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ABSTRACT

While tree methods have been popular in practice, researchers and
practitioners are also looking for simple algorithmswhich can reach
similar accuracy of trees. In 2010, [20] developed the method of
“abc-robust-logitboost”and compared it with other supervised learn-
ing methods on datasets used by the deep learning literature. In
this study, we propose a series of “tunable GMM kernels” which
are simple and perform largely comparably to tree methods on the
same datasets. Note that “abc-robust-logitboost” [20] substantially
improved the original “GDBT” in that (a) it developed a tree-split
formula based on second-order information of the derivatives of
the loss function; (b) it developed a new set of derivatives formulti-
class classification formulation.

In the prior study [23], the “generalized min-max” (GMM) kernel
was shown to have good performance compared to the “radial-
basis function” (RBF) kernel. However, as demonstrated in this pa-
per, the original GMM kernel is often not as competitive as tree
methods on the datasets used in the deep learning literature. Since
the original GMM kernel has no parameters, we propose tunable
GMM kernels by adding tuning parameters in various ways. Three
basic (i.e., with only one parameter) GMM kernels are the “eGMM
kernel”, “pGMM kernel”, and “γGMM kernel”, respectively. Exten-
sive experiments show that they are able to produce good results
for a large number of classification tasks. Furthermore, the basic
kernels can be combined to boost the performance.

For large-scale machine learning tasks, it is crucial that learning
methods should be able to scale up with the size of the training
samples. It has been known that the original GMM kernel can be
efficiently linearized (i.e., achieving the result of a nonlinear kernel
at the cost of a linear kernel). As demonstrated in this paper, several
tunable GMM kernels also inherit this nice property in that they
can also be efficiently linearized.

1 INTRODUCTION

Kernel methods [30] are an important part of machine learning.
Among many types of kernels, the linear kernel and the “radial
basis function” (RBF) kernel are probably the most well-known.
Recently, the “generalized min-max” (GMM) kernel [22] was intro-
duced for large-scale search and machine learning, owing to its ef-
ficient linearization via either hashing or the Nystrommethod [28].
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For defining the GMM kernel, the first step is a simple transforma-
tion on the original data. Consider, for example, the original data
vector ui , i = 1 to D. We define the following transformation, de-
pending on whether an entry ui is positive or negative:

{

ũ2i−1 = ui , ũ2i = 0 if ui > 0
ũ2i−1 = 0, ũ2i = −ui if ui ≤ 0

(1)

For example, when D = 2 and u = [−4 6], the transformed data
vector becomes ũ = [0 4 6 0]. The GMM kernel is defined [22] as
follows:

GMM(u,v) =
∑2D
i=1min{ũi , ṽi }

∑2D
i=1max{ũi , ṽi }

(2)

Even though the GMM kernel has no tuning parameter, it per-
forms surprisinglywell for classification tasks as empirically demon-
strated in [22] (also see Table 1 and Table 2), when compared to the
linear kernel and best-tuned radial basis function (RBF) kernel:

RBF (u,v ;e) = e
−λe

(

1−
∑D
i=1 uivi√

∑D
i=1 u

2
i

∑D
i=1 v

2
i

)

(3)

where λe > 0 is the tuning parameter.
Furthermore, the (nonlinear) GMM kernel can be efficiently lin-

earized via hashing [15, 21, 26] (or the Nystrom method [28]). This
means we can use the linearized GMM kernel for large-scale ma-
chine learning tasks essentially at the cost of linear learning.

Given the deceiving simplicity of the GMM kernel and its sur-
prising performance compared to the RBF kernel, researchers and
practitionersmight be seriously interested in asking two questions:

(1) Does the GMM kernel perform comparably to more sophis-
ticated learning methods such as trees, at least in the context
of supervised learning when features are already available?

(2) Can one improve the accuracy of the original (tuning-free)
GMM kernel, for example, by adding tuning parameters?

This papers aims at addressing these two questions. It turns out
that, in many datasets, the original (tuning-free) GMM kernel can
be substantially improved, by adding tuning parameters. Further-
more, we report a comparison studyusing a set of public datasets in
the deep learning literature [17]. This set of datasets were used by
an empirical study [20] to compare several boosting & tree meth-
ods with deep nets. This paper will show that tunable GMM ker-
nels can achieve comparably accuracy as trees.
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1.1 Tunable GMM Kernels

In order to improve the performance of the original (tuning-free)
GMM kernels, we propose three basic tunable GMM kernels:

eGMM(u,v ; λe ) = e
−λe

(

1−
∑2D
i=1 min{ũi ,ṽi }

∑2D
i=1 max{ũi ,ṽi }

)

(4)

pGMM(u,v ;p) =
∑2D
i=1 (min{ũi , ṽi })p

∑2D
i=1 (max{ũi , ṽi })p

(5)

γGMM(u,v ;γ ) =
(

∑2D
i=1 (min{ũi , ṽi })

∑2D
i=1 (max{ũi , ṽi })

)γ

(6)

and the combinations of the basic tunable GMM kernels:

pγGMM(u,v ;p,γ ) =
(

∑2D
i=1 (min{ũi , ṽi })p

∑2D
i=1 (max{ũi , ṽi })p

)γ

(7)

epGMM(u,v ; λe ,p) = e
−λe

(

1−
∑2D
i=1(min{ũi ,ṽi })p

∑2D
i=1(max{ũi ,ṽi })p

)

(8)

eγGMM(u,v ; λe ,γ ) = e
−λe

(

1−
(

∑2D
i=1(min{ũi ,ṽi })

∑2D
i=1(max{ũi ,ṽi })

)γ )

(9)

epγGMM(u,v ; λe ,p,γ ) = e
−λe

(

1−
(

∑2D
i=1(min{ũi ,ṽi })p

∑2D
i=1(max{ũi ,ṽi })p

)γ )

(10)

In this study, wewill provide an empirical study on kernel SVMs
based on the tunable GMM kernels. Perhaps not surprisingly, the
improvements can be substantial on many datasets. In particular,
we will also compare them with tree methods on 11 datasets used
by the deep learning literature [17] and later by [20].

1.2 The GMMKernels versus Tree Methods

[19, 20] developed several boosting & tree methods including “abc-
mart”, “robust logitboost”, and “abc-robust-logitboost” and demon-
strated their performance on 11 datasets used by the deep learning
literature [17]. The good accuracywas achieved by establishing the
second-order tree-split formula and new derivatives formulti-class
logistic loss. See Table 2 for more information on those datasets.

Figure 1 presents the classification accuracy results on 6 datasets,
suggesting that the GMM kernel (upper panel) does not perform
as well as tree methods (bottom panel). This observation has moti-
vated us to develop tunable GMM kernels. Later in the paper, Fig-
ure 4 will show that the tunable GMM kernels are able to produce
roughly comparable results as trees.

1.3 Connection to the Resemblance Kernel

The GMM kernel is related to several similarity measures widely
used in data mining and web search. When the data are nonnega-
tive, GMM becomes the “min-max” kernel, which has been studied
in the literature [5, 15, 16, 21, 26]. When the data are binary (0/1),
GMM becomes the well-known “resemblance” similarity. The min-
wise hashing algorithm for approximating resemblance has been a
highly successful tool in web search for numerous applications [1,
4, 6–8, 10, 11, 14, 24, 25, 27]. Note that for the pGMM kernel and
nonnegative data, whenp → 0, it also approaches the resemblance.
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Figure 1: Classification test error rates (lower the better) on 6

datasets (M-Noise1, M-Noise2, ..., M-Noise6) listed in Table 2

which were used by the deep learning literature [17] and

later by [20] for comparing tree methods. On these datasets,

the results of the GMMkernel (dashed curve in upper panel)

are not as accurate as the results produced by the four tree

& boosting algorithms (bottom panel).

1.4 Linearization of Nonlinear Kernels

It is common in practice to use linear learning algorithms such as
logistic regression or linear SVM. It is also known that one can of-
ten improve the performance of linear methods by using nonlinear
algorithms such as kernel SVMs, if the computational/storage bur-
den can be resolved. A straightforward implementation of a non-
linear kernel, however, can be difficult for large-scale datasets [3].
For example, for a small dataset with merely 60, 000 data points,
the 60, 000× 60,000 kernel matrix has 3.6× 109 entries. In practice,
being able to linearize nonlinear kernels becomes highly benefi-
cial. Randomization (hashing) is a popular tool for kernel lineariza-
tion. After data linearization, we can then apply our favorite linear
learning packages such as LIBLINEAR [9] or SGD (stochastic gra-
dient descent) [2]. In this study, we focus on linearizing the pGMM
kernels via hashing and we will also discuss how to linearize the
eGMM and γGMM kernels.

Next, we present an experimental study on the a large number of
classification tasks using the variety of kernels we have discussed.
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Table 1: Public classification datasets and l2-regularized kernel SVM results. We report the test classification accuracies for the

linear kernel, the best-tuned RBF kernel, the original (tuning-free) GMM kernel, the best-tuned eGMM, pGMM, and γGMM

kernels, at their individually-best SVM regularizationC values. All datasets are from the UCI repository except for the last 11

datasets, which were used by [17, 20] for testing deep learning algorithms and tree methods.

Dataset # train # test # dim linear RBF GMM eGMM (λe ) pGMM (p) γGMM (γ )

Car 864 864 6 71.53 94.91 98.96 99.31 (2) 99.54 (2) 99.31 (6)
Covertype25k 25000 25000 54 62.64 82.66 82.65 88.32 (20) 83.25 (0.6) 88.34 (20)
CTG 1063 1063 35 60.59 89.75 88.81 88.81 (0.01) 100.00 (0.1) 90.78 (0.3)
DailySports 4560 4560 5625 77.70 97.61 99.61 99.61 (0.2) 99.61 (0.6) 99.63 (0.8)
DailySports2k 2000 7120 5625 72.16 93.71 98.99 99.00 (0.1) 99.07 (.75) 99.16 (0.3)
Dexter 300 300 19999 92.67 93.00 94.00 94.00 (17) 94.67 (0.5) 95.67(0.2)
EEGEye 7490 7490 14 61.46 86.82 78.54 95.51 (1000) 87.65 (15) 91.20 (60)
Gesture 4937 4936 32 37.22 61.06 65.50 66.67 (1.9) 66.33 (0.6) 67.16 (2.6)
ImageSeg 210 2100 19 83.81 91.38 95.05 95.38 (1.2) 95.57 (0.6) 95.38 (1.8)
Isolet2k 2000 5797 617 93.95 95.55 95.53 95.55 (0.2) 95.53 (1.0) 95.60(0.8)
MHealth20k 20000 20000 23 72.62 82.65 85.28 85.33 (0.5) 86.69 (0.5) 85.31 (1.3)
MiniBooNE20k 20000 20000 50 88.42 93.06 93.00 93.01 (0.2) 93.69 (0.6) 93.01 (1.1)
MSD20k 20000 20000 90 66.72 68.07 71.05 71.18 (0.2) 71.84 (0.5) 71.44 (0.6)
Magic 9150 9150 10 78.04 84.43 87.02 86.93 (0.3) 87.57 (0.5) 87.09 (0.8)
Musk 3299 3299 166 95.09 99.33 99.24 99.24 (0.3) 99.24 (1.0) 99.24 (1.0)
Musk2k 2000 4598 166 94.80 97.63 98.02 98.02 (0.01) 98.06 (1.25) 98.06 (0.5)
PageBlocks 2737 2726 10 95.87 97.08 96.56 96.56 (1.4) 97.30 (0.1) 96.64(0.8)
Parkinson 520 520 26 61.15 66.73 69.81 70.19 (0.6) 69.81 (1.0) 70.19 (1.7)
PAMAP101 20000 20000 51 76.86 96.68 98.91 98.91 (0.1) 99.00 (1.5) 98.92 (1.1)
PAMAP102 20000 20000 51 81.22 95.67 98.78 98.77 (0.01) 98.78 (2) 98.78(1.7)
PAMAP103 20000 20000 51 85.54 97.89 99.69 99.70 (0.01) 99.69 (1.0) 99.70 (0.8)
PAMAP104 20000 20000 51 84.03 97.32 99.30 99.31 (0.6) 99.30 (1.0) 99.31 (1.3)
PAMAP105 20000 20000 51 79.43 97.34 99.22 99.24 (1.1) 99.22 (0.75) 99.26(1.8)
PIMA 384 384 8 66.67 71.35 76.30 77.08 (12) 76.56 (0.75) 76.82 (9.5)
RobotNavi 2728 2728 24 69.83 90.69 96.85 96.77 (0.1) 98.20 (0.1) 97.65 (0.3)
Satimage 4435 2000 36 72.45 85.20 90.40 91.85 (35) 90.95 (5) 91.35(9.5)
SEMG1 900 900 3000 26.00 43.56 41.00 41.22 (0.1) 42.89 (0.25) 42.11 (1.7)
SEMG2 1800 1800 2500 19.28 29.00 54.00 54.00 (0.3) 56.11 (2) 55.22 (0.6)
Sensorless 29255 29254 48 61.53 93.01 99.39 99.38 (0.01) 99.76 (0.5) 99.62 (0.5)
Shuttle500 500 14500 9 91.81 99.52 99.65 99.65 (0.1) 99.66 (0.5) 99.68 (0.4)
SkinSeg10k 10000 10000 3 93.36 99.74 99.81 99.90 (20) 99.85 (5) 99.87 (8.5)
SpamBase 2301 2300 57 85.91 92.57 94.17 94.13 (0.6) 95.78 (0.25) 94.17 (1.0)
Splice 1000 2175 60 85.10 90.02 95.22 96.46 (5) 95.26 (1.25) 96.46 (5)
Theorem 3059 3059 51 67.83 70.48 71.53 71.69 (1.6) 71.53 (1.0) 71.76 (2.1)
Thyroid 3772 3428 21 95.48 97.67 98.31 98.34 (0.3) 99.10 (0.1) 98.63 (0.6)
Thyroid2k 2000 5200 21 94.90 97.00 98.40 98.40 (0.01) 98.96 (0.1) 98.62 (0.6)
Urban 168 507 147 62.52 51.48 66.08 65.68 (0.5) 83.04 (0.1) 67.26 (0.2)
Vertebral 155 155 6 80.65 83.23 89.04 89.68 (1.4) 89.04 (1.0) 89.68(1.1)
Vowel 264 264 10 39.39 94.70 96.97 98.11 (5) 96.97 (1.0) 98.11 (4)
Wholesale 220 220 6 89.55 90.91 93.18 93.18 (0.6) 93.64 (1.25) 93.64 (0.2)
Wilt 4339 500 5 62.60 83.20 87.20 87.60 (1.1) 87.40 (0.75) 87.60 (1.7)
YoutubeAudio10k 10000 11930 2000 41.35 48.63 50.59 50.60 (0.01) 51.84 (0.6) 50.84 (0.9)
YoutubeHOG10k 10000 11930 647 62.77 66.20 68.63 68.65 (0.01) 72.06 (0.5) 68.63 (1.1)
YoutubeMotion10k 10000 11930 64 26.24 28.81 31.95 33.05 (4) 32.65 (0.6) 32.98 (4.5)
YoutubeSaiBoxes10k 10000 11930 7168 46.97 49.31 51.28 51.22 (0.001) 52.15 (0.6) 51.39 (0.8)
YoutubeSpectrum10k 10000 11930 1024 26.81 33.54 39.23 39.27 (0.1) 41.23 (0.5) 39.28 (1.1)

M-Basic 12000 50000 784 89.98 97.21 96.34 96.47 (1.2) 96.40 (0.5) 96.84 (2.3)
M-Image 12000 50000 784 70.71 77.84 80.85 81.20 (1.5) 89.53 (50) 81.32 (2.1)
M-Noise1 10000 4000 784 60.28 66.83 71.38 71.70 (0.5) 85.20 (80) 71.90 (2.8)
M-Noise2 10000 4000 784 62.05 69.15 72.43 72.80 (3) 85.40 (70) 72.95 (2.8)
M-Noise3 10000 4000 784 65.15 71.68 73.55 74.70 (3) 86.55 (50) 74.83 (3)
M-Noise4 10000 4000 784 68.38 75.33 76.05 76.80 (2.5) 86.88 (60) 77.03 (2.8)
M-Noise5 10000 4000 784 72.25 78.70 79.03 79.48 (3) 87.33 (30) 79.70 (3.5)
M-Noise6 10000 4000 784 78.73 85.33 84.23 84.58 (2) 88.15 (20) 84.68 (4)
M-Rand 12000 50000 784 78.90 85.39 84.22 84.95 (4) 89.09 (40) 85.17 (3.5)
M-Rotate 12000 50000 784 47.99 89.68 84.76 86.02 (1.6) 86.52 (0.25) 87.33 (2.1)
M-RotImg 12000 50000 784 31.44 45.84 40.98 42.88 (4) 54.58 (20) 43.22 (3.5)
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Figure 2: Test classification accuracies of various kernels using LIBSVM pre-computed kernel functionality. The results are

presented with respect to C , which is the l2-regularized kernel SVM parameter. For RBF, eGMM, pGMM, and γGMM, at eachC ,

we report the best test accuracies from a wide range of kernel parameter values.
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2 EXPERIMENTAL STUDY ON KERNEL SVMS

2.1 Basic Kernels: eGMM, pGMM, γGMM

Table 1 lists a large number of publicly available datasets from the
UCI repository plus the 11 datasets (the last 11 datasets whose
names start with “M-”) used by the deep learning literature [17].
In this table, we report the kernel SVM test classification results
for a variety of kernels: linear, RBF, GMM, eGMM, pGMM, γGMM.

In all the experiments, we adopt the l2-regularization (with a reg-
ularization parameter C) and report the test classification accura-
cies at the bestC values in Table 1. More detailed results for a wide
range of C values are reported in Figures 2. To ensure repeatabil-
ity, we use the LIBSVM pre-computed kernel functionality, at the
significant cost of disk space. For the RBF kernel, we exhaustively
experiment with 58 different values of λe ∈ {0.001, 0.01, 0.1:0.1:2,
2.5, 3:1:20 25:5:50, 60:10:100, 120, 150, 200, 300, 500, 1000}. Basically,
Table 1 reports the best results among all C and λe values in our
experiments. Here, 3:1:20 is the matlab notation, meaning that the
iterations stat at 3 and terminate at 20, at a space of 1.

For the eGMM kernel, we experiment with the same set of (58)
λe values as for the RBF kernel. For thepGMMkernel, however, be-
cause we have to materialize (store) a kernel matrix for eachγ , disk
space becomes a serious concern. Therefore, for the pGMM kernel,
we only search in the range ofp ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4,
0.5, 0.6, 0.75, 1, 1.25, 1.5, 2, 5, 10, 15, 20, 25, 30 : 10 : 100}. For the
γGMM kernel, we experiment with γ ∈ {0.05, 0.1 : 0.1 : 3, 3.5 :
0.5 : 10, 11 : 1 : 20, 30 : 10 : 100}.

The classification results in Table 1 and Figures 2 confirm that
the eGMM,pGMM, andγGMMkernels typically improve the origi-
nal GMM kernel. On a good fraction of datasets, the improvements
can be very substantial. Figure 3 quantifies the improvements by
plotting the empirical CDF (cumulative distribution function) of
the absolute (left panel) and relative (right panel) error reduction
(in %), obtained from using one of the eGMM, pGMM, or γGMM
kernels, compared to using the original GMM kernel.
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Figure 3: Empirical CDFs of the absolute (left panel) and rel-

ative (right panel) error reductions (%) obtained by using one

of the eGMM, pGMM, or γGMM kernels, compared to using

the original GMM kernel. There are in total 57 datasets.

For example, the left panel of Figure 3 says that, out of a total
of 57 datasets (in Table 1), about 50% of the datasets exhibit an im-
provement of > 1% absolute error reduction, and about 20% of the
datasets exhibit an improvement of > 5% absolute error reduction.
The right panel says that about 50% of the datasets exhibit an im-
provement of > 10% relative error reduction, and about 20% of the
data exhibit an improvement of > 45% relative error reduction.

2.2 epGMM and pγGMM

Combining the three basic tunable GMM kernels produces four
more tunable GMM kernels. Naturally we expect that, in many
datasets, adding more tuning parameters would further improve
the accuracies. In Table 2, we report the kernel SVM experimental
results on the 11 datasets used by the deep learning literature [17],
for the epGMM and pγGMM kernels. Since there are two parame-
ters, the results are obtained by a two-dim grid search.

The results in Table 2 illustrate that the additional improvements
can be also quite substantial. For example, on theM-RotImgdataset,
the accuracy of the original GMM kernel is 40.98%, and the ac-
curacy of the pGMM kernel is 54.58%. However, the accuracy of
pγGMM kernel becomes 59.92%.

We choose to show experiment on these 11 datasets because the
prior work [20] in 2010 already conducted a thorough empirical
study of a series of tree & boosting methods on the same datasets.

2.3 Comparisons with Trees
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Figure 4: Classification test error rates on M-Noise1, M-

Noise2, ..., M-Noise6 datasets, for evaluating epGMM and pγ

GMM kernels. The upper panel includes the results of two

deep learning algorithms (SAA-3 and DBN-3) as reported

in [17]. The bottom panel compares the epGMMand pγGMM

kernels with four boosted tree methods as reported in [20].

Following [17, 20], we report the results on these 11 datasets in
terms of the test error rates instead of accuracies, in Figure 4 (forM-
Noise1, M-Noise2, M-Noise3, M-Noise4, M-Noise5, M-Noise6) and
Table 3 (for M-Basic, M-Rotate, M-Image, M-Rand, M-RotImg).
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Table 2: We add the results (test classification accuracies) for the epGMM and pγGMM kernels as the last two columns, for the

11 datasets used in the deep learning literature [17] and later by [20] for comparing tree methods.

Dataset # train # test # dim linear RBF GMM eGMM pGMM γGMM epGMM pγGMM

M-Basic 12000 50000 784 89.98 97.21 96.34 96.47 96.40 96.84 96.71 97.00
M-Image 12000 50000 784 70.71 77.84 80.85 81.20 89.53 81.32 89.96 90.96

M-Noise1 10000 4000 784 60.28 66.83 71.38 71.70 85.20 71.90 85.58 87.13

M-Noise2 10000 4000 784 62.05 69.15 72.43 72.80 85.40 72.95 86.05 87.53

M-Noise3 10000 4000 784 65.15 71.68 73.55 74.70 86.55 74.83 87.10 88.28

M-Noise4 10000 4000 784 68.38 75.33 76.05 76.80 86.88 77.03 87.43 88.80

M-Noise5 10000 4000 784 72.25 78.70 79.03 79.48 87.33 79.70 88.30 89.18

M-Noise6 10000 4000 784 78.73 85.33 84.23 84.58 88.15 84.68 88.85 89.78

M-Rand 12000 50000 784 78.90 85.39 84.22 84.95 89.09 85.17 89.43 90.63

M-Rotate 12000 50000 784 47.99 89.68 84.76 86.02 86.56 87.33 88.36 89.06
M-RotImg 12000 50000 784 31.44 45.84 40.98 42.88 54.58 43.22 55.73 59.92

The results presented in Figure 4 and Table 3 are quite exciting,
because, at this point, we merely use kernel SVM with single ker-
nels. The performances of tunable GMM kernels are already com-
parable to four boosting & tree methods: mart, abc-mart, robust
logitboost, and abc-robust-logitboost, whose training procedures
are time-consuming with large model sizes (up to 10000 boosting
iterations). It is reasonable to expect that additional improvements
might be achieved in near future.

The “mart” tree algorithm [12] has been popular in industry
practice, especially in search. At each boosting step, it uses the first
derivative of the logistic loss function as the residual response to
fit regression trees, to achieve excellent robustness and fairly good
accuracy. The earlier work on “logitboost” [13] were believed to ex-
hibit numerical issues (which in part motivated the development
of mart). It turns out that the numerical issue does not actually ex-
ist after [20] derived the tree-split formula using both the first and
second order derivatives of the logistic loss function. [20] showed
the “robust logitboost” in general improves “mart”, as can be seen
from Figure 4 and Table 3.

[18–20] made an interesting observation that the derivatives (as
in text books) of the classical logistic loss function can be written
in a different form for the multi-class case, by enforcing the “sum-
to-zero” constraints. At each boosting step, they identify a “base
class” either by the “worst-class” criterion [18] or the exhaustive
search method as reported in [19, 20]. This “adaptive base class
(abc)” strategy can be combined with either mart or robust log-
itboost; hence the names “abc-mart” and “abc-robust-logitboost”.
The improvements due to the use of “abc” strategy can also be sub-
stantial. In all the tree implementations, they [18–20] always used
the adaptive-binning strategy for simplifying the implementation
and speeding up training. Also, they followed the “best-first” crite-
rion whereas many tree implementations used balanced trees.

Table 3 reports the test error rates on five datasets: M-Basic, M-
Rotate, M-Image, M-Rand, and M-RotImg. In group 1 (as reported
in [17]), the results show that (i) the kernel SVM with RBF ker-
nel outperforms the kernel SVM with polynomial kernel; (ii) deep
learning algorithms usually beat kernel SVMand neural nets. Group
2 presents the same results as in Table 2 (in terms of error rates as

opposed to accuracies). In group 3, overall the tree methods es-
pecially abc-robust-logitboost achieve very good accuracies. The
results of tunable GMM kernels are largely comparable.

The training of boosted trees is typically slow (especially in
high-dimensional data) because a large number of trees are usu-
ally needed in order to achieve good accuracies. Consequently, the
model sizes of tree methods are usually large. Therefore, it would
be exciting to have methods which are much simpler than trees
and achieve comparable accuracies.

3 HASHING THE pGMM KERNEL

It is now well-understood that it is highly beneficial to be able to
linearize nonlinear kernels so that learning algorithms can be eas-
ily scaled tomassive data. Linearization can be done either through
hashing [15, 21, 26] or the Nystrom method [28].

It turns out that developing a hashing method for the pGMM
kernel is quite straightforward, by modifying the prior algorithms.
Algorithm 1 summarizes the modified GCWS (generalized consis-
tent weighted sampling) .

Algorithm 1 Modified generalized consistent weighted sampling
(GCWS) for hashing the pGMM kernel with a tuning parameter p.

Input: Data vector ui (i = 1 to D)
Generate vector ũ in 2D-dim by (1).

For i from 1 to 2D
ri ∼ Gamma(2,1), ci ∼ Gamma(2,1), βi ∼ Uni f orm(0, 1)
ti ← ⌊p log ũi

ri
+ βi ⌋, ai ← log(ci ) − ri (ti + 1 − βi )

End For
Output: i∗ ← arдmini ai , t∗ ← ti∗

With k samples, we can estimate pGMM(u,v) according to the fol-
lowing collision probability:

Pr

{

i∗ũ, j = i∗ṽ, j and t
∗
ũ, j = t

∗
ṽ, j

}

= pGMM(u,v), (11)

or, for implementation convenience, the approximate collision prob-
ability [21]:

Pr

{

i∗ũ, j = i
∗
ṽ, j

}

≈ pGMM(u,v) (12)
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Table 3: Test error rates of five datasets reported in [17, 20]. The results in group 1 are from [17], where they compared kernel

SVM, neural nets, and deep nets. The results in group 3 are from [20], which compared four boosted tree methods.

Group Method M-Basic M-Rotate M-Image M-Rand M-RotImg

SVM-RBF 3.05% 11.11% 22.61% 14.58% 55.18%
SVM-POLY 3.69% 15.42% 24.01% 16.62% 56.41%

1 NNET 4.69% 18.11% 27.41% 20.04% 62.16%
DBN-3 3.11% 10.30% 16.31% 6.73% 47.39%
SAA-3 3.46% 10.30% 23.00% 11.28% 51.93%
DBN-1 3.94% 14.69% 16.15% 9.80% 52.21%

Linear 10.02% 52.01% 29.29% 21.10% 68.56%
RBF 2.79% 10.32% 22.16% 14.61% 54.16%

2 GMM 3.64% 15.24% 19.15% 15.78% 59.02%
eGMM 3.53% 13.98% 18.80% 15.05% 57.12%
pGMM 3.60% 13.44% 10.47% 10.91% 45.42%
γGMM 3.16% 12.67% 18.68% 14.83% 56.78%
epGMM 3.29% 11.64% 10.04% 10.57% 44.27%
pγGMM 3.00% 10.94% 9.04% 9.53% 40.18%

mart 4.12% 15.35% 11.64% 13.15% 49.82%
3 abc-mart 3.69% 13.27% 9.45% 10.60% 46.14%

robust logitboost 3.45% 13.63% 9.41% 10.04% 45.92%
abc-robust-logitboost 3.20% 11.92% 8.54% 9.45% 44.69%

For each vector u , we obtain k random samples i∗
ũ, j

, j = 1 to

k . We store only the lowest b bits of i∗. We need to view those k
integers as locations (of the nonzeros). For example, when b = 2,

we should view i∗ as a binary vector of length 2b = 4. We concate-

nate all k such vectors into a binary vector of length 2b × k and
then feed the new data vectors to a linear classifier if the task is
classification. The storage and computational cost is largely deter-
mined by the number of nonzeros in each data vector, i.e., the k in
our case. This scheme can also be used for other tasks including
clustering, regression, and near neighbor search.

Figure 5 presents the experimental results on hashing for M-
Rotate. For this dataset, p = 0.25 is the best choice (among the
range of p values we have searched). Figure 5 plots the results
for both p = 0.25 (left panels) and p = 1 (right panels), for b ∈
{12, 8, 4, 2}. Recall here b is the number of bits for representing
each hashed value. The results demonstrate that: (i) hashing using
p = 0.25 produces better results than hashing using p = 1; (ii) It
is preferable to use a fairly large b value, for example, b ≥ 4 or 8.
Using smaller b values (e.g., b = 2) hurts the accuracy; (iii) With
merely a small number of hashes (e.g., k = 128), the linearized
pGMM kernel can significantly outperform the original linear ker-
nel. Note that the original dimensionality is 784. This example illus-
trates the significant advantage of nonlinear kernel and hashing.

Figure 6 (for CTG dataset) and Figure 7 (for SpamBase dataset)
are somewhat different from the previous figures. For bothdatasets,
using γ = 0.05 achieves the best accuracy. We plot the results for
γ = 0.05, 0.25, 0.5, 0.75, and b = 8, 4, 2, to visualize the trend.

We have conducted significantly more experiments thanwe have
presented here, but we hope they are convincing enough.

4 DISCUSSION: HASHING γGMM AND eGMM

At least for γ being integers, it is possible to modify the Algo-
rithm 1 to develop a hashing method for the γGMM kernel. Basi-
cally, for each hash value, we just need to generate γ independent
samples. For the original data vectorsu andv , we require all γ sam-
ples of u to match all γ samples of v . The collision probability will
be exactly equal to the γGMM kernel.

Developing a hashing method for the eGMM is more challeng-
ing. Amore straightforward approach is a two-stage hashing scheme.
We first generate hashed values using Algorithm 1 (with p = 1),
then we apply random Fourier features (RFF) [29] on the hashed
values. Based on the analysis in [23], the RFF method needs a very
large number of samples in order to reach a satisfactory accuracy.
Therefore, we do not expect this two-stage scheme would be prac-
tical for hashing the eGMM kernel.

5 CONCLUSION

It is commonly believed that deep learning algorithms and tree
methods can produce the state-of-the-art results in many statisti-
cal machine learning tasks. In 2010, [20] reported a set of surpris-
ing experiments on the datasets used by the deep learning com-
munity [17], to show that tree methods can outperform deep nets
on a majority (but not all) of those datasets and the improvements
can be substantial on a good portion of datasets. [20] introduced
several ideas including the second-order tree-split formula and the
new derivatives for multi-class logistic loss function. Nevertheless,
tree methods are slow and their model sizes are typically large.

In machine learning practice with massive data, it is desirable to
develop algorithms which run almost as efficient as linear meth-
ods (such as linear logistic regression or linear SVM) and achieve
similar accuracies as nonlinear methods. In this study, the tun-
able linearized GMM kernels are promising tools for achieving
those goals. Our extensive experiments on the same datasets used
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for testing tree methods and deep nets demonstrate that tunable
GMM kernels and their linearized versions through hashing can
achieve comparable accuracies as trees. On some datasets, “abc-
robust-logitboost” achieves better accuracies than the proposed
tunable GMM kernels. Also, on some datasets, deep learning meth-
ods or RBF kernel SVM outperform tunable GMM kernels. There-
fore, there is still room for future improvements.

In this study, we focus on testing tunable GMM kernels and their
linearized versions using classification tasks. It is clear that these
techniques basically generate new data representations and hence
can be applied to a wide variety of statistical learning tasks in-
cluding clustering and regression. Due to the discrete name of the
hashed values, the techniques naturally can also be used for build-
ing hash tables for fast near neighbor search.
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Figure 5: Test classification accuracies for using linear clas-

sifiers combined with hashing in Algorithm 1 on M-Rotate

dataset, for p = 0.25 (left panels) and p = 1 (right panels),

and b ∈ {12, 8, 4, 2}. In each panel, the four solid curves cor-

respond to results with k hashes for k ∈ {128, 256, 1024, 4096}.
For comparisons, each panel also plots the results of linear

classifiers on the original data (lower marked curve) and the

results of pGMM kernel SVMs (higher marked curve).
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Figure 6: Test classification accuracies for using linear classifiers combined with hashing in Algorithm 1 on CTG dataset, for

p ∈ {0.05, 0.25, 0.5, 0.75} to visualize the trend that, for this dataset, the accuracy decreases with increasing p.
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Figure 7: Test classification accuracies for using linear classifiers combined with hashing in Algorithm 1 on SpamBase dataset,

for p ∈ {0.05, 0.25, 0.5, 0.75} to visualize the trend that, for this dataset, the accuracy decreases with increasing p.
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