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Abstract

Recent neural network models have achieved the
state-of-the-art performance on the task of named
entity recognition (NER). However, previous neu-
ral network models typically treat the input sen-
tences as a linear sequence of words but ignore rich
structural information, such as the coreference re-
lations among non-adjacent words, phrases or en-
tities. In this paper, we propose a novel approach
to learn coreference-aware word representations for
the NER task at the document level. In particu-
lar, we enrich the well-known neural architecture
“CNN-BiLSTM-CRF” with a coreference layer on
top of the BiLSTM layer to incorporate coreferen-
tial relations. Furthermore, we introduce the coref-
erence regularization to ensure the coreferential en-
tities to share similar representations and consis-
tent predictions within the same coreference clus-
ter. Our proposed model achieves new state-of-the-
art performance on two NER benchmarks: CoNLL-
2003 and OntoNotes v5.0. More importantly, we
demonstrate that our framework does not rely on
gold coreference knowledge, and can still work
well even when the coreferential relations are gen-
erated by a third-party toolkit.

1 Introduction
Named entity recognition (NER) is one of the fundamen-
tal tasks in natural language processing (NLP), which has a
huge impact on many downstream applications including re-
lation extraction [Li and Ji, 2014], knowledge base comple-
tion [Dong et al., 2014] and entity linking [Luo et al., 2015].
Given an input text, NER aims to locate and classify named
entities from raw text into pre-defined semantic types such as
persons (PER), organizations (ORG), locations (LOC), etc.

The traditional approach for the NER is to regard it as a
sequence labeling task, in which each word is assigned with
a tag (e.g., “B-PER”, “I-PER”, “O” in BIO tagging schema)
indicating whether the word belongs to part of any named en-
tity or not. To improve the performance of NER, recent NLP
researchers usually applied the latest and sophisticated neural
sequence labeling models, such as the BiLSTM-CRF [Huang
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Figure 1: Example of inconsistent errors made by Ma and Hovy
(2016). Otelul Galati and National Bucharest are both organiza-
tion names, but the model of Ma and Hovy (2016) wrongly predicted
them as location in the first sentence. Fixing such errors requires in-
corporating coreference relations into the NER models.

et al., 2015] which first uses the bidirectional LSTMs to pro-
cess input sentences and then employs the Conditional Ran-
dom Field (CRF) to label each word jointly.

Although recent neural network models have advanced the
state-of-the-art performance of NER [Lample et al., 2016;
Ma and Hovy, 2016; Peters et al., 2017; Peters et al., 2018],
they simply treat the input text as a linear sequence of words
but disregard non-sequential structural information such as
coreferential relations (i.e., two or more mentions refer to the
same person or thing.) between entities whose position can
be far away in the raw context. Such a limitation may cause
these models to produce globally inconsistent semantic type
predictions. Figure 1 shows a typical failure case when apply-
ing the well-known model of Ma and Hovy (2016) to two sen-
tences from the CoNLL-2003 dataset [Sang and De Meulder,
2003]. Based on our error analysis, 20%-25% errors made by
Ma and Hovy (2016) belong to this category, which can be
mostly avoided by utilizing coreference relations. Concep-
tually, if two entities belong to the same coreference cluster,
they should have the same semantic type as well.

Meanwhile, recent end-to-end neural network models for
coreference resolution [Lee et al., 2018; Fei et al., 2019] have
achieved increasing accuracy over the years which make it
possible and practical for us to automatically extract corefer-
ential relations from the raw text without relying on human-
annotated coreference knowledge. Therefore, the next key
research question is how to incorporate extracted coreference
relations into the NER models for predicting consistent se-
mantic type across coreferential entity mentions.



To address the above question, we propose a coreference-
aware representation learning framework based on the “CNN-
BiLSTM-CRF” NER model [Ma and Hovy, 2016]. Specifi-
cally, we design a coreference layer added on top of the BiL-
STM layer to incorporate prior knowledge about coreferen-
tial relations among entity mentions, either from the ground
truth or the external coreference resolvers [Lee et al., 2018].
Besides, we introduce a coreference regularization term to
enforce the coreferential words/entities to have similar rep-
resentations for the NER tag labeling. The combined objec-
tive function maximizes both the probability of decoded tag
sequence given the input text and the consensus among the
coreferential entities’ hidden representations.

Our major contributions of this paper can be summarized
as follows:

• We present a coreference-aware NER model at the
document-level that can explicitly leverage the global
structural information of coreferential relations. By intro-
ducing a coreference layer and coreference regularization
into the base model, our full model enjoys both the strong
generalization performance of deep neural network models
and the enhancement from coreference guidance. To the
best of our knowledge, this is the first neural NER model
that effectively exploits the coreference relations.

• We evaluate our model on two benchmarks: OntoNotes
v5.0 with gold coreference relations and CoNLL-2003
without gold coreference annotation. On both benchmarks,
our full model outperforms all previous approaches with
0.4-1.0% absolute improvement, even when a third-party
CoreNLP toolkit generates the coreferential relations.

• Although we focus on improving the NER by using the
coreference knowledge in this paper, our model can shed
light on other NLP tasks in which there is external knowl-
edge base of structural information available. For example,
the entity/event relations can also be incorporated into neu-
ral networks for boosting the performance of challenging
NLP tasks, including discourse parsing, question answer-
ing and natural language understanding.

2 Related Work
2.1 Neural Named Entity Recognition (NER)
Recently, neural network based NER models [Ma and Hovy,
2016; Lample et al., 2016; Strubell et al., 2017] have
achieved great improvement over the earlier features-based
models. Those neural networks use different strategies (e.g.,
CNNs or RNNs) to encode characters and words into hid-
den representations and decode them to named entity tags
with a CRF (or LSTM) layer. Another trend for better
NER performance is to improve the word embedding with
hidden representation depending on word’s context by pre-
training deep language model on characters or external un-
labeled sentences [Liu et al., 2018; Peters et al., 2018;
Devlin et al., 2019]. However, most previous works mainly
consider NER as a traditional sequence labeling problem but
ignore the rich structural information within contexts, such as
the coreferential relations used in this paper.

Utilizing external knowledge to improve the NER has also
received a lot of attention from the NLP researchers. Jie et
al. (2017) and Li et al. (2017) used the dependency or con-
stituency parse trees to guide NER, while Yang and Mitchell
(2017) leveraged external knowledge base to facilitate en-
tity extraction. Durrett and Klein (2014) and Singh et al.
(2013) proposed features-based joint models to conduct the
NER and coreference inference simultaneously. In contrast,
our model is an end-to-end deep neural network model and
we focus on using the coreferential relations as prior knowl-
edge to learn coreference-aware representations for the NER
instead of jointly modeling NER and coreference resolution.

More recently, Luan et al. (2018) proposed a deep multi-
task framework to jointly perform the NER, relation ex-
traction and coreference resolution, wherein the three tasks
shared common hidden layers. However, it suffers from high
computational complexity O(L4), where L is the input se-
quence length. In addition, the implicit knowledge sharing at
the hidden layers cannot explicitly transfer coreference infor-
mation into the NER task, so it is not as effective as our ap-
proach which can explicitly utilize the coreference relations.

2.2 Incorporating Coreference Knowledge into the
Neural Network Models

As one important type of linguistic structural information, the
coreference knowledge has been explored to improve the per-
formance of neural network models for many NLP applica-
tions, such as reading comprehension [Dhingra et al., 2018;
Swayamdipta et al., 2018] and relation extraction [Peng et al.,
2017]. Since we are the first to exploit coreference knowledge
in the neural NER model, we aim to study a task-specific ap-
proach for encoding the coreferential relations.

One way to encode the coreferential relations within neu-
ral networks is to use external gate (or memory) in RNNs (or
memory networks) as the bottom-level component [Dhingra
et al., 2017; Dhingra et al., 2018]. However, in our point
of view, this method can only implicitly utilize the coref-
erence knowledge since the coreference information can be
easily lost during the bottom-level forward propagation when
processing a long sequence of inputs with increased size of
the hidden units (e.g., the model used more hidden units to
keep track of each coreference cluster). Another way to ex-
plicitly introduce the coreference knowledge is to build the
coreference-aware word representations at the top-level of
neural network models, which usually uses vector transfor-
mation functions, including the feedforward neural network,
neural tensor network [Socher et al., 2013], soft-attention
mechanism [Bahdanau et al., 2015] and others, on top of the
word-level RNNs (or CNNs) to refine entity mention repre-
sentations [Swayamdipta et al., 2018]. In this paper, we fol-
low the top-level approach to design our coreference layer,
so that the encoded coreference relations can directly and ex-
plicitly influence the final word representations.

3 Our Neural Network Model for NER
In this section, we first introduce the base model for neural
named entity recognition, then present the coreference layer
which extends the base model by incorporating coreference



CRF

CRF loss

Char  Emb

Char  CNN
Word Emb Extra Feature Emb

Word BiLSTM

Figure 2: Base Model architecture of CNN-
BiLSTM-CRF proposed by Ma and Hovy (2016).
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Figure 3: Our document-level model architecture with Coreference Layer and Regu-
larization. The colored arrows and neurons show how to build the coreference-aware
word vectors by considering other words within each coreference cluster.

knowledge, and finally propose the coreference regularization
which can be used to guide the coreference-aware word rep-
resentation learning for consistent label prediction of NER.

3.1 Base Model (CNN-BiLSTM-CRF)
In this paper, we choose the CNN-BiLSTM-CRF model [Ma
and Hovy, 2016] as our base model since it is the most suc-
cessful NER model as extensively studied in Yang and Zhang
(2018) by comparing different variants of recent neural NER
model architectures. As shown in Figure 2, the base model
consists of three components, including the character-level
CNN, the word-level bidirectional LSTMs and a CRF layer
that jointly decodes semantic named entity tags.

Character-level CNN. The character-level features, such
as the prefix or suffix of a word, are helpful for alleviating the
out-of-vocabulary problem and improving the word represen-
tation in neural network models [Dos Santos and Zadrozny,
2014]. In our base model, we adopt one CNN layer with max-
pooling operation to extract character-level features wchar

i
for the i-th word of the input word sequence.

Word-level BiLSTM. Given a word sequence X =
(x1, x2, ..., xL) as the input, for each word xi, we construct
an expanded word vector by concatenating its word embed-
ding wword

i with its character-level features and extra word-
level features (POS tag) as wi = [wword

i ,wchar
i ,wfeatures

i ].
The word-level BiLSTM layer will process the sequence of
expanded word vectors (w1,w2, ...,wL) by using two sep-
arate LSTMs, with one processing the sequence from left
to right and the other processing the sequence from right to
left. Therefore, at each word index i, we compute two hid-
den states

−→
hi,
←−
hi and concatenate them to get the word xi’s

hidden representation hi = [
−→
hi,
←−
hi].

CRF for Sequence Tagging
For the NER task, it is crucial to model the label dependencies
(e.g., “I-ORG” must follow “B-ORG” in BIOES [Ratinov and
Roth, 2009] tagging schema.) and jointly decode the best
label sequence. Therefore, the CRF layer [Collobert et al.,
2011] is a better choice for the inference layer since it can
dynamically decode a chain of labels and capture the inter-

dependency between adjacent labels by maintaining a state-
transition matrix as its parameters.

Given the hidden word representations from the BiLSTM
H(j) = (h

(j)
1 ,h

(j)
2 , ...,h

(j)
L ) and the target label sequence

y(j) = (y
(j)
1 , y

(j)
2 , ..., y

(j)
L ) for the j-th training instance, we

minimize the following CRF loss:

LCRF = −
∑
j

log p(y(j)|H(j))

Here, the conditional probability p(y|H) has following form:

p(y|H) =

L∏
i=1

ψi(yi−1, yi,hi)

∑
y′∈Y

L∏
i=1

ψi(y
′
i−1, y

′
i,hi)

where Y denotes the set of all possible label sequences.
ψi(yi−1, yi,hi) = exp(W T

yi−1,yi
hi + byi−1,yi) is the poten-

tial function, in which W and b are trainable parameters.
During testing, we use the Viterbi algorithm to search for
the optimal label sequence y∗ that maximizes the conditional
probability: y∗ = argmaxy∈Y p(y|H).

3.2 Coreference Layer
As illustrated and discussed in Figure 1, since the base model
ignores the coreferential relations, it will likely predict incon-
sistent named entity tags for coreferential entities. To alle-
viate this problem, we add a coreference layer between the
word-level BiLSTM and the CRF layer into the base model,
as shown in Figure 3, to incorporate coreferential relations for
learning the coreference-aware word representations.

In this paper, we assume document-level coreference re-
lations are given in the form of coreference clusters, which
are either ground truth or generated by a third-party corefer-
ence resolver. In practice, there is no overlap between any
two coreference clusters, because they will be merged into
one cluster if they share any entity mentions. As the input of
the coreference layer, let C = (C1,C2, ...,CK) denotes the
coreference clusters in one document, where Ck contains the



Dataset Train Dev Test Named Entity types Document genre Coreference relation source
CoNLL-2003 23,499 5,942 5,648 4 News CoreNLP-generated
OntoNotes v5.0 81,828 11,066 11,257 18 News, Web, Mag gold or CoreNLP-generated

Table 1: Dataset statistics counted in the number of named entities.

word indices with the corresponding words in one document
referring to the same entity or thing.1 For each coreference
cluster, we use a feedforward neural network fcoref (.) to re-
fine the hidden word representation hi of coreferential words.

Specifically, given the coreference clusters and hidden
word representations from the BiLSTM layer, the output vec-
tor of the coreference layer has the following form:

fcoref (hi) =

{
tanh(Wcoref [hi,hCk

] + bcoref ), if i ∈ Ck

hi, otherwise

(1)
where Wcoref and bcoref are the weight and bias parameters,
hCk

is the coreference vector calculated by applying max-
pooling to all word representations in one cluster:

hCk
= max

j∈Ck

hj

The role of coreference vector is similar to the “context
vector” utilized in the soft-attention mechanism [Bahdanau
et al., 2015], but we use the simple max-pooling instead of
computing weights for different word vectors. Clearly, the
output word vector from our coreference layer is influenced
by other hidden word representations within the same coref-
erence cluster through the coreference vector.

There is one extreme variant of the coreference layer,
which is to directly use the coreference vector as the output
with the following form:

fcoref (hi) =

{
hCk

, if i ∈ Ck

hi, otherwise
(2)

In this variant, all the words within one coreference cluster
share the same representation for label tagging. We will com-
pare and discuss these variants in the following Section 5.2.

3.3 Coreference Regularization
Conceptually, the hidden word representations within one
coreference cluster should be similar, so that the CRF layer
can make consistent predictions across different coreferential
mentions. To guide the word representation learning of the
coreference layer, we propose two types of regularization and
apply them to the output word vectors of above coreference
layer. The resulting regularization term is also minimized as
a part of the final objective function during model training.

The first one is “Euclidean Coreference Regularization”,
which calculates the Euclidean distance to penalize the dif-
ference between two coreferential word vectors. The corefer-
ence regularization term has the following form:

Rcoref =
∑
k

∑
(i,j)∈Ck

||fcoref (hi)− fcoref (hj)||2

1If one entity mention has multiple words (e.g., Los Angeles), we
only keep the first word’s index because it is much easier to decode
the rest words’ tags for the CRF layer if the first tag is correct.

The second one is “Cosine Coreference Regularization”,
which uses the cosine similarity to measure two word vectors’
similarity. The coreference regularization term is as follows:

Rcoref =
∑
k

∑
(i,j)∈Ck

(1− cos(fcoref (hi), fcoref (hj)))

Hence the overall objective function for our full model is:

L = LCRF + λ×Rcoref

In Section 5.2, we will compare two types of coreference
regularization we proposed and discuss the reasonable strat-
egy to set the coreference regularization parameter λ.

4 Experiments
4.1 Datasets
We evaluated our model on two standard NER datasets in-
cluding CoNLL-2003 [Sang and De Meulder, 2003] and
OntoNotes v5.0 [Pradhan et al., 2011]. Table 1 gives an
overview and statistics of the two datasets. The CoNLL-
2003 was annotated with four coarse-grained entity types, in-
cluding Person (PER), Location (LOC), Organization (ORG)
and Miscellaneous (MISC), while the OntoNotes was anno-
tated with 18 fine-grained named entity types. Compared
with CoNLL-2003, the OntoNotes corpus was much larger
and covered a wider variety of text genres including broad-
cast news, new testaments, magazine and Web text. Follow-
ing previous work [Chiu and Nichols, 2016; Ghaddar and
Langlais, 2018], we excluded the new testaments portion of
OntoNotes from both train and test sets since this portion did
not provide gold annotation of entity tags. Since coreference
relations were not annotated on the CoNLL-2003 dataset, we
utilized the latest version of Stanford CoreNLP toolkit [Man-
ning et al., 2014] to extract coreference clusters in each docu-
ment, although this toolkit can only achieve around 60% F1-
score for coreference resolution on the CoNLL-2011/2012
dataset. To be directly comparable with previous work, we
used the official train/dev/test set splits on both datasets.

4.2 Experiment Setting
Preprocess. Following previous work [Ma and Hovy,
2016], we replaced all digit characters with ‘0’ and converted
the tagging schema from BIO to BIOES which additionally
used “E-” and “S-” to represent the end of entity and single-
word entity respectively. Following suggestions of Yang and
Zhang (2018), we used part-of-speech (POS) tag and capi-
talization (Cap) flag of each word as extra features, which
will be concatenated with word embedding. For all coref-
erence clusters, we masked the word index of personal pro-
nouns (e.g., him, she, it) because these words are not named



Parameter Value Parameter Value Parameter Value Parameter Value
char emb size 30 word emb size 100 POS emb 15 optimizer SGD with momentum 0.9
char CNN units 50 word LSTM units 300 Cap emb 5 initial lr 0.015
char CNN window 3 word LSTM layer 1 dropout 0.5 batch size 1 (CoNLL)/ 5 (OntoNotes)
char CNN layer 1 ELMo emb size 1024 lr decay 5% coref λ 0.01,0.1,0.5,1.0,1.5,2.0,5.0

Table 2: Hyperparameters of the model used in our experiments.

entities and won’t help identify named entities within same
coreference cluster.2

Fixed vs. Dynamic Word Embedding. Pre-trained word
embedding such as GloVe had a limitation that each word’s
representation is fixed without considering its context, which
conflicts with the fact one word can have different mean-
ings in different contexts. Recent work, including AllenAI’s
ELMo [Peters et al., 2018] and Google’s BERT [Devlin et al.,
2019], showed that context-dependent (dynamic) word repre-
sentations learned from deep language model can benefit neu-
ral networks for challenging NLP tasks, which outperformed
the traditional fixed word embedding. In this work, we tried
both GloVe word embedding (100D) and dynamic ELMo3

embedding (1024D) to initialize our word embedding.
Hyperparameters. Table 2 summarizes the hyperparame-
ters used in our experiments, which mostly followed Yang et
al. (2018), including using the SGD optimizer with a decayed
learning rate to update parameters. Since the OntoNotes cor-
pus was much larger than the CoNLL-2003 dataset, we used
a larger batch size to speed up the model training. For the
coreference regularization parameter λ, we tuned it based on
the best performance on the dev set. To prevent gradient ex-
ploding, we clipped the gradient L2-norm with a threshold of
5.0 and used the L2 regularization with coefficient 10−8.
Evaluation. We adopt the standard entity-level micro-
averaged F1-score as the main evaluation metrics. To dimin-
ish the effects of randomness in training neural network mod-
els and report stable experimental results, we ran all our pro-
posed model, its variants as well as the base model 10 times
and reported the averaged F1-score and standard deviation
over multiple trials. For a fair comparison, all our models
were implemented with Pytorch and evaluated on a Nvidia
Titan X GPU using the same random seed.

4.3 Experiment Results
Table 3 shows the performance of our proposed models com-
pared to the recent published models on the CoNLL-2003 test
set. The first section of the table lists the models which did
not use any external data other than train set and pre-trained
fixed word embedding, while the models in the second sec-
tion utilized external data for different purposes (e.g., train-
ing language model for word embedding [Peters et al., 2018]
or doing transfer learning [Yang et al., 2017]). In the third
section, our replicated CNN-BiLSTM-CRF model is slightly

2We also tried not to mask personal pronouns, and the resulting
F1 score slightly decreased by 0.08 on the CoNLL-2003 dataset.

3From the AllenAI’s website (https://allennlp.org/elmo), we
downloaded the pre-trained ELMo embedding trained on 5.5B to-
kens and froze its parameters during our NER model training.

Model F1 Score (± std)
Train Train + Dev

Previous work w/o using external data
[Huang et al., 2015] 90.10 -
[Strubell et al., 2017] 90.65 (± 0.15) -
[Shen et al., 2018] 90.89 (± 0.19) -
[Lample et al., 2016] 90.94 -
[Ma and Hovy, 2016] 91.21 -
[Liu et al., 2018]* 91.24 (± 0.12) -
[Ye and Ling, 2018]* 91.38 (± 0.10) -

Previous work w/ using external data
[Chiu and Nichols, 2016] 91.23 (± 0.16) 91.62 (± 0.33)
[Yang et al., 2017] 91.26 -
[Tran et al., 2017]* 91.69 -
[Peters et al., 2017]* - 91.93 (± 0.19)

ELMo [2018]* - 92.22 (± 0.10)
BERT Base [2019]* 92.40 -
CVT + MultiTask [2018]* 92.61 (± 0.09) -

Document-level NER in this work
CNN-BiLSTM-CRF 90.88 (± 0.13) 91.31 (± 0.13)
+ coreference layer 91.53 (± 0.14) 91.86 (± 0.11)
+ coref regularization 91.65 (± 0.15) 92.03 (± 0.14)
+ ELMo embedding* 93.19 (± 0.13) 93.37 (± 0.14)

Table 3: NER performance on the test set of CoNLL-2003. “Train +
Dev” indicates that both the train and dev sets were used for model
training after tuning hyperparameters on the dev set. The models
marked with * utilized word embedding from deep language model.

worse than the one initially reported in Ma and Hovy (2016).
One possible reason is that we conduct document-level NER
tagging rather than original sentence-level experiments (we
obtain 91.24% F1-score for the sentence-level NER tagging).

Built on top of the base model, the coreference layer im-
proves the NER performance by 0.65 points on average (sta-
tistical significant t-test with p < 0.01). Using the corefer-
ence regularization to guide the coreference-aware word rep-
resentation learning can improve the result (statistical signif-
icant t-test with p < 0.05 comparing to not using the corefer-
ence regularization), but by a small margin. As shown in the
last column, introducing the context-dependent ELMo em-
bedding boosts the performance of NER, which further vali-
dates our model’s utility when combining with the latest word
embedding techniques. Noticing that our full model signif-
icantly outperforms the ELMo baseline (the fifth row in the
second section) by (93.37 - 92.22 = 1.15) points, we conclude
that our approach with coreference layer and coreference reg-
ularization can effectively improve the NER performance and
plays a key role in achieving the best performance.

Overall, our full model achieves the state-of-the-art perfor-
mance of 93.19% F1-score when using the dynamic word em-
bedding from language model (comparing to models marked

https://allennlp.org/elmo


Model F1 Score (± std)
Previous work

[Chiu and Nichols, 2016] 86.41 (± 0.22)
[Shen et al., 2018] 86.63 (± 0.49)
[Strubell et al., 2017] 86.99 (± 0.22)
[Li et al., 2017] 87.21 (± 0.14)
[Ghaddar and Langlais, 2018] 87.95 (± 0.13)

CVT + MultiTask [2018] 88.81 (± 0.09)
JointNERCoref [Luan et al., 2018]4 84.09 (± 0.16)

Document-level NER in this work
CNN-BiLSTM-CRF 88.06 (± 0.13)

Use CoreNLP-generated coreference knowledge
+ coreference layer 88.67 (± 0.15)
+ coref regularization 88.95 (± 0.13)
+ ELMo embedding 89.83 (± 0.11)

Use gold coreference knowledge
+ coreference layer 88.85 (± 0.13)
+ coref regularization 89.08 (± 0.12)
+ ELMo embedding 89.96 (± 0.10)

Table 4: NER performance on the test set of OntoNotes v5.0. Note
that CVT + MultiTask [Clark et al., 2018] used the ELMo word
embedding, so this result is only comparable with our last row.

Model F1 Score
Mean (± std) Max

Full Model 93.19 (± 0.13) 93.35
w/o coref regularization 92.86 (± 0.11) 93.04
w/o coref layer & regularization 92.32 (± 0.10) 92.45
w/o GloVe embedding 93.03 (± 0.11) 93.14
w/o Character-level CNN 93.13 (± 0.10) 93.27
w/o ELMo embedding 91.62 (± 0.21) 91.96

Table 5: Ablation study on the CoNLL-2003. We report the NER
performance when each component was removed from the full
model. We set λ = 1.0 if the coreference regularization was used.

with * in Table 3), and our approach simultaneously obtains
the best F1-score of 91.65% when using the fixed word em-
bedding only. This result proves our model can effectively
work without relying on the gold coreferential relations.

Table 4 reports our experimental results as well as previ-
ous approaches that were evaluated on the OntoNotes v5.0
test set. Similar to the result on the CoNLL-2003, better
NER performance can be achieved by using our coreference
layer and coreference regularization. Therefore, our full NER
model achieves the state-of-the-art F1-score of 89.83% on
the OntoNotes as well, which outperforms the previous best-
published result (88.81%) of Clark et al. (2018) by a large
margin. Again, we demonstrate that the noisy coreference
knowledge extracted from an external system is still usable in
our framework for improving the NER performance.

It is worth mentioning that the latest multi-task joint NER
and coreference resolution model [Luan et al., 2018] per-
forms worse than our method, even worse than those tradi-
tional sequence labeling approaches. One possible reason is

4Code was downloaded from https://bitbucket.org/luanyi/scierc/
src/master/. We set rel weight = 0 to disable the relation in-
ference task and carefully tuned other network architecture hyper-
parameters over a wide range on the validation set.

Dataset CoNLL-2003 OntoNotes v5.0
λ Mean (± std) Max Mean (± std) Max

0.01 91.48 (± 0.19) 91.83 89.03 (± 0.08) 89.18
0.1 91.65 (± 0.15) 91.89 89.07 (± 0.17) 89.32
0.5 91.60 (± 0.11) 91.74 89.08 (± 0.12) 89.22
1.0 91.62 (± 0.21) 91.96 88.89 (± 0.10) 89.09
1.5 91.53 (± 0.11) 91.71 - -
2.0 91.46 (± 0.12) 91.66 - -
5.0 91.44 (± 0.11) 91.65 - -

Table 6: Impact of the coreference regularization λ on the Base
Model + Coreference Layer + Coreference Regularization.

that the implicit knowledge transfer by sharing intermediate
layers for the NER and coreference resolution tasks is not
as effective as explicitly imposing the coreference regulariza-
tion. Besides, brute force enumeration of all possible span
candidates ignores the inner dependency among sub-chunks
of entities, which can be better captured by sequence labeling.

5 Analysis and Discussion

5.1 Ablation Study
To understand how much contribution each major component
of our full model makes, we did an ablation study as illus-
trated in Table 5. Clearly, removing the coreference regu-
larization and coreference layer significantly deteriorates the
model performance by 0.3 and 0.9 points respectively (statis-
tical significant t-test with p < 0.01). Among three parts
of expanded word vector including GloVe, characters and
ELMo, the ELMo embedding makes the most contribution
and improves the NER result by 1.5 points on average which
is consistent with the observation of Peters et al. (2018).

5.2 Choice of Coreference Layer and Coreference
Regularization

Similar vs. Same Coreferential Representations. On the
CoNLL-2003, we evaluated two variants of the coreference
layer introduced in Section 3.2. The comparative study un-
der the same settings (base model + coreference layer w/o
coref regularization and ELMo) showed that, as the input of
the CRF layer, similar coreferential representations (91.53%
F1-score) generated by Equation (1) are significantly better
than the exact same coreferential representations (91.21% F1-
score) as the output of Equation (2). One potential explana-
tion is that the important context information of individual
entity is missing if we enforce all entities within one corefer-
ence cluster to share the same representation in vector space.

Cosine vs. Euclidean Coreference Regularization. We
compared two types of coreference regularization introduced
in Section 3.3 on the CoNLL-2003. The experiment re-
sult showed that the “Cosine Coreference Regularization”
clearly outperformed the “Euclidean Coreference Regulariza-
tion” with 91.65% vs. 91.23% F1-score (we set λ = 0.1 for a
fair comparison) which meets our expectation that the cosine
similarity can better parameterize the similarity between two
vectors than the euclidean distance in vector space.

https://bitbucket.org/luanyi/scierc/src/master/
https://bitbucket.org/luanyi/scierc/src/master/


Error Base Model (CNN-BiLSTM-CRF) Base Model + Coreference Layer & Regularization
Boundary [Defender Hassan Abbas](PER) ... [Hassan Abbas](PER) Defender [Hassan Abbas](PER) ... [Hassan Abbas](PER)

Mixed
Entities

[Australia](LOC) vs. [West Indies World Series](LOC)

... Scoreboard in the [World Series](MISC) limited overs
match between [Australia](LOC) and [West Indies](LOC)

Australia vs. [West Indies](LOC) [World Series](MISC)

... Scoreboard in the [World Series](MISC) limited overs
match between [Australia](LOC) and [West Indies](LOC)

Inconsistent
Type

[Liviu Ciobotariu](PER) of [National Bucharest](LOC)

... championship in which [National Bucharest](ORG)

[Liviu Ciobotariu](PER) of [National Bucharest](ORG)

... championship in which [National Bucharest](ORG)

Inconsistent
Boundary

Arab win [African Cup](MISC) [Winners’ Cup](MISC) ...
Result of the [African Cup Winners’ Cup](MISC) final

Arab win [African Cup Winners’ Cup](MISC) ...
Result of the [African Cup Winners’ Cup](MISC) final

Similar
Entities

[Melbourne Cricket Ground](ORG) ... [Sydney Cricket
Ground](LOC) ... [Melbourne](LOC) Cricket Ground

[Melbourne Cricket Ground](LOC) ... [Sydney Cricket
Ground](LOC) ... [Melbourne Cricket Ground](LOC)

Table 7: Case study on the CoNLL-2003 dataset. We summarize typical types of errors fixed by using our coreference layer and coreference
regularization w/o ELMo. Named entities in red (underling) text are wrongly predicted with labels in the round brackets. Named entities in
green (bold) text are correctly predicted by considering coreferential entities in blue (italic) text using our coreference-aware approach.
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Figure 4: Impact of the coreference knowledge quality on the Base
Model + Coreference Layer (on the OntoNotes v5.0).

Impact of Coreference Regularization λ. From Table 6,
we can see that the coreference regularization parameter λ
has a nontrivial effect on the performance of our model. We
recommend to choose λ from the range [0.1, 1.0] and tune it
based on the density of coreference relations in the data (e.g.,
smaller λ for higher coreference relations density).

5.3 Impact of Coreference Knowledge Quality
Since gold coreference knowledge is rare and valuable, it is
important for our framework to tolerate the noisy coreferen-
tial relations as prior knowledge. In order to study the influ-
ence of the coreference quality on our model, we gradually
add noise into the OntoNotes’ gold coreference clusters by
randomly deleting or fluctuating (±5) the coreferential enti-
ties’ indices with a certain probability (i.e., noise percentage).
As shown in Figure 4, the F1 score increases quickly with less
noise and our coreference layer can still improve the NER
performance with 60% noise in the coreference knowledge
which demonstrates the robustness of our model.

5.4 Case Study
To study the behavior of our proposed model and better un-
derstand what types of errors made by Ma and Hovy (2016)
were corrected by our coreference-aware approach, we did
an error analysis on the CoNLL-2003 dataset and listed a few

representative examples in Table 7. To make our contribution
clear, we did not use the ELMo embedding for both models.

As shown in the Table 7, our approach not only helps
correctly predict the semantic type of coreferential entities
within a coreference cluster (the second, third and fifth exam-
ple), but also locates the accurate boundary of coreferential
named entities (the first, fourth and fifth example).

6 Conclusion
We present a novel neural network model for the NER task
which builds the coreference-aware word representations by
explicitly utilizing the coreferential relations with our pro-
posed coreference layer. Furthermore, we introduce the
coreference regularization to ensure the coreferential enti-
ties to share similar representations and consistent predic-
tions within the same coreference cluster. Experiments on
two benchmarks demonstrate that our full model with the
coreference layer and coreference regularization significantly
outperforms all previous NER systems, even given the noisy
coreference information as prior knowledge.
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