

+
n∑

i=1

∑

j 6=i

Pr
(∥∥B∗⊤ (Xj,: −Xi,:)

∥∥
2
≤ δ
)

︸ ︷︷ ︸
,P2

,

where the terms P1 and P2 can be bounded by Lemma 10

and Lemma 11 (given below), respectively.

Stage III: Set δ2 as 16σ2 log n
ǫ0

, where ǫ0 = α
κ̺(B∗)
0 /n. We

can bound P1 as

P1 ≤ n2 exp

(
−16σ2

8σ2
log

n

ǫ0

)
= ǫ20. (29)

At the same time, we can show that P2 is no greater than

ǫ20. To invoke Lemma 11, first we need to verify the condition

δ2 < α2
0‖B∗‖2F/2. This is proved by

‖B∗‖2F
σ2

(i)

≥ 32 log

(
n

ǫ0

)(
n

ǫ0

)4/κ̺(B∗)

(ii)
= 32 log

(
n

ǫ0

)(
n2

α
κ̺(B∗)
0

)4/κ̺(B∗)

(iii)

≥ 32

α2
0

log

(
n

ǫ0

)
,

where in (i) we use condition (10), in (ii) we use the definition

of ǫ0 = α
κ̺(B∗)
0 /n, and in (iii) we use α0 ∈ (0, 1) and n ≥ 1.

We can then invoke Lemma 11 and bound P2 as

P2 ≤ n
2

(
2δ2

‖B∗‖2
F

)κ̺(B∗)/2

(a)
= n

2 exp

[
−κ̺(B∗)

2

(
log

(
‖B∗‖2F
σ2

)
− log

(
32 log

(
n

ǫ0

)))]

(b)

≤ n
2 exp

[
−κ̺(B∗)

2

(
4

κ̺(B∗)
log

n

ǫ0

)]
= ǫ

2
0, (30)

where in (a) we plug in the definition δ2 = 16σ2 log(n/ǫ0),
and in (b) we use condition (10). Combining the bounds for

P1 in Eq. (29) and P2 in Eq. (30) will complete the proof.

Lemma 10. It holds that

n∑

i=1

∑

j 6=i

Pr

(
2

〈
Wi,:,

B∗⊤ (Xj,: −Xi,:)

‖B∗⊤ (Xj,: −Xi,:)‖2

〉
≥ δ

)

≤ n2e−δ2/8σ2

.

Proof. First, we consider a single term, namely

2
〈
Wi,:,

B
∗⊤(Xj,:−Xi,:)

‖B∗⊤(Xj,:−Xi,:)‖2

〉
, (1 ≤ i < j ≤ n). With X

fixed, it is easy to check that this term is a Gaussian random

variable with zero mean and variance 4σ2.

Then the probability Pr
(
2
〈
Wi,:,

B
∗⊤(Xj,:−Xi,:)

‖B∗⊤(Xj,:−Xi,:)‖2

〉
≥ δ
)

can be bounded as

Pr

(
2

〈
Wi,:,

B∗⊤ (Xj,: −Xi,:)

‖B∗⊤ (Xj,: −Xi,:)‖2

〉
≥ δ

)

= EXPr

(
2

〈
Wi,:,

B∗⊤ (Xj,: −Xi,:)

‖B∗⊤ (Xj,: −Xi,:)‖2

〉
≥ δ | X

)

(i)

≤ EX e−δ2/8σ2

= e−δ2/8σ2

,

where in (i) we use the tail bound for the Gaussian RV

Wi,:. Combining the above together, we show that P1 ≤
n2e−δ2/8σ2

and complete the proof.

Lemma 11. Given that δ2 <
α2

0
‖B∗‖2

F

2 , we have

n∑

i=1

∑

j 6=i

Pr
(∥∥B∗⊤(Xj,: −Xi,:)

∥∥
2
≤ δ
)
≤ n2

(
2δ2

‖B∗‖2F

)κ̺(B∗)/2

,

where α0 ∈ (0, 1) is a universal constant.

Proof. We consider an arbitrary term
∥∥B∗⊤(Xi,: −Xj,:)

∥∥
2
,

(i < j), and define Z =
Xi,:−Xj,:√

2
. It is easy to verify that Z

is a p-dimensional random vector with i.i.d. N (0, 1)-entries.

We then have

Pr
(∥∥B∗⊤(Xi,: −Xj,:)

∥∥
2
≤ δ
)
= Pr

(∥∥B∗⊤Z
∥∥2
2
≤ 2δ2

)
.

According to Lemma 2.6 in [27] (which is re-stated in Ap-

pendix H herein), this probability can be bounded as

Pr
(∥∥B∗⊤Z

∥∥2
2
≤ 2δ2

)
= Pr

(∥∥B∗⊤Z
∥∥
2
≤

√
2δ
)

≤ exp

(
−κ̺(B∗) log

(‖B∗‖F√
2δ

))
=

(
2δ2

‖B∗‖2F

)κ̺(B∗)/2

,

provided δ2 < α2
0‖B∗‖2F/2, where α0 ∈ (0, 1) is a universal

constant. With the union bound, we complete the proof.

APPENDIX F

PROOF OF THM. 5

Proof. Before we proceed, we give an outline of our proof.

• Stage I: We decompose the event
{
Π̂ 6= Π∗

}
as

{
Π̂ 6= Π

∗
}
=

⋃

Π 6=Π∗

{∥∥∥P⊥
ΠXY

∥∥∥
2

F
≤
∥∥∥P⊥

Π∗XY

∥∥∥
2

F

}
, (31)

and bound the probability of each individual event in

Eq. (31).
• Stage II: For fixed Hamming distance dH(Π,Π∗) = h, we

will prove

Pr

(∥∥∥P⊥
ΠXY

∥∥∥
2

F
≤
∥∥∥P⊥

Π∗XY

∥∥∥
2

F
, dH(Π,Π

∗) = h

)

≤ exp

(
− t× snr

72

)
+ 6r

[
tn

2n
n−p

mh
exp

(
1− tn

2n
n−p

mh

)] h
10

+ r exp
(
−n log

n

2

)
+ 2 exp

(
− 1

288

(
t2 × snr2

mh
∧ (t× snr)

))
,

(32)
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where r denotes the rank of B∗, and t > 0 is an arbitrary

positive number.

• Stage III: Under the condition specified by

Eq. (13) and snr × n− 2n
n−p ≥ 1, we set t as√

mh log
(

snr ×mn− 2n
n−p

)
/snr and show that

Pr
(∥∥P⊥

ΠXY
∥∥2

F
≤
∥∥P⊥

Π∗XY
∥∥2

F
, dH(Π,Π∗) = h

)

≤ 9n−(1+ǫ)h + r exp
(
−n log n

2

)
.

• Stage IV: We prove that

Pr
(
Π̂ 6= Π∗

)
≤ 10.36

(
1

nǫ (nǫ − 1)
∨ 1

nǫ

)
,

when n is large, where ǫ > 0 is some positive constant.

As the outline of our proof, we start with providing the

details of Stage I and Stage IV, while the proofs of Stage

II and Stage III are given in Lemma 12 and Lemma 13,

respectively.

Stage I: From the definition of ML estimator in Eq. (5), failure

of recovery requires at least one pair (Π,B) distinct from

(Π∗,B∗) such that

‖Y −ΠXB‖2F ≤ ‖Y −Π∗XB∗‖2F.

Note that the optimal B corresponding to Π can be expressed

as B = (ΠX)†Y, where (ΠX)
† ,

(
X⊤X

)−1
X⊤Π⊤. Back-

substitution yields

∥∥Y −ΠX(ΠX)+Y
∥∥2

F
=
∥∥P⊥

ΠXY
∥∥2

F
,

which proves the claim.

Stage II and Stage III: As stated above, the detailed proof

can be found in Lemma 12 and Lemma 13.
Stage IV: We have

Pr
(
Π̂ 6= Π

∗
)

≤
∑

h≥2

(
n

h

)
h!Pr

(∥∥∥P⊥
ΠXY

∥∥∥
2

F
≤
∥∥∥P⊥

Π∗XY

∥∥∥
2

F
, dH(Π,Π

∗) = h

)

(i)

≤
∑

h≥2

(
n

h

)
h!
(
9n−(1+ǫ)h + r exp

(
−n log

n

2

))

(ii)

≤ 9
∑

h≥2

n
h
n
−(1+ǫ)h + r

∑

h≥2

n! exp
(
−n log

n

2

)

(iii)

≤ 9
∑

h≥2

n
−ǫh + r

∑

h≥2

e
√
n exp

(
n log n− n log

(
n

2

)
− n

)

≤ 9

nǫ (nǫ − 1)
+ e

∑

h

rn
1

2 exp
(
−n log

(
e

2

))

(iv)

≤ 9

nǫ (nǫ − 1)
+

e

2

∑

h

n
3

2 exp
(
−n log

( e
2

))

≤ 9

nǫ (nǫ − 1)
+

e

2
n

5

2 exp
(
−n log

( e
2

))

(v)

≤ 9

nǫ (nǫ − 1)
+

e

2
exp (−ǫ log n)

≤ 10.36

(
1

nǫ (nǫ − 1)
∨ 1

nǫ

)
,

where in (i) we use Eq. (32), in (ii) we use n!
(n−h)! ≤ nh and

n!
(n−h)! ≤ n!, in (iii) we use Stirling’s approximation in the

form n! ≤ enn+0.5e−n, in (iv) we use r ≤ min(m, p) and

p ≤ n
2 (according to our assumption in Sec. II), and in (v),

we use n log( e2 ) >
(
5
2 + ǫ

)
logn when n is sufficiently large

(e.g., when ǫ = 0.5, we require n ≥ 36; when ǫ = 1, we

require n ≥ 44). The proof is hence complete.

Lemma 12. We have

Pr

(∥∥∥P⊥
ΠXY

∥∥∥
2

F
≤
∥∥∥P⊥

Π∗XY

∥∥∥
2

F
, dH(Π,Π

∗) = h

)

≤ exp

(
− t× snr

72

)
+ 6r

[
tn

2n
n−p

mh
exp

(
1− tn

2n
n−p

mh

)] h
10

+r exp
(
−n log

(n
2

))
+ 2 exp

(
− 1

288

(
t2 × snr2

mh
∧ (t× snr)

))
,

where t < mh is an arbitrary positive number.

Proof. Define the event E as

E ,
{∥∥P⊥

ΠX
Y
∥∥2

F
≤
∥∥P⊥

Π∗X
Y
∥∥2

F
, dH(Π,Π∗) = h

}
.

we then separately bound the probability Pr (E ) based on the

whether TΠ ≤ t‖B∗‖2F/m or not, where TΠ is defined as

TΠ =
∥∥P⊥

ΠXΠ∗XB∗∥∥2
F
. (33)

Case I: We assume TΠ ≤ t‖B∗‖2F/m and obtain

Pr

(
E , TΠ ≤ t‖B∗‖2

F

m

)
≤ Pr

(
TΠ ≤ t‖B∗‖2

F

m

)
.

We then use that SVD (B∗) = UΣV⊤ (as defined in

Appendix A), such that Σ = diag (β1, β2, · · · , βr, 0, · · · ),
where r denotes the rank of B∗ (r ≤ min(m, p)), and βi
denotes the corresponding singular values.

Due to the rotational invariance of the Gaussian distribution

and V being unitary, it is easy to check that TΠ has the same

distribution as ‖P⊥
X
ΠXΣ‖2F . Therefore, we have

Pr

(
TΠ ≤ t‖B∗‖2F

m

)
≤

r∑

i=1

Pr

(∥∥∥P⊥
ΠXΠ

∗
Xβiei

∥∥∥
2

F
≤ tβ2

i

m

)

(i)

≤ r


exp

(
−n log

(
n

2

))
+ 6

[
tn

2n
n−p

mh
exp

(
1− tn

2n
n−p

mh

)] h
10


 ,

where (i) follows from Lemma 5 in [6].

Case II: We have TΠ > t‖B‖2F/m. Defining the events E1

and E2 as

E1 ,

{ ∥∥P⊥
ΠX

Y
∥∥2

F
−
∥∥P⊥

ΠX
W
∥∥2

F
≤ 2TΠ

3

}
;

E2 ,

{ ∣∣∣∣
∥∥P⊥

Π∗X
W
∥∥2

F
−
∥∥P⊥

ΠX
W
∥∥2

F

∣∣∣∣ ≥
TΠ
3

}
,

(34)

where we omit the condition dH(Π,Π∗) = h, TΠ >
t‖B∗‖2F/m for simplicity. We first provide the basic proof

structure.

• Step II.(A): We show E1

⋂
E2 ⊆ E , which implies E ⊆

E1

⋃
E2. Invoking the union bound, we have

Pr

(
E , TΠ >

t‖B∗‖2F
m

)
≤ Pr(E1

⋃
E2) ≤ Pr(E1)+Pr(E2).
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• Step II.(B): We separately upper bound Pr(E1) and Pr(E2).

We now turn to the proof details.

Step II.(A) Conditional on E1

⋂
E2, we have

∥∥P⊥
ΠXY

∥∥2
F
−
∥∥P⊥

Π∗XY
∥∥2

F

(a)
=
∥∥P⊥

ΠX
Y
∥∥2

F
−
∥∥P⊥

ΠX
W
∥∥2

F
+
∥∥P⊥

ΠX
W
∥∥2

F
−
∥∥P⊥

Π∗X
W
∥∥2

F

≥
∥∥P⊥

ΠXY
∥∥2

F
−
∥∥P⊥

ΠXW
∥∥2

F
−
∣∣∣
∥∥P⊥

ΠXW
∥∥2

F
−
∥∥P⊥

Π∗XY
∥∥2

F

∣∣∣
(b)
>

2TΠ
3

− TΠ
3

> 0,

where in (a) we use the fact P⊥
Π∗X

Y = P⊥
Π∗X

W, and in (b)
we use the definitions of E1 and E2.

Step II.(B) Then we separately bound Pr(E1) and Pr(E2).
Regarding Pr(E1), we first expand

∥∥P⊥
ΠXY

∥∥2
F
−
∥∥P⊥

ΠXW
∥∥2

F

=
∥∥P⊥

ΠX
Π∗XB∗∥∥2

F
+ 2

〈
P⊥
ΠX

Π∗XB∗, P⊥
ΠX

W
〉
.

Conditional on the sensing matrix X, we have that∥∥P⊥
ΠX

Y
∥∥2

F
−
∥∥P⊥

ΠX
W
∥∥2

F
follows a Gaussian distribution,

namely, N (TΠ, 4σ
2TΠ). Therefore, we obtain

Pr(E1) = E1 (E1)

(c)
= EX

[
1

(
TΠ >

t‖B∗‖2F
m

)

× EW1

(∥∥P⊥
ΠXY

∥∥2
F
−
∥∥P⊥

ΠXW
∥∥2

F
≤ 2TΠ

3

)]

(d)

≤ EX

[
1

(
TΠ >

t‖B∗‖2F
m

)
× exp

(
− TΠ
72σ2

)]

≤ exp

(
− t‖B

∗‖2F
72mσ2

)
= exp

(
− t× snr

72

)
(35)

where (c) results from independence of X and W, and in (d)
we use a standard tail bound for Gaussian random variables.

Next, we bound Pr(E2). We have
∥∥P⊥

Π∗XW
∥∥2

F
−
∥∥P⊥

ΠXW
∥∥2

F
= ‖PΠXW‖2F − ‖PΠ∗XW‖2F

=
∥∥PΠX\Π∗XW

∥∥2
F
−
∥∥PΠ∗X\ΠXW

∥∥2
F
,

where ΠX \ Π∗X (Π∗X \ ΠX) is the short-hand for

range (ΠX)\ range (Π∗X) (range (Π∗X)\ range (ΠX)). Set-

ting k = p ∧ h, we have that
∥∥PΠX\Π∗XW

∥∥2
F
/σ2 is χ2-RV

with mk degrees of freedom according to Appendix B.1 in [6].

We conclude that

Pr (E2)

≤ 2Pr

(∣∣∣
∥∥PΠX\Π∗XW

∥∥2
F
−mkσ2

∣∣∣ ≥ TΠ
6
, TΠ >

t‖B∗‖2F
m

)

(e)

≤ 2 exp

(
−1

8

(
t2 × snr2

36mk
∧ t× snr

6

))

≤ 2 exp

(
−1

8

(
t2 × snr2

36mh
∧ t× snr

6

))
, (36)

where in (e) we use the concentration inequality for χ2-RVs

given in Appendix H, Lemma 19. Combing Eq. (35) and

Eq. (36) will give us

Pr

(
E , TΠ >

t‖B∗‖2F
m

)

≤ exp

(
− t× snr

72

)
+ 2 exp

(
− 1

288

(
t2 × snr2

mh
∧ (t× snr)

))
.

Lemma 13. Given that snr×n− 2n
n−p ≥ 1 and log(m× snr) ≥

380
(
1 + ǫ+ n log(n)

190(n−p) +
1
2 log r(B

∗)
)

, where ǫ > 0 are some

constants, we have

exp

(
− t× snr

72

)
+ 2 exp

(
− 1

288

(
t2 × snr2

mh
∧ (t× snr)

))

+ 6r

[
tn

2n
n−p

mh
exp

(
1− tn

2n
n−p

mh

)] h
10

≤ 9n−(1+ǫ)h
.

Proof. Here we choose t as
√
mh log

(
snr ×mn− 2n

n−p

)
/snr.

Easily we can verify that t < mh. Next, we separately discuss

the following terms

• T1 , exp (−t× snr/72).

• T2 , exp
(
−
(

t2×snr2

mh ∧ (t× snr)
)
/288

)
.

• T3 , r

[
tn

2n
n−p

mh
exp

(
1− tn

2n
n−p

mh

)] h
10

.

Term T1: We have

exp

(
− t× snr

72

)
= exp

(
−
√
mh

72
log
(

snr ×mn
− 2n

n−p

))

≤ exp

(
− h

72
log
(

snr ×mn
− 2n

n−p

))
. (37)

Term T2: Provided that
(
t2 × snr2/(mh)

)
∧ (t× snr) = t×

snr, the term T2 is of a similar form as T1 in Eq. (37). Here

we focus on the case in which t2×snr2

mh ∧ (t× snr) = t2×snr2

mh .
The right hand side of this equality can be expanded as

t2 × snr2

mh
= h log2

(
snr ×mn

− 2n
n−p

) (i)

≥ h log
(

snr ×mn
− 2n

n−p

)
,

where in (i) we use the fact snr×mn− 2n
n−p ≥ 323, which can

be verified by Eq. (13). We then obtain

T2 ≤ exp

(
− h

288
log
(

snr ×mn
− 2n

n−p

))
. (38)

Term T3: We have

r

[
tn

2n
n−p

mh
exp

(
1− tn

2n
n−p

mh

)] h
10

= r exp

[
− h

10

(
log

mh

tn
2n

n−p

+
tn

2n
n−p

mh
− 1

)]

(i)
= r exp

[
− h

10

(
−1

2
log(m)− log

log(z)

z
+

√
m log(z)

z
− 1

)]

≤ r exp

[
− h

10

(
−1

2
log(m)− log

log(z)

z
+

log(z)

z
− 1

)]

(ii)

≤ r exp

[
− h

10

(
log(z)

1.9
− log(m)

2

)]

(iii)

≤ r exp

[
− h

380
log(snr ×mn− 2n

n−p )

]
, (39)
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where in (i) we set z = snr×mn− 2n
n−p ≥ 323, in (ii) we use

the fact
log(z)

z − 1 − log log(z)
z ≥ log(z)

1.9 for z ≥ 323, and in

(iii) we use the fact snr × n− 2n
n−p ≥ 1.

Combining Eq. (37), (38) and (39), we conclude that

exp

(
− t× snr

72

)
+ exp

(
− 1

288

(
t2 × snr2

mh
∧ (t× snr)

))

+ 6r

[
tn

2n
n−p

mh
exp

(
1− tn

2n
n−p

mh

)] h
10

≤ 9r exp

[
− h

380
log
(

snr ×mn
− 2n

n−p

)]
.

Under the condition specified by Eq. (13), we have

log
(

snr ×mn− 2n
n−p

)

380
=

log (m× snr)

380
− n log(n)

190(n− p)

≥ (1 + ǫ) logn+
1

2
log r.

Hence, we have

r exp

(
− h

380
log
(

snr ×mn− 2n
n−p

))

≤ r exp

[
−h (1 + ǫ) logn− h

2
log r

]
(ii)

≤ n−(1+ǫ)h,

where in (ii) we have r1−
h
2 ≤ 1 since h ≥ 2. This completes

the proof.

APPENDIX G

PROOF OF THM. 6

Proof. Here we adopt the same proof strategy as in Thm. 5.

For the sake of brevity, we only present the parts that are

different compared with the proof of Thm. 5.

• Stage I: Given the requirement dH(I,Π∗) ≤ hmax, the

triangle inequality implies that

dH(Π̂,Π∗) ≤ dH(I, Π̂) + dH(I,Π∗) ≤ 2hmax.

Hence, we can confine ourselves to the case in which

dH(Π,Π∗) ≤ 2hmax.

• Stage II: We replace Lemma 12 with Lemma 14.

• Stage III: We replace Lemma 13 with Lemma 16.

• Stage IV: We use the same argument as Stage IV in proving

Thm. 5 and complete the proof.

Lemma 14. Given that rh ≤ n/4 and t ≤ 0.125h, we have

Pr
(∥∥P⊥

ΠX
Y
∥∥2

F
≤
∥∥P⊥

Π∗X
Y
∥∥2

F
, dH(Π,Π∗) = h

)

≤ 6 exp

(
−c0h̺(B

∗)

5

)

+ exp

(
rh

2

(
log

(
t

h

)
− t

h
+ 1

)
+ 4.18rh

)

+ 2 exp

(
−mt× snr

288

(
t× snr

h
∧ 1

))

+ exp

(
−mt× snr

72

)
.

Proof. Similar to the proof of Lemma 12, we separately bound

Pr
(∥∥P⊥

ΠX
Y
∥∥2

F
≤
∥∥P⊥

Π∗X
Y
∥∥2

F
, dH(Π,Π∗) = h

)
based on

whether TΠ ≤ t‖B∗‖2F or not.

Case I: We assume that TΠ ≤ t‖B∗‖2F and obtain the bound

Pr

(∥∥∥P⊥
ΠXY

∥∥∥
2

F
≤
∥∥∥P⊥

Π∗XY

∥∥∥
2

F
, dH(Π,Π

∗) = h, TΠ ≤ t‖B∗‖2
F

)

≤ Pr
(
TΠ ≤ t‖B∗‖2

F

)
.

Here, the goal is to prove that, given rh ≤ n/4, we have

Pr
(
TΠ ≤ t‖B∗‖2F

)
≤ 6 exp

(
−c0h̺(B

∗)

5

)

+ exp

(
rh

2

(
log

(
t

h

)
− t

h
+ 1

)
+ 4.18rh

)
,

where t < 0.125h, and c0 is some positive constant.

We observe that
∥∥P⊥

X
ΠXB∗∥∥2

F
=
∥∥P⊥

X
(I−Π)XB∗∥∥2

F
and

then define two events Ω1 and Ω2 as

Ω1 ,

{∥∥∥∥P
⊥
X

(I−Π)XB∗

‖(I−Π)XB∗‖F

∥∥∥∥
2

F

≤ t‖B∗‖2F
‖(I−Π)XB∗‖2F

}
,

Ω2 ,
{
0 < ‖(I−Π)XB∗‖2F ≤ h‖B∗‖2F

}
.

Note that

Ω1

⋂
Ω2

(i)
=

{∥∥∥∥P
⊥
X

(I−Π)XB∗

‖(I−Π)XB∗‖F

∥∥∥∥
2

F

≤ t‖B∗‖2F
‖(I−Π)XB∗‖2F

,

‖(I−Π)XB∗‖2F > h‖B∗‖2F
}

⊆
{∥∥∥∥P

⊥
X

(I−Π)XB∗

‖(I−Π)XB∗‖F

∥∥∥∥
2

F

<
t

h

}
,

where in (i) we omit the case where {‖(I−Π)XB∗‖F = 0}
since it is of measure zero. We obtain

Pr (Ω1) = Pr
(
Ω1

⋂
Ω2

)
+ Pr

(
Ω1

⋂
Ω2

)

≤ Pr (Ω2) + Pr
(
Ω1

⋂
Ω2

)
.

Then we separately bound Pr(Ω2) and Pr
(
Ω1

⋂
Ω2

)
.

Case I.(A) Bounding Pr (Ω2): With SVD (B∗) = UΣV⊤,

we can verify that

‖(I−Π)XB∗‖2F =
∥∥(I−Π)XUΣV⊤∥∥2

F

= ‖(I−Π)XUΣ‖2F =
∥∥∥(I−Π) X̃Σ

∥∥∥
2

F
,

where X̃ , XU. Due to the rotational invariance of the

Gaussian distribution, X̃ has the same distribution X.
When h = 2, we assume w.l.o.g. that the first row and

second row are permuted. Then we have

Pr

(∥∥∥(I−Π)X̃Σ

∥∥∥
2

F
≤ 2‖B∗‖2

F

)

= Pr

(
2

r∑

i=1

β
2
i

(
X̃1,i − X̃2,i

)2
≤ 2

(
r∑

i=1

β
2
i

))

(ii)
= Pr

(
r∑

i=1

β
2
i z̃

2
1,i ≤

∑r
i=1 β

2
i

2

)

(iii)
= Pr

(〈
z̃, Σ

2
z̃
〉
≤
∑r

i=1 β
2
i

2

)
(iv)

≤ 2 exp (−c0̺(B
∗)) , (40)
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where Σ = diag (β1, · · · , βr, 0, · · · ), βi denotes the i-th
singular values of B∗, X̃i,j denotes the (i, j) element of X̃,

in (ii) we define z̃1,i = (X̃1,i − X̃2,i)/
√
2, in (iii) we define

z̃ as the vectorized version, and E
〈
z̃,Σ2z̃

〉
=
∑r

i=1 β
2
i , and

in (iv) we use Theorem 2.5 in [27] (cf. also Appendix H) and

c0 is the corresponding constant.

Next, we consider the case where h ≥ 3, by studying the

index set I , {j : π(j) 6= j}, where π(·) is the permutation

corresponding to the permutation matrix Π. Adopting the

same argument as in Lemma 8 in [6], we decompose the index

set I into 3 subsets {I1,I2,I3}, such that

•
∑3

i=1 |Ii| = h with |Ii| ≥ ⌊h/3⌋, 1 ≤ i ≤ 3.

• For arbitrary j, the indices j and π(j) will not be in the

same index set Ii, (1 ≤ i ≤ 3) at the same time.

We define a matrix Zi which consists of the rows (I −
Π)X̃Σ corresponding to indices in Ii. Accordingly, we can

verify that

∥∥∥(I−Π)X̃Σ

∥∥∥
2

F
=
∑3

i=1 ‖Zi‖2F. Let hi denote the

corresponding cardinality of |Ii|, i = 1, 2, 3. We have

Pr
(
‖(I−Π)XB∗‖2F ≤ h‖B∗‖2F

)
≤

3∑

i=1

Pr
(
‖Zi‖2F ≤ hi‖B‖2F

)
.

In the sequel, we bound Pr
(
‖Z1‖2F ≤ h1‖B‖2F

)
; the other

two probabilities can be bounded similarly. Since j and π(j)
cannot be in I1 simultaneously, we define z̃j,k = (X̃j,k −
X̃π(j),k)/

√
2, j ∈ I1, 1 ≤ k ≤ r, and can treat the {z̃jk} as

independent N (0, 1)-RVs. Similar to the case h = 2, we have

Pr
(
‖Z1‖2F ≤ h1‖B‖2F

)

= Pr



〈
z̃, diag(Σ2, · · · ,Σ2

︸ ︷︷ ︸
h1 terms

)z̃
〉 (v)

≤ h1
2

(
r∑

i=1

β2
i

)


(vi)

≤ 2 exp (−c0h1̺(B∗))
(vii)

≤ 2 exp
(
−c0

5
h̺(B∗)

)
, (41)

where in (v) we define z̃ as the vectorization of Z1, in

(vi) we use Theorem 2.5 in [27] (can also be found in

Appendix H), and in (vii) we use the fact hi ≥ ⌊h/3⌋.

Combing the above cases in Eq. (40) and Eq. (41), we can

bound Pr (Ω2) ≤ 6 exp (−c0h̺(B∗)/5).
Case I.(B) Bounding Pr

(
Ω1

⋂
Ω2

)
: For ease of notation,

we define Θ = (I − Π)XB∗/‖(I−Π)XB∗‖F. Then the

probability of the event Ω1

⋂
Ω2 can be bounded as

Pr
(
Ω1

⋂
Ω2

)
≤ Pr

(∥∥P⊥
XΘ

∥∥2
F
<
t

h

)

= Pr

(∥∥P⊥
XΘ

∥∥2
F
<
t

h
‖Θ‖2F

)

= Pr

(
r∑

i=1

∥∥P⊥
XΘ:,i

∥∥2
F
≤ t

h
‖Θ:,i‖2F

)

≤
r∑

i=1

Pr

(∥∥P⊥
X
Θ:,i

∥∥2
F
≤ t

h
‖Θ:,i‖2F

)

(a)
=

r∑

i=1

Pr

(∥∥P⊥
X
θi

∥∥2
2
≤ t

h

)
,

where in (a) we define θi as the normalized version of Θ:,i,

namely, Θ:,i/‖Θ:,i‖2. Here, we define the set Θh by

Θh =
{
θ ∈ R

n | ‖θ‖2 = 1,

θ has at most h non-zero elements
}
.

We can verify that θi ∈ Θh for 1 ≤ i ≤ r, since

dH(I,Π) = h ≥ 2. Before delving into detailed calculations,

we first summarize our proof strategy:

• Step I.(B). [i]: We cover the set Θh with a δ-net Nδ such

that for arbitrary θ ∈ Θh, there exists a θ0 ∈ Nδ such that

‖θ0 − θ‖2 ≤ δ.

• Step I.(B). [ii]: Define events ΩΘ and ΩNδ
by

ΩΘ ,
{
θ ∈ Θh s.t.

∥∥P⊥
X
θ
∥∥
2
<
√
t/h
}

ΩNδ
,
{
θ0 ∈ Nδ s.t.

∥∥P⊥
X
θ0

∥∥
2
< 2
√
t/h
}
.

Setting δ =
√
t/h, we will prove that

Pr

(∥∥∥∥P
⊥
X

(I−Π)XB∗

‖(I−Π)XB∗‖F

∥∥∥∥
2

F

<
t

h

)

≤ rPr (ΩΘ) ≤ rPr (ΩNδ
) .

• Step I.(B). [iii]: We consider an arbitrary fixed element

θ0 ∈ Nδ, and study Pr
(∥∥P⊥

X
θ0

∥∥
2
≤ 2
√
t/h
)

. Adopting

the union bound

Pr (ΩNδ
) ≤ |Nδ| × Pr

(∥∥P⊥
Xθ0

∥∥
2
≤ 2
√
t/h
)
,

we finish the bound of Pr
(
Ω1

⋂
Ω2

)
.

The following analysis fills in the details.

Step I.(B). [i]: We cover the set Θh with a δ-net Nδ. Its

cardinality can be bounded as

|Nδ|
(b)

≤
(
1 +

2

δ

)h (c)

≤
(
3

δ

)h

,

where in (b) we (i) use that elements of Θh have at least

(n − h) zero elements, and accordingly we cover the sphere

S
h−1 with a δ-net Nδ, whose cardinality can be bounded as

in [28], and in (c) we assume that δ ≤ 1.
Step I.(B). [ii] We will prove the relation

Pr

(∥∥∥∥P
⊥
X

(I−Π)XB
∗

‖(I−Π)XB∗‖
F

∥∥∥∥
2

F

<
t

h

)
(d)

≤ rPr (ΩΘ)
(e)

≤ rPr (ΩNδ
) ,

when δ =
√
t/h and (d) follows from the definition of ΩΘ.

We here focus on proving inequality (e), which is done by

Pr (ΩΘ) = Pr
(
ΩΘ

⋂
ΩNδ

)
+ Pr

(
ΩΘ

⋂
ΩNδ

)

≤ Pr (ΩNδ
) + Pr

(
ΩΘ

⋂
ΩNδ

)
(f)
= Pr (ΩNδ

) ,

where (f) is due to the fact Pr
(
ΩΘ

⋂
ΩNδ

)
= 0. Note that,

given ΩNδ
, it holds that for all θ0 ∈ Nδ, we have

∥∥P⊥
X
θ0

∥∥
2
≥

2
√
t/h. Then for arbitrary θ ∈ Θh, we consider an element

θ0 ∈ Nδ such that ‖θ − θ0‖2 ≤ δ and consequently
∥∥P⊥

X
θ
∥∥
2
≥
∥∥P⊥

X
θ0

∥∥
2
−
∥∥P⊥

X
(θ − θ0)

∥∥
2

≥ 2
√
t/h−

∥∥P⊥
X
(θ − θ0)

∥∥
2

(g)

≥ 2
√
t/h− ‖θ − θ0‖2

(h)

≥
√
t/h,
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where in (g) we use the contraction property of projections,

and in (h) we use the fact ‖θ − θ0‖2 ≤ δ =
√
t/h.

Step I.(B). [iii] We study the probability Pr
(∥∥P⊥

X
θ0

∥∥2
2
≤ t

h

)

for fixed θ0 ∈ Nδ. In virtue of results in [29], we have

Pr

(∥∥P⊥
X
θ0

∥∥2
2
≤ α(n− p)

n
‖θ0‖22

)

≤ exp

(
n− p

2
(log(α)− α+ 1)

)
, α ≤ 1.

We can set α = 4nt/((n− p)h) (< 1) and obtain

Pr

(∥∥P⊥
Xθ0

∥∥2
2
≤ 4t

h

)

= Pr

(∥∥P⊥
X
θ0

∥∥2
2
≤ α(n− p)

n

)

≤ exp

(
n− p

2

(
log

(
4nt

(n− p)h

)
− 4nt

(n− p)h
+ 1

))

(j)

≤ exp

(
n

4

(
log

(
8t

h

)
− 8t

h
+ 1

))
,

where in (j) we use that (i) n ≥ 2p, (ii) log(x) − x + 1 is

increasing in range (0, 1), and (iii) log(x) + 1 ≤ x.

In the end, we bound Pr
(
Ω1

⋂
Ω2

)
as

Pr
(
Ω1

⋂
Ω2

)

≤ r

(
3√
t/h

)h

exp

(
n

4

(
log

(
8t

h

)
− 8t

h
+ 1

))

= exp

(
h log(3)− h

2
log

(
t

h

)
+ log(r)

+
n

4

(
log

(
8t

h

)
− 8t

h
+ 1

))

(k)

≤ exp

(
rh

2

(
log

(
t

h

)
− 16t

h
+ 1

)
+ 3.68rh+ log(r)

)

(ℓ)

≤ exp

(
rh

2

(
log

(
t

h

)
− t

h
+ 1

)
+ 4.18rh

)
(42)

where in (k) we use the assumption that n ≥ 4rh, and in (ℓ)
we use that rh ≥ 2r ≥ 2 log(r).

Combining Eq. (40), Eq. (41) and Eq. (42), we finish the

proof.

Case II: Here we have TΠ > t‖B∗‖2F. Using the same
argument as in proving Lemma. 12, we can prove that

Pr

(∥∥∥P⊥
ΠXY

∥∥∥
2

F
≤
∥∥∥P⊥

Π∗XY

∥∥∥
2

F
, TΠ > t‖B∗‖2

F

)

≤ 2 exp

(
−mt× snr

288

(
t× snr

h
∧ 1

))
+ exp

(
−mt× snr

72

)
.

We complete the proof by combining Case I and Case II.

Remark 15. Note that we cannot improve h from O

(
n

log(n)

)

to n in general, since there is an inherent problem when

dealing with the case h→ n. A detailed explanation is given

as the following. The key ingredient in bounding Pr
(
Ω1

⋂
Ω2

)

is based on the step

Pr

(∥∥∥∥P
⊥
X

(I−Π)XB

‖(I−Π)XB‖F

∥∥∥∥
F

≤
√
t

h

)

≤ Pr

(
∥∥P⊥

Xθ
∥∥
2
≤
√
t

h
, ∃ θ ∈ Θh

)

≤ |Nδ| × Pr

(
∥∥P⊥

Xθ0

∥∥
2
≤
√
t

h
+ δ, ∃ θ ∈ Nδ

)
< 1.

For the extreme case when h = n, we cannot have

|Nδ|Pr
(∥∥P⊥

X
θ0

∥∥
2
≤
√
t/h+ δ, ∃θ ∈ Nδ

)
< 1 since

Pr

(
∥∥P⊥

X
θ
∥∥
2
≤
√
t

h
, ∃ θ ∈ Θn

)

≥ Pr

(∥∥∥∥P
⊥
X

XB∗

‖XB∗‖F

∥∥∥∥
F

≤
√
t

h

)
= 1.

The reason behind this is that we lose control of the cardinality

|Nδ| . (C/δ)
rh

when h→ n.

Lemma 16. Given that snr > 26.2, rh ≤ n/4, t ≤ 0.125h,

̺(B∗) ≥ 5(1 + ǫ) log(n)/c0, and

log (snr) ≥ 288(1 + ǫ) log(n)

̺(B∗)
+ 33.44,

we have

6 exp

(
−c0h̺(B

∗)

5

)

+ exp

(
rh

2

(
log

(
t

h

)
− t

h
+ 1

)
+ 4.18rh

)

+ 2 exp

(
−mt× snr

288

(
t× snr

h
∧ 1

))

+ exp

(
−mt× snr

72

)
≤ 10n−(1+ǫ)h,

where c0, ǫ > 0 are positive constants.

Proof. Here we choose t = h log (snr)/snr. Note that if snr >
26.2, we have t < 0.125h. Given Eq. (14), we have

log (snr) ≥ 288(1 + ǫ) log(n)

̺(B∗)

(i)

≥ 288(1 + ǫ) log(n)

m
, (43)

where in (i) we use ̺∗(B) ≤ r(B∗) ≤ m. In the sequel we

will separately bound the following terms

• T1 , exp (−c0h̺(B∗)/5).
• T2 , exp

(
rh
2

(
log
(
t
h

)
− t

h + 1
)
+ 4.18rh

)
.

• T3 , exp
(
−mt×snr

288

(
m×snr

h ∧ 1
))

.

• T4 , exp (−mt× snr/72).

Term T1: If ̺(B∗) satisfies ̺(B∗) ≥ 5(1 + ǫ) log(n)/c0, we

can easily show that

e−c0h̺(B
∗)/5 ≤ n−(1+ǫ)h. (44)

Term T2: Then we bound

T2

(ii)

≤ exp

(
−rh

8
log (snr) + 4.18rh

)
(iii)

≤ n−(1+ǫ)h, (45)

where in (ii) we use log z
z − 1− log log z

z ≥ log z
4 , for z ≥ 1.5,

and in (iii) we use the assumption such that

log (snr) ≥ 8(1 + ǫ) log(n)

̺(B∗)
+ 33.44.
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Term T3: Since we have snr ≥ 26.2, we obtain
(
mt2 × snr2

h
∧ (mt× snr)

)
≥ mh log(snr).

We then have

T3 ≤ exp

(
−mh
288

× log(snr)

)
(iv)

≤ n−(1+ǫ)h, (46)

where in (iv) we use Eq. (43).
Term T4: We have

exp

(
−mt× snr

72

)
= exp

(
−mh

72
log(snr)

)
(v)

≤ n
−(1+ǫ)h

, (47)

where in (v) we use Eq. (43). Combining Eq. (44), Eq. (45),

Eq. (46), and Eq. (47), we finish the proof.

APPENDIX H

PROBABILITY INEQUALITIES

This section collects some useful probability inequalities.

Lemma 17 (Thm. 2.5 in [27]). Let A ∈ R
n×n be a non-

zero matrix and let ξ = (ξi)
n
i=1 be a random vector with

independent sub-Gaussian entries such that (i) var(ξi) ≥ 1,

1 ≤ i ≤ n, and (ii) the sub-Gaussian constant of the {ξi} is

at most β. Then ∀y ∈ R
n, there exists a c0 > 0 such that

Pr

(
‖y −Aξ‖2 ≤ ‖A‖F

2

)
≤ 2 exp

(
− c0
β4
̺(A)

)
.

Lemma 18 (Lemma 2.6 in [27]). Let A ∈ R
n×n be a non-

zero matrix and g be Gaussian N (0
¯
, In×n). Then we have

Pr (‖y −Ag‖2 ≤ α‖A‖F) ≤ exp (κ log(α)̺(A)) ,

for any α ∈ (0, α0), where y ∈ R
n is an arbitrary fixed vector,

α0 ∈ (0, 1) and κ > 0 are universal constants.

Lemma 19 ( [28] (Example 2.11, P29)). For a χ2-RV Y with

ℓ degrees of freedom, we have

Pr (|Y − ℓ| ≥ t) ≤ 2 exp

(
−
(
t2

8ℓ
∧ t

8

))
, ∀ t ≥ 0.

APPENDIX I

APPENDIX OF INFORMATION THEORY

To make the paper self-contained, we provide a review of

basic tools from information theory used herein [23].

Definition (Discrete entropy (Page 14, [23])). The entropy of

a discrete RV X is defined as

H(X) = −
∑

x

Pr(X = x) log Pr(X = x)

= EXφ(X), where φ(x) , − log(x).

Definition (Conditional entropy (Page 17, [23])). For a pair

of discrete RV (X,Y ), the conditional entropy H(Y |X) is

H(Y |X) = −
∑

x,y

Pr(X = x, Y = y) log Pr(Y = y|X = x)

= EX,Y φ(X,Y ),

where φ(x, y) , − logPr (Y = y | X = x).

One can difficult to check that H(Y |X) can also be defined as

EXψY (X), where ψY (x) , H(Y |X = x) and H(Y |X = x)
denotes the discrete entropy of the random variable Y condi-

tional on {X = x}.

Property 20 (Page 41-43, [23]). Important properties of the

entropy are:

• We have H (X |Y ) ≤ H(X), with equality being achieved

when X and Y are independent.

• For a sequence of discrete RVs {Xi}1≤i≤N , we have

H (X1, · · · , XN) = H(X1) +

N∑

i=2

H (Xi | X1, · · · , Xi−1) ,

which is known as the chain rule of entropy.

Definition (Mutual information (Page 20, [23])). For a pair

of discrete RV (X,Y ), the mutual entropy I(X ;Y ) is defined

as

I(X ;Y ) = H(X)−H(X |Y ),

where H(·) and H(·|·) represent the entropy and conditional

entropy, respectively.

Theorem 21 (Data processing inequality (Theorem 2.5.1, Page

34, [23])). If X,Y, Z forms a Markov chain such that X →
Y → Z , we have

I(X ;Y ) ≥ I(X ;Z).

Theorem 22 (Fano’s inequality (Theorem 2.10.1, Page 38,

[23])). Consider a discrete RV X with alphabet X , then for

any estimator Y (·) such that X̂ = Y (X), we have

H(X |Y ) ≤ (log |X |)× Pr
(
X̂ 6= X

)
+ 1,

where |X | denotes the cardinality of X .

Next, we consider continuous random variables. Denote

fX(·) as the probability density of X , fX,Y (·, ·) as the

probability density for (X,Y ), and fX|Y (·|·) as the density

for the conditional distribution. We have

Definition (Differential entropy (Page 243, [23])). The differ-

ential entropy h(X) of a continuous RV X is defined as

h(X) = −
∫
fX(x) log fX(x)dx.

Definition (Conditional differential entropy (Page 249, [23])).

The conditional entropy h(X |Y ) of continuous RVs X,Y can

be written as

h(X |Y ) , −
∫
fX,Y (x, y) log fX|Y (x|y)dxdy.

Definition (Mutual information (Page 251, [23])). The mutual

entropy I(X ;Y ) between the continuous RV X,Y is defined

as
I(X ;Y ) , h(X)− h(X |Y )

=

∫
fX,Y (x, y) log

fX,Y (x, y)

fX(x)fY (y)
dxdy.


