
MOBIUS: Towards the Next Generation ofQuery-Ad Matching
in Baidu’s Sponsored Search

1Miao Fan, 2Jiacheng Guo, 2Shuai Zhu, 2Shuo Miao, 1Mingming Sun, 1Ping Li
{fanmiao,guojiacheng,zhushuai,miaoshuo,sunmingming01,liping11}@baidu.com

1 Cognitive Computing Lab (CCL), Baidu Research, Baidu Inc.
2 Baidu Search Ads (Phoenix Nest), Baidu Inc.

Figure 1: “Mobius” is the internal code name of this project. Coincidentally, the well-known “Mobius Loop” is also the bird’s-
eye view of Baidu’s Technology Park in Beijing, China.

ABSTRACT
Baidu runs the largest commercial web search engine in China,
serving hundreds of millions of online users every day in response
to a great variety of queries. In order to build a high-efficiency spon-
sored search engine, we used to adopt a three-layer funnel-shaped
structure to screen and sort hundreds of ads from billions of ad
candidates subject to the requirement of low response latency and
the restraints of computing resources. Given a user query, the top
matching layer is responsible for providing semantically relevant ad
candidates to the next layer, while the ranking layer at the bottom
concerns more about business indicators (e.g., CPM, ROI, etc.) of
those ads. The clear separation between the matching and ranking
objectives results in a lower commercial return. The Mobius project
has been established to address this serious issue. It is our first
attempt to train the matching layer to consider CPM as an addi-
tional optimization objective besides the query-ad relevance, via

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330651

directly predicting CTR (click-through rate) from billions of query-
ad pairs. Specifically, this paper will elaborate on how we adopt
active learning to overcome the insufficiency of click history at the
matching layer when training our neural click networks offline,
and how we use the SOTA ANN search technique for retrieving
ads more efficiently (Here “ANN” stands for approximate nearest
neighbor search). We contribute the solutions to Mobius-V1 as the
first version of our next generation query-ad matching system.

KEYWORDS
Sponsored search; query-admatching; active learning; click-through
rate (CTR) prediction; approximate nearest neighbor (ANN) search

ACM Reference Format:
Miao Fan, Jiacheng Guo, Shuai Zhu, ShuoMiao, Mingming Sun, Ping Li. 2019.
MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu’s
Sponsored Search. In The 25th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (KDD’19), August 4–8, 2019, Anchorage, AK, USA.
ACM, NY, NY, USA, 9 pages. https://doi.org/10.1145/3292500.3330651

1 INTRODUCTION
Baidu Search (www.baidu.com), as the largest commercial search
engine in China, daily serves hundreds of millions of online users in
response to a great variety of search queries. It is common knowl-
edge that advertising has been the main revenue source for all
major commercial search engine firms in the world. In this paper,

https://doi.org/10.1145/3292500.3330651
www.baidu.com

we focus on explaining some of the recent exciting development
and invention in Baidu’s Search Ads system (conventionally known
as the “Phoenix Nest” inside Baidu). As shown by Figure 2, it plays
a vital role in retrieving advertisements (ads) which are relevant
to user queries to attract clicks as advertisers are willing to pay
when their ads get clicked. The goal of Baidu sponsored search
system is to form and nourish a virtuous circle among online users,
advertisers, and our sponsored search platform.

User search query

An ad from
sponsored
search

The organic
search results

Figure 2: A screen-shot of Baidu Search results on mobile
phones given a search query “tourism in Alaska” (in Chi-
nese). Our sponsored search engine is in charge of providing
helpful ads on each page before the organic search results.

Conventional sponsored search engines [10, 11, 22] generally
display ads through a two-step process. The first step is to retrieve
relevant ads given a query, and the next step is to rank these ads
based on predicted user engagement. As a high-efficiency sponsored
search engine for commercial use in Baidu, we used to adopt a three-
layer funnel-shaped structure to screen and sort hundreds of ads
from billions of ad candidates subject to the requirement of low
response latency and the restraints of computing resources. As
illustrated in Figure 3, the top matching layer is responsible for
providing relevant ad candidates to the next layer given a user query
and the rich profile of the user. To cover more semantically relevant

Objective (Matching):
User Query to Ad Relevance

Objectives:
CTRX
RIGQX
…

Objectives (Ranking):
CTR
RIG
ROI
…

Billions of Ad Candidates

Thousands of Ad Candidates

Hundreds of Ad Candidates

Figure 3: The three-layer funnel-shaped structure of the pre-
vious sponsored search system in Baidu. Given a user query,
it is highly efficient to retrieve hundreds of relevant and
high-CPM ads from billions of ad candidates.

ads, query expansion [1, 3, 4] and natural language processing
(NLP) techniques [2] are mostly leveraged. The ranking layer at the
bottom concerns more about business indicators [16], such as cost
per mile (CPM = CTR × Bid), return on investment (ROI), etc., of
the filtered ads provided by the upper layer.

However, this separation/distinction betweenmatching and rank-
ing objectives lead to a lower commercial return for various reasons.
Given a user query, we have to employ complex models and to
spend a lot of computing resources on ranking hundreds or even
thousands of ad candidates. Perhaps most disappointingly, the rank-
ing models report that many relevant ads are not offered by high
CPM and will not be displayed. To address this issue, Baidu Search
Ads has set up the “Mobius” project which aims towards the next
generation query-ad matching system in Baidu’s sponsored search.
This project is expected to unify the diverse learning objectives in-
cluding the query-ad relevance and many other business indicators
together, subject to lower response latency, restraints of computing
resources and tiny adverse impact on user experience.

In this paper, we introduce Mobius-V1 which is our first attempt
for teaching the matching layer to take CPM as an additional opti-
mization objective besides the query-ad relevance. In other words,
Mobius-V1 has the capability of accurately and rapidly predicting
click-through rate (CTR) for billions of user query & ad pairs. To
achieve this goal, we must resolve the following major problems:

• Insufficient click history: The original neural click model
employed by the ranking layerwas trained by high-frequency
ads and user queries. It tends to estimate a query-ad pair at
a much higher CTR for display once either a high-frequency
ad or a high-frequency query appears, even though they
might have low relevance.

• High computational/storage cost: Mobius is expected to
forecast multiple indicators (including relevance, CTR, ROI,
etc.) of billions of user query & ad pairs. It naturally faces the
challenge of greater consumption on computing resources.

To address the problems above, we first design a “teacher-student”
framework inspired by the idea of active learning [34, 41] to aug-
ment the training data for our large-scale neural click model to pre-
dict CTR for billions of user query & ad pairs. Specifically, an offline

Objective (Matching):
User Query to Ad Relevance

Objectives:
CTRX
RIGQX
…

Objectives
(Ranking):

CTR
RIG
ROI
…

Billions of Ad Candidates

Thousands of Ad Candidates

Hundreds of Ad Candidates

Billions of Ad Candidates

Multi-Objectives (Mobius):
Relevance
CTR
ROI
…

CTR, ROI, …

CTRX, …
Towards theNextGeneration

Figure 4: The distinct objectives of matching and ranking layer lead to lower CPM which is one of the key business indicators
of a sponsored search engine. Therefore, we are engaged in building a high-efficient query-ad matching system (i.e., Mobius)
in Baidu sponsored search. Mobius is expected to unify the learning objectives of the query-ad relevance and many other
business indicators together, subject to lower response latency, limitation of computation resources and tiny adverse impact
on user experience. For now, we have deployed the first version of Mobius (Mobius-V1) which can more accurately predict
CTR for billions of user query & ad pairs.

data generator is responsible for constructing synthetic query-ad
pairs given billions of user queries and ad candidates. These query-
ad pairs are constantly judged by a teacher agent which is derived
from the original matching layer and is good at measuring the se-
mantic relevance of a query-ad pair. It can help detect the bad cases
(i.e., high CTR but low relevance) in the synthetic query-ad pairs.
Our neural click model, as a student, is taught by the additional bad
cases to improve the ability of generalization on tail queries and ads.
To save the computing resources and satisfy the requirement of low
response latency, we further adopt the most recent state-of-the-art
approximate nearest neighbor (ANN) search and Maximum Inner
Product Search (MIPS) techniques for indexing and retrieving a
large number of ads more efficiently.

To tackle the aforementioned challenges, Mobius-V1, as the first
version of our next generation query-ad matching system, is an
integration of the solutions above and has already been deployed
in Baidu’s sponsored search engine.

2 VISION OF BAIDU’S SPONSORED SEARCH
For a long period of time, the funnel-shaped structure is a classical
architecture of sponsored search engines [10, 11, 22]. The major
components include the query-ad matching and ad ranking. The
query-ad matching is typically a lightweight module which mea-
sures the semantic relevance between a user query and billions of
ads. In contrast, the ad ranking module should concern much more
business indicators such as CPM, ROI, etc., and use complex neural
models to sort hundreds of ad candidates for display. This decou-
pled structure is a wise option to save the expensive computing
resources in the early days. Moreover, it can also facilitate both
scientific research and software engineering as the twomodules can
be assigned to different research/development teams to maximize
individual objectives.

Baidu’s sponsored search used to adopt a three-layer funnel-
shaped structure which is shown by Figure 3. The optimization
objective of the top matching layer (denoted by OMatchinд) is to

maximize the average relevance score among all the query-ad pairs:

OMatchinд = max 1
n

n∑
i=1

Relevance (queryi ,adi). (1)

However, according to our long-term analysis on the perfor-
mance of Baidu’s sponsored search engine, we find out that the
distinction/separation between matching and ranking objectives
tends to lead to lower CPM which is one of the key business indica-
tors for a commercial search engine. It is unsatisfactory when the
models in the ranking layer report that many relevant ads provided
by the matching layer will not be displayed on search results as
they are estimated not to have higher CPM.

With the rapid growth of computing resources, the Baidu Search
ads team (“Phoenix Nest”) has recently established the Mobius
project which aims towards the next generation query-ad matching
system in Baidu’s sponsored search. The blueprint of this project as
illustrated in Figure 4 looks forward to unifying multiple learning
objectives including the query-ad relevance and many other busi-
ness indicators into a single module in Baidu’s sponsored search,
subject to lower response latency, limited computing resources and
tiny adverse impact on user experience.

This paper will report the first version of Mobius, i.e., Mobius-V1,
which is our first attempt to teach the matching layer considering
CPM as an additional optimization objective besides the query-ad
relevance. Here we formulate the objective of Mobius-V1 as follows,

OMobius−V 1 = max
n∑
i=1

CTR (useri ,queryi ,adi) × Bidi ,

s .t .
1
n

n∑
i=1

Relevance (queryi ,adi) ≥ threshold .

(2)

Thus, it becomes a challenge about how to accurately predict CTR
for billions pairs of user quires and ad candidates in Mobius-V1. In
the rest of the paper, we will describe how we design, implement,
and deploy Mobius-V1, in great details.

3 MOBIUS: NEXT GENERATION QUERY-AD
MATCHING SYSTEM

“Mobius” is Baidu’s internal code name of this project. Coinciden-
tally, the well-known “Mobius Loop” is also the bird’s eye view of
Baidu’s Technology Park in Beijing, China; see Figure 1. “Mobius-
V1” is our first attempt (which has been successfully deployed)
to transfer our neural click model to the matching layer directly
facing billions of user query and ads. As the scale of input data
dramatically increases, we need to re-train our neural click model
offline and update the techniques of indexing and retrieving ads.

3.1 Active-Learned CTR Model
For over 6 years, Baidu’s sponsored search engine has been using the
deep neural networks (DNN) for the CTR model (of gigantic size).
Recently, Mobius-V1 has adopted an innovative new architecture.
An intuitive and simple way of building Mobius-V1 is to reuse the
original CTRmodel in the ranking layer. It is a large-scale and sparse
deep neural network (DNN) which is in favor of memorization.
However, it suffers from a severe bias on CTR prediction of either
the user queries or the ads in the tail. Consider, as shown in Figure 5,
the two queries “Tesla Model 3” and “White Rose” requested by
the same user as in the search log. For the funnel-shaped structure
adopted in the past, the relevance between the query “Tesla Model
3” and the ad “Mercedes-Benz” is firstly guaranteed by the matching
layer. Then our neural click model in the ranking layer tends to
predict a higher CTR on the query-ad pair as “Tesla Model 3” is
a high-frequency query and leaves a rich click history on the ad
“Mercedes-Benz” in our search log. However, in Mobius-V1 we
attempt to use our neural click network to directly handle billions
of query-ad pairs lacking the guarantee of relevance. It is natural
that many irrelevant query-ad pairs come out (e.g., the query “White
Rose” and the ad “Mercedes-Benz” in Figure 5). Nevertheless, we
have found out that our neural click model still tends to predict
higher CTR for those irrelevant query-ad pairs.

Relevance (‘Tesla Model 3’, ‘Mercedes-Benz’) = 0.68

CTR (User_x, ‘Tesla Model 3’, ‘Mercedes-Benz’) = 0.87

Relevance (‘White Rose’, ‘Mercedes-Benz’) = 0.15

CTR (User_x, ‘White Rose’, ‘Mercedes-Benz’) = 0.73

Figure 5: An example of a bad case that the original CTR
model could not handle well. As the neural click network
employed by the ranking layer was originally trained by
high-frequency ads and queries, it tends to estimate a query-
ad pair at a higher CTR once a high-frequency ad (e.g.,
“Mercedes-Benz” in this case) appears, even though “White
Rose” and “Mercedes-Benz” have little relevance.

According to our analysis on the query log in Baidu’s sponsored
search, the ads and the user queries suffer from the long-tail effect
and the cold start problem. Therefore, we can not directly leverage
the original neural click model to accurately predict CTR for billions
of user queries and ads in the tail. The key to the problem is how
we teach our model learning to recognize the “low relevance but
high CTR” query-ad pairs as the bad cases.

Algorithm 1 The active learning procedure for training neural
click model to predict CTR for billions of query-ad pairs.
Require: Click_History, Relevance_Judger (Teacher), and Neu-

ral_Click_Model (Student)

while epoch ≤ N or err ≥ ϵ do

Loading a batch of Click_History
data={(useri ,queryi ,adi , (un)clicki), i = 1, 2, ...,n}

Building the query set and the ad set, respectively
querySet=Set(List(queryi))
adSet=Set(List(adi))

Generating the augmented data
auдData=querySet ⊗ adSet

Obtaining the low-relevance augmented data
lowRelAuдData=Relevance_Judger(auдData)

Obtaining the predicted CTRs for the low-relevance aug-
mented data
(lowRelAuдData,pCtrs)=Neural_Click_Model(lowRelAuдData)

Sampling the bad cases from low-relevance augmented data
according the predicted CTRs
badCases=Sampling(lowRelAuдData) s.t. pCTRs

Adding the bad cases into the training buffer with the
Click_History
trainBu f f er=[data,badCases]

Updating the weights insideNeural_Click_Modelwith the
data in the training buffer
Updating (Neural_Click_Model) s.t. trainBu f f er

end while

To solve this problem, we propose to use the original relevance
judger in the matching layer as the teacher to make our neural
click model aware of the “low relevance” query-ad pairs. Our neu-
ral click model, as the student, acquires the additional knowledge
on relevance from the augmented bad cases in an active learning
fashion. Figure 6 illustrates the fashion by a flow diagram and Algo-
rithm 1 shows the training procedure of teaching our neural click
model with active learning in pseudo code. Generally speaking, the
iterative procedure of active learning has two phases: data augmen-
tation and CTR model learning. To be specific, we will elaborate
the modules in each phase step by step.

The phase of data augmentation starts from loading a batch of
click history (i.e., user query & ad pairs) from query logs into a data
augmenter. Every time the data augmenter receives the query-ad
pairs, it splits them into two sets: a query set and an ad set. Then
we apply a cross join operation (⊗) to the two sets for the sake of
constructing more user query & ad pairs. Suppose that there arem
queries and n ads in the batch of click history, and then the data
augmenter can help generatem × n synthetic query-ad pairs. After
listing all possible query-ad pairs, the relevance judger involves
in and takes charge of grading the relevance of these pairs. As we
want to discover the low relevance query-ad pairs, a threshold is

User query1 Ad1 Clicked (1)

… … …

User queryn Adn Unclicked (0)

User queryi	⊗	Adj

Click History (Log)

Data Augmenter

Relevance Judger (Teacher) Relevance ≤ threshold
User query1 Ad1 Clicked (1)

… … …

User querym-1 Adm-1 Bad (2)

User querym Adm Unclicked (0)

Neural Click Model (Student)

Augmented Buffer

Data Sampler
User query1 Ad1 Pr(click) = 0.33

… … …

User querym-1 Adm-1 Pr(click) = 0.85

… … …

Softmax Layer

User Query DNN Ad DNN

⊙ ⊙ ⊙

… … …

Pr(click) Pr(unclick) Pr(bad)

Phase of Data
Augmentation

Phase of Training
CTR Model

CTR Prediction

Figure 6: The flow diagram of actively training our neural click model with augmented data. The iterative procedure has two
phases: data augmentation and CTR model learning. The phase of data augmentation starts from loading a batch of click
history (i.e., user query & ad pairs) into a data augmenter. The data augmenter adopts a cross join operation to generate more
user query & ad pairs even though they do not appear in the click history. Then we bring in the original matching model as
a teacher to grade the relevance of those pairs. The teacher set a threshold to retain the irrelevant query-ad pairs which are
further fed into our neural click network. Our neural click network acts as a student and tries to predict the CTRs of query-ad
pairs. A data sampler is responsible for sampling and labeling the bad cases (i.e., user query & ad pairs with lower relevance
but higher CTR). After the training buffer is augmented by the bad cases, we start the second phase to train our neural click
model which predicts the probability of distribution in three categories: click, unclick and bad. Once the augmented data in
the buffer have been used, we clean the buffer and wait for loading the next batch of click history.

set to reserve those pairs as candidate teaching materials. These
low relevance query-ad pairs, as teaching materials, are fed into our
neural click model for the first time, and each pair is assigned with
CTR predicted by the updated model in the previous iteration. To
teach our 3-classes (i.e., click, unclick and bad) neural click model
learning to recognize “low relevance but high CTR” query-ad pairs,
we may intuitively set another threshold to filter out most low CTR
query-ad pairs. However, we consider a better option to balance the
exploration and exploitation of the augmented data. We employ a
data sampler which selects and labels the augmented data referred
to the predicted CTRs of those synthetic query-ad pairs. Once a
query-ad pair is sampled as a bad case for our neural click network,
this pair is labeled by an additional category, i.e., bad.

In the phase of learning our CTR model, both the click/unclick
history and the labeled bad cases are added into the augmented
buffer as the training data. Our neural click network is a large-scale
and multi-layer sparse DNN which is composed of two subnets,

i.e., user query DNN and ad DNN. As illustrated by Figure 6, the
user query DNN on the left takes rich user profiles and queries as
inputs and the ad DNN on the right regards the ad embeddings as
features. Both subnets produce a distributed representation with 96
dimensions each of which is segmented into three vectors (32 × 3).
We apply the inner product operation 3 times to the three pairs
of vectors between the user query DNN and ad DNN and adopt a
softmax layer for CTR prediction.

Overall, we contribute a type of learning paradigm to train our
neural click model offline in Baidu’s sponsored search engine. For
the sake of improving its capability of generalization on CTR pre-
diction for billions of query-ad pairs in the tail, the neural click
model (student) can actively query the relevance model (teacher)
for labels. This type of iterative supervised learning is known as
active learning [34, 41].

3.2 Fast Ads Retrieval
In Baidu’s sponsored search engine, we have been using the deep
neural networks (i.e., user query DNN and ad DNN) illustrated
by Figure 6 to acquire both the embeddings of queries and ads,
respectively. Given a query embedding, Mobius must retrieve the
most relevant and the highest CPM ads from billions of ad candi-
dates as stated in Eq. (2). Of course, it is unpractical to calculate it
exhaustively for each query although the brute-force search can
theoretically discover all the ads (i.e., 100% ad recall) we are looking
for. The online services often have restricted latency constraints
and the ad retrieval must be done in a short period. Thus, we exploit
approximate nearest neighbor (ANN) search techniques to speed
up the retrieval process, as shown by Figure 7.

User Vector Ad Vector

ANN Search
MIPS

Re-Rank by BRW

Search Results

Vector Compression

Figure 7: The fast ad retrieval framework. The two types of
vectors will be compressed first to save the memory space.
After that, two strategies can be applied: (a) ANN search by
cosine similarity and then re-rank by the business related
weight (BRW); (b) Ranking by exploiting weight, which is a
Maximum Inner Product Search (MIPS) problem.

3.2.1 ANN Search. As shown in Figure 6, the mapping function
combining user vectors and ad vectors by cosine similarity and then
the cosine values go through a softmax layer to produce the final
CTR. In this way, the cosine value and the CTR are monotonically
correlated. After the model is learned, it will be clear they are
positively or negatively correlated. If it is negatively correlated,
we can easily transfer it to positively correlated by negating the
ad vector. In this way, we reduce the CTR ranking problem into a
cosine ranking problem, which is a typical ANN search setting.

The goal of approximate nearest neighbor (ANN) search is to
retrieve, for a given query object, the “most similar” set of objects
from a large corpus, by only scanning a small fraction of objects in
the corpus. This is a fundamental problem and has been actively
studied since the early days in computer science [12, 13]. Typically,
popular algorithms for ANN have been based on the idea of space-
partitioning, including tree-basedmethods [12, 13], randomhashing
methods [5, 7, 15, 20, 27, 37], quantization based approaches [14,
23, 42], random partition tree methods [8, 9], etc. For this particular
problem (which deals with dense and relatively short vectors), we
have found that random partition tree methods are fairly effective.
There is a known implementation of random partition tree methods
called “ANNOY”, among other variants [8, 9].

3.2.2 Maximum Inner Product Search (MIPS). In the above solution,
the business-related weight information is considered after the user
vector and ad vector matching. In practice, this weight is vital in
ads ranking. To take into account the weight information earlier in
the ranking, we formalize the fast ranking process by a weighted
cosine problem as follows:

cos(x ,y) ×w =
x⊤y ×w

∥x ∥∥y∥
=

(
x

∥x ∥

)⊤ (
y ×w

∥y∥

)
, (3)

wherew is the business related weight, x is user-query embedding
and y is the ad vector. Note that the weighted cosine poses an inner
product searching problem, often referred as Maximum Inner Prod-
uct Search (MIPS) [36]. In this line of work, multiple frameworks
can be applied for fast inner product search [36, 38, 43, 44].

3.2.3 Vector Compression. Storing a high-dimensional floating-
point feature vector for each of billions of ads takes a large amount
of disk space and poses even more problems if these features need
to be in memory for fast ranking. A general solution is compress-
ing floating-point feature vectors into random binary (or integer)
hash codes [7, 28, 30], or quantized codes [23]. The compression
process may reduce the retrieval recall to an extent but it may bring
significant storage benefits. For the current implementation, we
adopted a quantization based method like K-Means to cluster our
index vectors, rather than ranking all ad vectors in the index. When
a query comes, we first find the cluster that the query vector is
assigned to and fetch the ads that belong to the same cluster from
the index. The idea of product quantization (PQ) [23] goes one
more step further to split vectors into several subvectors and to
cluster each split separately. In our CTR model, as mentioned in
Section 3.1, we split both query embeddings and ad embeddings
into three subvectors. Then each vector can be assigned to a triplet
of cluster centroids. For example, if we choose 103 centroids for
each group of subvectors, 109 possible cluster centroids can be ex-
ploited which is adequate for a billion-scale multi-index [26] for
ads. In Mobius-V1, we employ a variant algorithm called Optimized
Product Quantization (OPQ) [14].

4 EXPERIMENTS
We conducted thorough experiments on Mobius-V1 before inte-
grating it into Baidu’s sponsored search engine. Specifically, we
first need to conduct the offline evaluation of our CTR prediction
model and the new approach on ad indexing. We need to make sure
that our CTR model with the updated method on retrieving ads
can discover more relevant ads with higher CPM. Then we tried to
deploy it online to process a proportion of the query flow in Baidu
Search. After Mobius-V1 had passed both the offline evaluation and
the online A/B test, we launched it on multiple platforms to monitor
the statistics of CPM, CTR and ACP (i.e., average click price).

4.1 Offline Evaluation
We loaded the search logs to collect the click/unclick history and
built a training set which contains 80 billion samples. We also used
the search log to construct the test set which has 10 billion records
on ad click/unclick history. We compare the effectiveness of our
actively learned CTR model with two baseline approaches. One
method is the 2-class CTR model adopted by the original ranking

Table 1: Comparison results of the offline evaluation of our neural click model trained by different data generation strategies.
AUC stands for the Area under the Receiver Operating Characteristic. REL is the average score of relevance between query-ad
pairs in the test set, and it can be automatically evaluated by the original matching model or graded by human experts.

Neural Click Model for CTR Prediction AUC REL (Relevance Model) REL (Human Experts)
2-Class (click & unclicked Data) 0.823 0.312 1.500
3-Class (click & unclicked Data + randomly labeled bad cases) 0.795 0.467 1.750
3-Class (click & unclicked Data + actively learned bad cases) 0.811 0.575 3.000

Table 2: The comparison results of different ad retrieval strategies. The experiment on ad coverage rate is conducted offline.
The average response time and memory usage are tested online.

Ad Retrieval Ad Coverage Rate Avg. Response Time Avg. Response Time Memory Usage
Brute Force 100% - - -
Original Vector+ANN+Re-Rank 7.3% 120ms 74ms 100%
Compressed Code+MIPS 40.5% 30ms 16ms 5%

layer which was trained solely by the click history without using
any augmented data. The other approach is a 3-class CTR model
trained by the randomly augmented data without being judged by
the relevance model (teacher). As shown by Table 1, our model can
maintain a comparable AUC with the original ranking model but
significantly improves the relevance model score (from 0.312 to
0.575) measured by our relevance model. In other words, the low-
relevance but high-CPM query-ad pairs are successfully recognized
as the bad cases by our new CTR model in Mobius-V1.

Moreover, we delivered the top 100,000 query-ad pairs with the
highest CTR predicted by each approach to the Crowdsourcing
Team in Baidu, so as to manually grade the query-ad relevance
ranging from 0 to 4 (0: no relevance, 4: quite relevant) by human
experts. The report of subjective opinions also demonstrates that
our CTRmodel in Mobius-V1 performs well on discovering relevant
query-ad pairs. In addition, we used the same set of to retrieve ads
from two ad indexing system powered by random partition trees
(ANN+Re-Rank) and OPQ (Compressed Code+MIPS), respectively.
Table 2 shows that OPQ increases the ad coverage rate by 33.2%.

4.2 Online A/B Testing
The online A/B testing was conducted between two different ad
retrieval strategies employed byMobius-V1 from the perspectives of
average response time and memory usage. Table 2 shows that OPQ
can providemuch lower latency than random partition treemethods
and reduce the average response time by 48ms/query. Furthermore,
we examined the average response time of the top 3% high-CPM
ads which have greater business value but require more computing
resources. It shows that OPQ cuts down the query latency by 75%
(from 120ms to 30ms) and substantially saves memory consumption.

4.3 System Launching
After Mobius-V1 had successfully passed both the offline evaluation
and the online A/B test, we decided to launch it on multiple plat-
forms in and outside Baidu. These platforms include the Baidu App
on mobile phones, Baidu Search on PCs, and many other affiliated
websites/apps that our sponsored search engine serves. Table 3
shows the statistics on CPM, CTR, and ACP according to our 7-day

monitor on the entire online traffic. CPM is the primary metric to
evaluate the performance of a sponsored search engine. Compared
with the previous system, Mobius-V1 leads to a major improvement
of CPM by 3.8% on the Baidu App and 3.5% on the Baidu Search,
which are the main portals of our sponsored search engine.

Table 3: The improvements on CPM, CTR, and ACP of
Mobius-V1 compared with the previous system deployed on
different websites/apps. The results are based on our 7-day
surveillance of the entire online traffic.

Launched Platform CPM CTR ACP
Baidu App on Mobiles +3.8% +0.7% +2.9%
Baidu Search on PCs +3.5% +1.0% +2.2%
Affiliated Websites/Apps +0.8% +0.5% +0.2%

5 RELATEDWORK
Our work on Mobius, which is towards the next-generation query-
ad matching system in Baidu’s sponsored search engine for com-
mercial use, involves the research on query-ad matching and click-
through rate (CTR) prediction.

5.1 Query-Ad Matching
Query-ad matching [32] is an extensively studied task which aims
to retrieve advertisements that are not only the same with but
also semantically similar to the given query (e.g., the query “U.S.
tourist visa” and the ads about “travel agencies” displayed in Fig-
ure 2). As queries are commonly short texts, this issue has been
mostly addressed by the techniques of query expansion [4, 40],
query rewriting [18, 45] and semantic matching [3, 17]. Besides
that we can leverage different NLP tools to directly compute the
similarity between queries and textual ads, the semantic relation-
ship between queries and ads can also be captured via learning
from ad impressions. DSSM [35] is a well-known learning-to-match
paradigm which leverages a deep neural architecture to capture
query intent and to improve the quality of the learned semantic
match given the click information.

5.2 CTR Prediction
CTR prediction [31, 39] is another core task in sponsored search,
as it directly influences some business indicators such as CPM. It
focuses on predicting the probability that an ad would be clicked
if shown as a response to a submitted query. Conventional ap-
proaches on CTR prediction preferred handcrafted features of ad
impressions obtained from historical click data by Bayesian [33]
or feature selection methods [19, 21]. Along with the recent emer-
gence of Deep Learning [25], many approaches [6, 46, 48] for CTR
prediction utilize various deep neural nets to primarily alleviate
issues of creating and maintaining handcrafted features by learning
them automatically from the raw queries and textual ads. Baidu
Search Ads (“Phoenix Nest”) has been successfully using ultra-high-
dimensional and ultra-large-scale deep neural networks for training
CTR models since 2013.

6 CONCLUSIONS
In this paper, we introduce the Mobius project, which is the next
generation of the query-ad matching system in Baidu’s sponsored
search engine, to you by answering the subsequent four questions:

• Q: Motivation — why do we propose the Mobius project?

A: We used to adopt a three-layer funnel-shaped structure to
screen and sort hundreds of ads for display from billions of
ad candidates. However, the separation/distinction between
matching and ranking objectives leads to a lower commercial
return. To address this issue, we set up Mobius-V1 which
is our first attempt to make the matching layer take busi-
ness impact measures (such as CPM) into account instead of
simply predicting CTR for billions of query-ad pairs.

• Q: Challenges —what challenges have we encountered while
building Mobius-V1?

A: The first problem is the insufficient click history for train-
ing the neural click model which is expected to have the
generalization ability on the long-tail queries and ads. As
the original neural click model employed by the ranking
layer was trained by high-frequency ads and queries, it tends
to estimate a query-ad pair at a higher CTR once either a
high-frequency ad or a high-frequency query appears, even
though they have no relevance at all. Another problem is
the low retrieval efficiency and high memory consumption
due to the increasing number of queries and ad candidates
that Mobius has to handle.

• Q: Solutions — how do we design and implement Mobius to
address those challenges?

A: To overcome the issue of insufficiency of click history,
we design a “teacher-student” framework inspired by ac-
tive learning to augment the training data. Specifically, an
offline data generator is responsible for constructing syn-
thetic query-ad pairs given billions of user queries and ad
candidates. These query-ad pairs are constantly fed into the
teacher agent which is derived from the original matching
layer and is good at measuring the semantic relevance of

a query-ad pair. The teacher agent can help detect the bad
cases (i.e., with higher CTR but lower relevance) as the aug-
mented data from the generated query-ad pairs. Our neural
click model in Mobius-V1, as a student, is taught by the addi-
tional bad cases to improve the ability of generalization. To
save the computing resources and satisfy the requirement of
low response latency, we tested a variety of space partition-
ing algorithm for the approximate nearest neighbor (ANN)
search and we have found that for our datasets, OPQ [14] is
able to achieve good performance for indexing and retrieving
billions of ads more efficiently.

• Q: Feedbacks — how does Mobius-V1 perform in Baidu’s
sponsored search engine?

A: We have already deployed Mobius-V1 in Baidu’s spon-
sored search engine The results from both online and offline
experiments demonstrate that this new matching system
increases CPM by 3.8% and promotes ad coverage by 33.2%.

7 FUTUREWORK
Since 2013, Baidu Search Ads (a.k.a. Phoenix Nest) has success-
fully deployed ultra-large-scale deep neural networks for training
CTR models. To move beyond the CTR model, Mobius has been
established as an innovative and forward-looking project. The idea
of unifying the objectives of optimizing the user experience and
business target also inspires other featured products such as Feeds.

For future work, many potential directions can be explored. For
example, we expect to be able to bring more business targets such
as ROI (return on investment), as additional learning objectives
into the matching layer so that we can discover more business-
friendly ads. Along with more optimization objectives for billions
of candidate ads and queries, the computational complexity will
significantly increase. There ought to be a trade-off between the
effectiveness and efficiency of our sponsored search engine given
the requirement of lower response latency and the restraints of
computing resources.

The crucial step in Mobius project is the fast ads retrieval task via
approximate near neighbor search (ANN). The current system has
used the cosine similarity to approximate the CTR, based on their
monotonic correlation. If the final layer is more complicated, it will
be problematic to rank by cosine (or weighted cosine). Searching
by complicated measures has been studied, for example [38], which
could be adopted by future versions of Mobius. Another promising
direction is to adopt a GPU-based system for fast ANN, which has
been shown highly effective for generic ANN tasks [24, 29, 47].

ACKNOWLEDGMENTS
We are deeply grateful to the contributions of many colleagues
from Baidu. A few names are Lin Liu, Yue Wang, Anlong Qi, Lian
Zhao, Shaopeng Chen, Hanju Guan, and Shulong Tan; but there are
certainly many more who have contributed to this large project.

REFERENCES
[1] Vibhanshu Abhishek and Kartik Hosanagar. 2007. Keyword Generation for Search

Engine Advertising Using Semantic Similarity between Terms. In Proceedings of
the 9th International Conference on Electronic Commerce (EC). Minneapolis, MN,
89–94.

[2] Ricardo Baeza-Yates, Massimiliano Ciaramita, Peter Mika, and Hugo Zaragoza.
2008. Towards Semantic Search. In International Conference on Application of
Natural Language to Information Systems. Springer, 4–11.

[3] Xiao Bai, Erik Ordentlich, Yuanyuan Zhang, Andy Feng, Adwait Ratnaparkhi,
Reena Somvanshi, and Aldi Tjahjadi. 2018. Scalable Query N-Gram Embedding
for Improving Matching and Relevance in Sponsored Search. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). London, UK, 52–61.

[4] Andrei Broder, Peter Ciccolo, Evgeniy Gabrilovich, Vanja Josifovski, Donald
Metzler, Lance Riedel, and Jeffrey Yuan. 2009. Online Expansion of Rare Queries
for Sponsored Search. In Proceedings of the 18th International conference on World
Wide Web (WWW). Madrid, Spain, 511–520.

[5] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
1997. Syntactic Clustering of the Web. Computer Networks 29, 8-13 (1997),
1157–1166.

[6] Patrick P. K. Chan, Xian Hu, Lili Zhao, Daniel S. Yeung, Dapeng Liu, and Lei Xiao.
2018. Convolutional Neural Networks based Click-Through Rate Prediction with
Multiple Feature Sequences. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence (IJCAI). Stockholm, Sweden, 2007–2013.

[7] Moses S Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-
rithms. In Proceedings on 34th Annual ACM Symposium on Theory of Computing
(STOC). Montréal, Québec, Canada, 380–388.

[8] Sanjoy Dasgupta and Yoav Freund. 2008. Random Projection Trees and Low
Dimensional Manifolds. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC). Victoria, British Columbia, Canada, 537–546.

[9] Sanjoy Dasgupta and Kaushik Sinha. 2015. Randomized Partition Trees for
Nearest Neighbor Search. Algorithmica 72, 1 (2015), 237–263.

[10] Kushal Dave and Vasudeva Varma. 2014. Computational Advertising: Techniques
for Targeting Relevant Ads. Foundations and Trends in Information Retrieval 8
(Oct. 2014), 263–418.

[11] Daniel C Fain and Jan O Pedersen. 2006. Sponsored Search: A Brief History.
Bulletin of the American Society for Information Science and Technology 32, 2
(2006), 12–13.

[12] Jerome H. Friedman, F. Baskett, and L. Shustek. 1975. An Algorithm for Finding
Nearest Neighbors. IEEE Trans. Comput. 24 (1975), 1000–1006.

[13] Jerome H. Friedman, J. Bentley, and R. Finkel. 1977. An Algorithm for Finding
Best Matches in Logarithmic Expected Time. ACM Trans. Math. Software 3 (1977),
209–226.

[14] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product
Quantization for Approximate Nearest Neighbor Search. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2946–2953.

[15] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In Proceedings of 25th International Conference on
Very Large Data Bases (VLDB). Edinburgh, Scotland, UK, 518–529.

[16] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Her-
brich. 2010. Web-Scale Bayesian Click-Through Rate Prediction for Sponsored
Search Advertising in Microsoft’s Bing Search Engine. In Proceedings of the 27th
International Conference on Machine Learning (ICML). 13–20.

[17] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri, Ri-
cardo Baeza-Yates, Andrew Feng, Erik Ordentlich, Lee Yang, and Gavin Owens.
2016. Scalable Semantic Matching of Queries to Ads in Sponsored Search Adver-
tising. In Proceedings of the 39th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR). Pisa, Italy, 375–384.

[18] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri, and
Narayan Bhamidipati. 2015. Context- and Content-aware Embeddings for Query
Rewriting in Sponsored Search. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR).
Santiago, Chile, 383–392.

[19] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, An-
toine Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical Lessons from
Predicting Clicks on Ads at Facebook. In Proceedings of the Eighth International
Workshop on Data Mining for Online Advertising (ADKDD). New York, NY, 1–9.

[20] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing (STOC). Dallas, TX, 604–613.

[21] Michael Jahrer, A Toscher, Jeong-Yoon Lee, J Deng, Hang Zhang, and Jacob
Spoelstra. 2012. Ensemble of Collaborative Filtering and Feature Engineered
Models for Click Through Rate Prediction. In KDDCup Workshop.

[22] Bernard J Jansen and Tracy Mullen. 2008. Sponsored Search: An Overview of the
Concept, History, and Technology. International Journal of Electronic Business 6,
2 (2008), 114–131.

[23] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 33, 1 (2011), 117–128.

[24] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale Similarity
Search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature
521, 7553 (2015), 436.

[26] Victor Lempitsky. 2012. The Inverted Multi-index. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI,
3069–3076.

[27] Ping Li, Art B Owen, and Cun-Hui Zhang. 2012. One Permutation Hashing.
In Advances in Neural Information Processing Systems (NIPS). Lake Tahoe, NV,
3122–3130.

[28] Ping Li, Gennady Samorodnitsky, and John Hopcroft. 2013. Sign Cauchy Pro-
jections and Chi-Square Kernel. In Advances in Neural Information Processing
Systems (NIPS). Lake Tahoe, NV, 2571–2579.

[29] Ping Li, Anshumali Shrivastava, and Christian A. Konig. 2012. GPU-based Min-
wise Hashing: GPU-based Minwise Hashing. In Proceedings of the 21st World
Wide Web Conference (WWW). Lyon, France, 565–566.

[30] Ping Li andMartin Slawski. 2017. Simple Strategies for Recovering Inner Products
from Coarsely Quantized Random Projections. In Advances in Neural Information
Processing Systems (NIPS). Long Beach, CA, USA, 4570–4579.

[31] H. Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat
Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos,
and Jeremy Kubica. 2013. Ad click prediction: a view from the trenches. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). Chicago, IL, 1222–1230.

[32] Hema Raghavan and Rukmini Iyer. 2008. Evaluating Vector-space and Probabilis-
tic Models for Query to Ad Matching. In SIGIR Workshop on Information Retrieval
in Advertising (IRA).

[33] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
Clicks: Estimating the Click-through Rate for New Ads. In Proceedings of the 16th
International Conference on World Wide Web (WWW). Banff, Alberta, Canada,
521–530.

[34] Burr Settles. 2012. Active Learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning 6, 1 (2012), 1–114.

[35] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. In Proceedings of the 23rd International Conference on World Wide
Web (WWW). Seoul, Korea, 373–374.

[36] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for Sublinear
Time Maximum Inner Product Search (MIPS). In Advances in Neural Information
Processing Systems (NIPS). Montréal, Québec, Canada, 2321–2329.

[37] Anshumali Shrivastava and Ping Li. 2014. In Defense of MinHash Over SimHash.
In Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics (AISTATS). Reykjavik, Iceland, 886–894.

[38] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2019. Fast Item Ranking
under Neural Network based Measures. Technical Report. Baidu Research.

[39] Looja Tuladhar and Manish Satyapal Gupta. 2014. Click Through Rate Prediction
System and Method. US Patent 8,738,436.

[40] Haofen Wang, Yan Liang, Linyun Fu, Gui-Rong Xue, and Yong Yu. 2009. Ef-
ficient Query Expansion for Advertisement Search. In Proceedings of the 32nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). Boston, MA, 51–58.

[41] Meng Wang and Xian-Sheng Hua. 2011. Active Learning in Multimedia An-
notation and Retrieval: A Survey. ACM Transactions on Intelligent Systems and
Technology (TIST) 2, 2 (2011), 10.

[42] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N
Holtmann-Rice, David Simcha, and Felix Yu. 2017. Multiscale Quantization
for Fast Similarity Search. In Advances in Neural Information Processing Systems
(NIPS). Long Beach, CA, 5745–5755.

[43] Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. 2018. Norm-
Ranging LSH for Maximum Inner Product Search. In Advances in Neural Infor-
mation Processing Systems (NeurIPS). 2956–2965.

[44] Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S. Dhillon. 2017. A Greedy
Approach for Budgeted Maximum Inner Product Search. In Advances in Neural
Information Processing Systems (NIPS). Long Beach, CA, 5459–5468.

[45] Wei Vivian Zhang, Xiaofei He, Benjamin Rey, and Rosie Jones. 2007. Query
Rewriting Using Active Learning for Sponsored Search. In Proceedings of the 30th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). Amsterdam, The Netherlands, 853–854.

[46] Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin
Wang, and Tie-Yan Liu. 2014. Sequential Click Prediction for Sponsored Search
with Recurrent Neural Networks. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence (AAAI). Québec City, Québec, Canada, 1369–
1375.

[47] Weijie Zhao, Shulong Tan, and Ping Li. 2019. SONG: Approximate Nearest Neighbor
Search on GPU. Technical Report. Baidu Research.

[48] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-
through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). London, UK, 1059–
1068.

	Abstract
	1 Introduction
	2 Vision of Baidu's Sponsored Search
	3 MOBIUS: Next Generation Query-Ad Matching System
	3.1 Active-Learned CTR Model
	3.2 Fast Ads Retrieval

	4 Experiments
	4.1 Offline Evaluation
	4.2 Online A/B Testing
	4.3 System Launching

	5 Related Work
	5.1 Query-Ad Matching
	5.2 CTR Prediction

	6 Conclusions
	7 Future Work
	Acknowledgments
	References

