Large Scale Semantic Indexing with Deep Level-wise Extreme
Multi-label Learning

Dingcheng Li, Jingyuan Zhang, Ping Li
Cognitive Computing Lab (CCL), Baidu Research
{lidingcheng,zhangjingyuan03,liping11}@baidu.com

ABSTRACT

Domain ontology is widely used to index literature for the con-
venience of literature retrieval. Due to the high cost of manual
curation of key aspects from the scientific literature, automated
methods are crucially required to assist the process of semantic
indexing. However, it is a challenging task due to the huge amount
of terms and complex hierarchical relations involved in a domain
ontology. In this paper, in order to lessen the curse of dimension-
ality and enhance the training efficiency, we propose an approach
named Deep Level-wise Extreme Multi-label Learning and Classifica-
tion (Deep Level-wise XMLC), to facilitate the semantic indexing of
literatures. Specifically, Deep Level-wise XMLC is composed of two
sequential modules. The first module, deep level-wise multi-label
learning, decomposes the terms of a domain ontology into multiple
levels and builds a special convolutional neural network for each
level with category-dependent dynamic max pooling and macro
F-measure based weights tuning. The second module, hierarchical
pointer generation model merges the level-wise outputs into a final
summarized semantic indexing. We demonstrate the effectiveness
of Deep Level-wise XMLC by comparing it with several state-of-
the-art methods on automatic labeling of MeSH, on literature from
PubMed MEDLINE and automatic labeling of AmazonCat13K.
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1 INTRODUCTION

With the explosively growing amount of scientific literature, se-
mantic indexing methods with high efficiency are required to build
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retrieval systems. Even with effective techniques, the semantic in-
dexing process still involves manual curation of key aspects from
scientific literature. In order to summarize the main topics of arti-
cles, domain experts are usually invited to manually index articles
with keywords that are selected from the domain ontology.

In the medical field, MEDLINE [3, 19, 27] is perhaps the world
largest biomedical literature database, and Medical Subject Head-
ings (MeSH) is the domain ontology for indexing articles in MED-
LINE. It has greatly improved the experience of medical literature
search by mapping queries to MeSH headings. For example, the
query teen drug use is mapped to the MeSH headings Adolescent
and Substance — Related Disorders. Currently, most of the mapping
rules as well as the final indexing of medical literature from MED-
LINE are manually generated by domain experts. It is expensive
and time-consuming for the human-labeling process of semantic
indexing. Automated methods are therefore crucially desired.

The task of automated curation, however, faces significant chal-
lenges. First of all, an article is often labeled with multiple keywords
or concepts. In addition, the domain ontology involves hundreds
of thousands or even millions of labels. Those labels are typically
organized in hierarchical structures that are represented in the
form of a forest. It is a non-trivial task to simultaneously deal with
massive labels, data samples and complex hierarchical structures.

In this paper, we consider the task of automated semantic index-
ing as an extreme multi-label learning and classification (XMLC)
problem. Different from the traditional multi-class [15, 16, 34],
XMLC allows for the co-existence of millions of labels for each
data sample. Recently, several approaches are proposed to deal with
XMLC, including FASTXML [29], LOMTrees [9], SLEEC [4], robust
Bloom filters [10], label partitioning [33], fast label embeddings [25]
and several deep learning methods, Hierarchical multi-label clas-
sification using local neural networks [7], DXML [20] and XML-
CNN [37]. To a good extent, those methods have achieved good
progress in handling XMLC. However, the curse of dimensionality
(for which we refer to the huge label space) and the high demand of
hand-crafted feature engineering are two major barriers for further
improving the effectiveness and efficiency.

In order to address these two issues, we propose a novel frame-
work named Deep Level-wise Extreme Multi-label Learning and Clas-
sification (Deep Level-wise XMLC) to deal with the problem of large
scale semantic indexing. Deep Level-wise XMLC consists of two
sequential modules. The first module is a level-wise multi-label
classification model. It addresses the curse of dimensionality ef-
fectively by decomposing massive labels (in a higher dimensional
space) into multiple levels (in a lower dimensional space). For each
level, a convolutional neural network is constructed with two novel
designs: One design is a category-based dynamic max pooling strat-
egy aiming at capturing both label co-occurrences and categorical


https://doi.org/10.1145/3308558.3313636
https://doi.org/10.1145/3308558.3313636
https://doi.org/10.1145/3308558.3313636

I Level; Model I]

— |-
] ()
< <
[©) ()
I

] Level, Model
o

Ontology ooo 1 oo e
Labels Parser ﬂu Prediction
Level,
Levely., Level,,, Model |) / Prediction
I Levely —;l Levely Model Il £ L.
Texts Bredictioniy] Pointer
Refining \ Generation
Strategy Model
Tokenizer Cle_aped \
Training Levely
Stop words Texts Prediction
filtering L =
Levely
Prediction
Predicted
Validation e Labels
Text:
s Validation
Texts
N\ J L J L J \C J L J
Y Y Y Y
Data preprocessing  Ontology parsing Level-wise model training Level-wise prediction Final merging

Figure 1: System architecture of the proposed framework. From left to right, there are five steps or blocks. In the data prepro-
cessing stage, as usual, tokenization and filtering are made to obtain clean texts. Training and validation data are randomly
selected according some proportions. Different from usual NLP tasks, an extra step of ontology parsing on the training labels
is needed so that labels will be split into multiple levels based on their ontological hierarchies. In the third stage, the neural
model described in the methodology section is employed to train level-wise models. Then, in the testing stage, testing data is
fed into the trained level-wise models for label predictions or tagging after the testing data is preprocessed in a similar fashion.
In the last stage, a final merging is made with a pointer generation model so that some less related labels are sifted out.

relations among labels. It helps connect the level-wise classification
models tightly. The other design is a prediction refining strategy
based on macro F-measure optimization, which enables the module
to automatically select the labels in an incremental manner. The
second module of Deep Level-wise XMLC is a hierarchical pointer
generation model that merges predicted labels for each level into
final summarized semantic indexing by the way of copying and
generation mechanism [31]. As a whole, Deep Level-wise XMLC
avoids the high cost of human interferences by learning seman-
tic indexing without any feature engineering. We show the entire
system architecture in Figure 1.

In summary, our major contributions are summarized as follows:

e We propose Deep Level-wise XMLC to learn large scale semantic
indexing. It divides labels into multiple levels to lessen the curse
of dimensionality while improving the training efficiency.

e We introduce a new strategy with category-dependent dynamic
max pooling to capture both co-occurrences and categorical rela-
tions among labels.

o We explore a prediction refining technique derived from macro

F-measure optimization to intelligently select the best labels in

an online fashion.

We develop a hierarchical pointer generation model to merge the

level-wise outputs into the final summarized semantic indexing.

e We demonstrate the effectiveness of Deep Level-wise XMLC by
comparing it with several state-of-the-art methods on automatic
labeling of MeSH from MEDLINE, as well as AmazonCat13K 1
which is the XMLC dataset with similar nature as MeSH.

!https://manikvarma.github.io

2 METHODOLOGY

There are two primary challenges in XMLC. Firstly, the number of
labels in one dataset can be more than 10,000 or even as large as one
million. Secondly, one data sample can be indexed with multiple
labels, the number typically ranging from one to several dozens.

In this paper, we propose Deep Level-wise XMLC to handle
these two challenges by decomposing labels of each data sample
into multiple levels. Five steps are involved in Deep Level-wise
XMLC as shown in Figure 1. Firstly, the input raw texts for train-
ing and validations are processed with NLP preprocessors. Words
are tokenized and stop words are filtered out. Secondly, the train-
ing labels are parsed into level-wise labels with ontology parsers.
Thirdly, level-wise models are trained with Deep Level-wise XMLC.
Fourthly, level-wise prediction is made on the datasets with refining
strategies. Finally, a point generation model is trained to merge
level-wise models into a unified label set.

The following subsections will focus on 1) our deep level-wise
multi-label learning framework and 2) the pointer generation model
to merge labels of all levels into one unified label set.

2.1 Deep level-wise multi-label learning

Formally, the problem can be defined as follows. Given a set of input
pairs Uﬁ\i 11xi,yi}, Deep Level-wise XMLC decomposes them into
M levels and trains M neural models on the training data. The whole
label set is denoted as £ and | L] refers to the total number of labels
in L. Each y; is a multi-hot vector with length | £|. Each model at
level m predicts the most probable K labels, {{", QJ”’, - Jg}ton
each data sample. K is determined with a refining strategy. In the
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Figure 2: Neural structure of the proposed deep multi Label learning framework. As shown in this figure, the inputs involve
four parts: word embedding for documents, word embedding for key words, upper-level and lower level embedding. Embed-
dings are pretrained with documents, keywords and labels for each document of the training data. Note that label embeddings
are made with the same source, namely, the corresponding ontology. After the embedding representations are obtained, all of
them are fed into CNN for feature extractions. In order to keep the order for documents, Bi-LSTM is employed for sentence
representation. Then, dynamic max-pooling and batch normalization follow those feature extractions. Finally, binary entropy
loss is computed to make sigmoid predictions on each label. We can also view this network structure as a multi-task learning.

end, a pointer generation model is trained to merge the predicted
{}7}, O A M} of M levels for each data sample x; into one
unified label set y;.

2.1.1 Feature embedding construction. We construct models in a
level-wise manner. A neural model is built at each level with four
parallel inputs as shown in Figure 2. The four inputs include doc-
uments, keywords and level-related information. They provide
diverse information for the construction of more discriminative
features. We employ CNNss to learn a rich number of feature repre-
sentations. Document and keyword embedding are learned through
CNN directly. The other two embeddings, upper-level and lower-
level label embeddings, are learned from the embedding of predic-
tion results from upper and lower levels. Specifically, two steps are
involved. Firstly, similar to word embedding for input texts and
keywords, we employ Gensim to train label embeddings from the
annotated MeSH. Secondly, in both training and testing, predicted
labels for some documents at some levels will be utilized as input
features for their upper level or lower level. The two embeddings
can not only help capture level-wise dependencies, but also deal
with label imbalance issues in XMLC [4, 37]. In this way, both la-
bel co-occurrences and the knowledge from their upper and lower
levels can help enhance the representation learning of rare labels.

For example, in MeSH, Lymphangioma is a rare label and it can
not be easily represented by itself. With the information of its
upper level MeSH, Lymphatic Vessel Tumors and lower level MeSH

Lymphangioma, Cystic Lymphangioma can be better represented
in the embedding space.

After the four embeddings are learned, they are concatenated
and delivered into the max-pooling layer.

Due to the order information, raw tokens/words cannot be di-
rectly concatenated to the embeddings of keywords, upper and
lower level labels. Hence, we construct a Bi-LSTM for raw to-
kens/words over their CNN features to keep the language order
information [14] before concatenation.

2.1.2  The objective function of the learning framework. After the
embedding concatenation, a dynamic max pooling layer, a binary
cross-entropy loss over sigmoid output and a hidden bottleneck
layer are employed. The loss function L of the binary cross-entropy

objective is formulated as
L= (1)

N | L]
argmin - ZZ jlog(a(f(xi) + (1 = yij) log(1 - o(fi(xi),

i=1 j=1

where o(fj(x;)) =
function. In addition, fj(x;) = Wogp(wp[P(c1), ...,

W and fj(x;) denote the output layer
P(c,))]). Here
wy € RP) and w, € RILIX" are weight matrices associated
with the bottleneck layer and output layer, gy, is the element-wise
activation functions, e.g., sigmoid or tanh applied to the bottleneck
layer and ip is the product of 1 and p at the dynamic max pooling
layer. ¢ refers to the number of features fed into pooling layers and



p refers to pooling numbers. Both are determined by the number of
features in xj. In addition, c; is the vector of convolutional features
after the pooling operation P(.) from lower layers.

2.1.3  Categorical-oriented dynamic max pooling. In traditional CNN
models for text classification, a max-over-time [11] scheme is of-
ten adopted, as intuitively the maximum element of a feature map
should take the most important information, i.e., P(c) = max{c}.
This approach, however, exhibits a severe drawback. Using only
one value to represent the whole feature map may miss infor-
mation when the input document includes multiple topics. For
multiple-label learning tasks, multiple pooling can capture richer
information [20]. In this work, we dynamically perform pooling as
P(c) = [max{c(l;;)}, ~-~vmaX{C(;—$+1:1)}] € RP, where C(1:t) refers
to the sub-vector of ¢ starting from index 1 to ’% Previous work used
a fixed p. If p is set too large, redundant features may be included.
If it is set too small, relevant features may be missing.

In our work, level-wise related information, i.e., categorical in-
formation of labels is incorporated into the neural structures to
help select p dynamically. Specifically, we tune p with the distribu-
tion of the label levels. For example, in MeSH, all terms are divided
into 16 categories, like Anatomy, Organisms, Diseases and etc. Each
category involves diverse subcategories and each label involves dif-
ferent distributions. Based on the distribution, we assign different
weights to determine the p. The larger the weight of the category
is, the larger the p is. The weight of the category or the label is
initialized from the training data.

2.1.4 Refining predictions with macro F-measure maximization.
With embeddings and dynamic max pooling, the network can make
level-wise predictions as shown in Figure 1. At each level, we select
the top-K predicted labels for each data sample. However, a fixed
K may yield high recall but low precision. In this work, we refine
the predictions with a more flexible weight adjustment strategy.
We apply the online F-measure optimization (OFO) [6, 13] for the
weight adjustment. With OFO, a dynamic balance of precision and
recall can be achieved. Formally, the OFO algorithm optimizes the
binary F-measure through threshold tuning in an online fashion.
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the j-th label of the [-th data sample. Fitj is the accumulated F-score

from the first to the i-th data sample on label y; at iteration t.

Due to the incremental property, the threshold of OFO is up-
dated by two rules. At the same iteration, the threshold Afj is up-
dated as /1;‘ ;= iyl Bl At different iterations, it is updated as

)Llf_j = a}f,;”/ ﬁx;”, Given the i-th data sample, OFO refines predicted

labels as ij = [ﬁ(xf ) > Afj], where ﬁ(xfj) refers to the prediction

probability of x; onjlabel yj at iteration t. The optimal F-measure
F(2) is twice the value of the optimal threshold A as F ) = 24. Since
our refining mechanism is dynamic, level-wise and incremental,
the optimal threshold A will not be fixed until the end of training.
It will be saved as a parameter for testing.

2.2 Pointer generation model for final merging

After we have level-wise outputs, we need to merge those outputs
into one unified label set. However, we cannot simply combine them
together because a simple concatenation will lead to a much larger
number of labels than the gold standard labels. In this paper, we
propose a filtering method to remove some level-wise labels to make
sure that the final distributions of predicted labels are consistent
with the gold standard ones. Inspired by the text summarization [23,
31], we treat each level-wise predication as one sentence and the
gold standard as a summarized output. We take into consideration
the hierarchical relations of labels among levels during decoding,
encoding and attention states [23, 31].

2.2.1 Hierarchical pointer generation model. Inspired by [31], we
design our hierarchical pointer generation model by allowing both
copying labels from the level-wise predictions and generating labels
from the whole label set.

The model is composed of five parts as in Figure 3. The first
part, i.e., the input, is about the level-wise predictions from level
1 to level M. In the second part, the input is encoded to M se-
quences of hidden states. Each encoded hidden state reflects the
inner relations of the predicted labels at a certain level. We rep-
resent the encoder hidden state as e = v! tanh(wj,y” + wss® +
battn). Here s” and y? are the predicted label sequence vector
and the context vector surrounding the predicted labels, respec-
tively. The terms v, wj,, W and by s, are weight parameters. The
context vector is about the co-occurrences of labels.

In the third part, attention generators are derived from the
encoder hidden state to generate an attention distribution a” and a
context vector y” at time step 7. a” is calculated asa” = softmax(e”).
The attention distribution is a probability distribution over the pre-
dicted level-wise labels. It is used to produce y? as a hierarchical
weighted sum of the encoder hidden states: y* = 34 Wqagyq.

In Figure 3, each attention generator is named as a coverage
vector, which shows how much focus is given to labels of each level.
As is known, summarizations may lead to repetitions. Hence, the
same label may be generated more than once as well. The well-
designed coverage vector plays the role of judging whether the
label is a duplicate or not. If not a duplicate, the label with a high
attention has more chance of being decoded as one right label. If a
duplicate, the mechanism at 2.2.3 will filter the label out.

In the fourth part, i.e., the decoder hidden states, the generation
probability pgen € [0, 1] for time step 7 is calculated from the
context vector yr, the encoder state s; and the decoder input y* as:

Pgen = o(Wpy" +wss® + Wy +bpir), (3)

where wy,, ws, wy and by, are weight parameters. Here pgep, is
used as a soft switch to choose between generating a label from
the whole label set by sampling from the label distribution, p s (see
how p is calculated in 2.2.2) or copying a label from the input
sequences by sampling from the attention distribution a”.

With the above four parts, the proposed hierarchical pointer
generation model can be trained to generate the final summarized
semantic indexing. In the fifth part, we learn the probability of
generating the final labels. Given a training pair (U%Zlym, y), we
compute the conditional probability p(Uﬁ\n'Izly|y, 0) to estimate the
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Figure 3: Pointer generation model for final merging. This step follows the level-wise neural structure learning. Five compo-
nents can be seen from left to right. The input is the predicted level-wise labels. They are organized as sequences level by level.
Then, they are encoded into hidden states. Based on coverage vectors described in the methodology, attentions are generated.

Then, decoder is working to generate outputs with reduced sizes.

labels of the terms of the probability chain rule as
|£]
Pyl Uy y™:0) = | | potwslyn, - ys—1:0),
6=1
where y = {y1,...,y|z|} is a sequence of | L| vectors. The parame-
ters of the model are learned by maximizing the conditional prob-
abilities for the training set as 6 = arg;nax Zy’ucn/[ﬂ log p(y| Uj‘m/[:1

©

y'; 6), where the sum is over training examples.

2.2.2  Sequence-to-sequence probability calculation. The above pro-
cedure finally will produce the label vocabulary distribution p ,:
®)
where v, v/, b and b’ are learnable parameters. For a specific label,
we can obtain from p(y;;) = p_r(yij). The loss function is the neg-
ative log likelihood of the target label 7j;;. The following example
illustrates the procedure of probability calculations for one label
given other labels.

Suppose we have a label set { Nutritional and Metabolic Diseases}.
The hierarchical relations are shown in Figure 4. The left words in

pr = softmax(v'(V[ss, hxe] + b) + b),

the figure are acronyms for the labels. For example, Wol fram Syndrome

is shortened with their initial letters as ws.
Given context = {nmd, md, dm, dmt1}, we follow the hierarchi-
cal relations among those labels to calculate p(e,,s)|context) as

plews|context) = (1 - o(bpsr + ezmdhnmd)o(bp” + e,Tndhmd)
G(bptr + egmhdm)o'(bptr + egmtlhdml))- (6)

2.2.3  Mechanism to avoid duplications. A problem for pointer gen-
eration model or sequence-to-sequence model is that it may copy
terms from input multiple times [24, 30]. In our task, we do not need
any repetitive terms since each label should be unique. Previous
works [31, 32] adapts a coverage mechanism to avoid repetition.
Namely, if labels have been seen in the output, the probability of

generating them will become low. We take similar approaches by
combining a coverage mechanism into the whole pointer generation
model. Specifically,

where, x refers to a coverage vector, y' refers to m-th level.

Our coverage vectors are composed of a set of vectors for all lev-
els. For each coverage vector, " is an unnormalized distribution
over the level-wise inputs that represents the degree of coverage
that those labels have received from the attention mechanism so
far. Since we order labels with levels, there should be no repetitions
at different sections of levels, this mechanism aims at removing all
duplicate labels found in different sections and also avoid duplicates
within the same level. w,,nym is added to the attention mechanism
and a covlossym is also added to the total loss function of the pointer
generation model as the penalty for any duplications.

3 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our Deep Level-wise
XMLC with MEDLINE dataset labeled with MeSH and Amazon-
Cat13K. As described in Section 1, MEDLINE is the largest biomed-
ical literature database in the world and Medical Subject Headings
(MeSH) is the domain ontology for tagging articles in MEDLINE.
The other dataset we use, AmazonCat13K, is one of benchmark
datasets for developing extreme classification algorithms. It in-
volves 13330 labels, with all labels hierarchically organized, similar
to MeSH. The dataset scale, the expert labeling and the hierarchical
nature provide a perfect testbed for our proposed framework.



C18

|
nmd @ 1 Nutritional and Metabolic Diseases
V \\
:’ C18.452 N Cl18.654
{ , , | I 1
md | (- Metabolic Diseases | Nutrition Disorders |
N N N
| AN AN
. C18.452.394 o C18.452.915 \ C18.654.521
. R | e T
gmd ‘ﬂ — I Glucose Metabolism Disorders | ! Wasting Syndrome ! Malnutrition |
-~ —\ 7/ T/ ‘\777
: C18.452.394.750 \ C18.452.915.520 \\ C18.654.521.500
. . o e a7 1 I |
dm — Diabetes Mellitus ! HIV Wasting Syndrome ! [D({ftcmncu\‘ Diseases |
: <« r———"
; C18.452.394.750.124 \L C18.452.394.750.774 C18.654.521.500.133 {
K K L P | HPRSTT
dmtl —'| Diabetes Mellitus, Type 1 | } Prediabetic State } } Avitaminosis J
-1 -\ /| T 777
‘ C18.452.394.750.124.960 C18.654.521.500.133.628 f/
N T TN . .7
ws _ ‘Wolfram Syndrome ! Vitamin A Deficiency |
,,,,,,,,,,,,,,, 3
—

Figure 4: Example of sequence-to-sequence probability calculation. The calculation of the example is described in section 2.2.2.
A little bit clarification may be necessary is on those short forms. On the left, for space saving and for better illustration of
the process, Sigmoid symbols are drawn there with those short forms, which are the initial letters of the mesh terms.

3.1 Data setting and preprocessing

The total number of MeSH labels in MEDLINE is 26,000, among
which 60% appear more than 1000 times. We remove those MeSH
labels occurring less than 10 times in the experiment. The MEDLINE
has 26 million articles with abstracts. 90% of these articles have
about 20 MeSH labels. 4 to 16 MeSH labels are assigned to 82% of
articles. In MeSH, 3.5 million abstracts have both MeSH labels and
keywords. The ontology of MeSH labels can be decomposed into
7 levels, where the lowest level (the 7th level) includes the most
specific MeSH labels while the highest level (the 1st level) has the
most general and abstract MeSH labels. For articles with only MeSH
labels of the lowest level, we expand them by the following method.
Starting from labels at the lowest level, we find out all labels of
their upper levels. We construct 7 datasets for the proposed Deep
Level-wise XMLC framework.

Meanwhile, 102,167 abstracts with MeSH labels from all the 7
levels are put aside for testing. The statistics of the dataset at each
level is shown in Table 1. It can be observed that the middle levels
have the largest number of labels while the highest level has only
83 labels and the lowest level has 2445 labels. Similar trend can
been found for data volumes. Two million articles have labels from
level 2, 3 and 4 while less than one million articles have labels from
level 1, 6 and 7.

For AmazonCat13K, we cannot directly use their preprocessed
dataset since Deep Level-wise XMLC requires text data. Meanwhile,
we need divide the data based on their level-wise categories. It is
found that all labels can be decomposed into 9 levels. Somewhat
differently, if a document from AmazonCat13K has lower labels,
it must have higher labels while a document from MeSH is not
necessarily so. Therefore, it is straightforward to find a common set
for testing for AmazonCat13K (simply use documents with lower
categories). In order to keep a reasonable pool of testing data, we

ignore documents which have levels higher than 6 (only 9990, 385
and 31 documents for level 7,8, and 9, respectively).

Table 1: The statistics of the datasets. For each level, there
are different data volumes. Papers in Medline, do not nec-
essarily imply that they can be tagged higher level MeSH
terms even if they are tagged with lower level MeSH terms.

Levels Data Volumes The number of labels
MeSH AmazonCat13K MeSH AmazonCat13K
Level 1 969,233 858,795 83 44
Level 2 2,444,854 812,249 1,382 362
Level 3 2,405,321 549,326 4,484 2,281
Level 4 2,182,885 427,378 6,568 6,181
Level 5 1,522,195 178,042 5,750 5,372
Level 6 906,873 71,041 3,895 1,998
Level 7 402,794 9,990 2,445 441

In the experiments, for the MEDLINE articles and keywords, at
each level, we first train an individual neural network according to
the first component of Deep Level-wise XMLC. The trained model
is employed to make predictions on the testing data for each level.
Then the predicted level-wise labels as well as the gold standard
labels from the training data are utilized by the pointer generation
model for the final merging. Likewise, we train level-wise model
for AmazonCat14K except that the latter do not have keywords.

3.2 Evaluation metrics

In extreme multi-label classification datasets, even though there are
usually huge label spaces, only limited number of relevant labels
for each document. This means that it is important to present a
short ranked list of relevant labels for each test document. The
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Figure 5: Macro precision, recall and F-measure obtained by
OFO with Deep Level-wise XMLC for the first six levels.

evaluation thus focuses on the quality of such ranked lists with
emphasis on the relevance of the top portion of each list. In our
work, however, we use two evaluation metrics for the purpose of
comparisons with the two sources of datasets. The medical commu-
nity prefers to use precision, recall and F-score while those from the
general domains prefer precision at K (P@K) and the Normalized
Discounted Cummulated Gains (NDCG@K or G@K for short).

Specifically, given a predicted label list y* = {y1,y2,....yx }
with top K items at level m, precision, recall and F-score are defined
as follows,

SN oK, i yf) & el(K, i,
MiP = ’—IN—yl MaP = Z UL )
2z Ki i=1 K;
N . K
oK, i, cKl
MiR = M, MaR = — ( yl .09
Zizl AK;
2 % MiP % MiR 2 M P MaR
MiF = #’ MaF = L*a, (10)
MiP + MiR MaP + MaR

where N is the number of data samples and ¢(K, i, yf ) is the num-
ber of correct labels among the top K ranked labels; AK; is the
total number of the gold standard labels for article i; The difference
between micro measures and macro measures lies in the calculation
of the predicted probabilities. For micro measures, the probability

calculation is not done until all correct predictions are added to-
gether, while for macro measures, the probability calculation will
be done for each article and in the end, an average is used as the
macro scores. We report both measures in order to see how accurate
the model is for a single article and for an entire dataset.

In contrast, the definition of P@K and NDCG@XK is,

1
P@k = ZA v (11)
ler(y)
Yi
D = —_— 12
co@k Z log(l + 1) (12)
lerk(y)
NDCG@k = DCG@k (13)
Z _ Y
Tog(I+1)

where ij € {0, 1}F is denoted as the vector of true labels of a docu-
ment and ; € RL as the system-predicted score vector for the same
document. We use k = 1, 3, 5, following the convention of P@K and
NDCG@K.

3.3 Parameter settings

For the neural network of Deep Level-wise XMLC, we use the
rectified linear units. The filtering windows are set to 3, 4, 5. The
dropout rate is set to 0.5 and the L2 constraint is set to 3. The
mini-batch size is set to 256. The embedding dimensions vary for
different features. For Mesh, word embedding for medical words
involves 500,000 unique tokens, keyword embedding involves over
100,000 phrases and label embedding 26,000 MeSH terms. Gensim
is employed to train the embedding with 300 as the dimension. For
AmazonCat13K, pretrained GoogleNews-vectors-negative300.bin is
utilized with 3 million tokens and 300 as the dimension. The values
for other hyperparameters are chosen via a grid search on a smaller
validation set from the training data.

3.4 Performance with online F-measure
optimization

As discussed in Section 2.1.4, the online macro F-measure optimiza-
tion (OFO) is integrated into the proposed framework. In order
to show the effectiveness of OFO, we report the macro precision,
recall and F-score for the first 6 levels in Figure 5 for MeSH. Due to
space limit, we do not show the result of the 7th level and that of
AmazonCat13K in this paper. Similar performances can be obtained
for them. We can observe that OFO helps achieve a balance between
macro precision and recall. It is further observed that the optimal
F-score is different at different levels. If we always select the top K
(k = 10 in our experiment) for the level-wise prediction, we cannot
obtain the best F-score though the recall at each level can be as
high as around 80%. The precision can be as low as or less than 20%.
The reason is that after we divide MeSH labels of each article into
7 levels, most of articles have only 2 to 5 labels at each level. This
means that even if all of labels are within the top 10, the precision
is only from 20% to 50% although the recall can be 100%. In this
case, the F-scores are not high either. The OFO greatly removes less
relevant labels so that the number of labels in the final prediction
set of each level ranges from 2 to 5 as well. Meanwhile, most of



Table 2: The level-wise performance for micro measures with Top K and OFO. This table aims at showing the incremental
improvements on the micro measures when the new features added stepwise for each level. Meanwhile, for each level, results
for TopK without optimization and with optimization as OFO are shown there as well.

Embeddings ‘ Levels ‘ Level 1 ‘ Level 2 ‘ Level 3 ‘ Level 4 ‘ Level 5 ‘ Level 6 ‘ Level 7
MEDLINE Measures | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO
Collections MiP 23.32 55.83 29.32 | 90.79 | 22.96 79.82 20.63 76.80 20.15 | 46.45 22.18 | 55.40 | 20.29 | 66.63

MiR 95.68 84.77 65.17 37.57 38.32 35.10 37.21 37.65 49.85 62.31 72.24 73.42 83.64 82.34
MiF 37.50 | 67.32 | 40.44 | 53.15 28.72 | 48.75 26.54 | 50.53 28.70 53.22 33.93 63.15 32.66 | 73.66
MEDLINE TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO
Collections & MiP 31.45 72.45 36.53 | 88.10 | 31.56 52.90 29.36 76.80 31.25 84.81 32.88 | 69.43 3343 | 77.19
keywords MiR 92.56 | 79.56 | 66.72 | 43.03 58.53 51.09 | 46.31 37.65 52.75 | 45.11 74.43 69.18 | 86.48 | 80.63
MiF 46.95 75.84 | 47.21 57.82 | 41.00 51.98 | 35.94 | 50.53 39.24 | 5890 | 45.61 69.30 | 48.21 78.87
MEDLINE TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO
Collections MiP 39.52 81.01 43.64 | 69.95 40.65 | 68.63 | 38.45 | 63.62 | 40.33 73.31 41.94 | 76.64 | 4538 | 84.94
& keywords & MiR 86.75 73.93 63.27 | 56.05 55.33 | 43.70 52.31 46.76 51.14 | 53.07 69.45 65.88 | 77.36 | 77.30
upper & lower labels MiF 5430 | 77.33 | 51.65 | 62.23 | 46.87 | 53.40 | 44.32 | 53.90 | 45.09 | 61.57 | 52.30 | 70.85 | 57.20 | 80.94
TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO
AmazonCat13K MiP 72.21 94.17 | 48.57 | 61.49 | 30.43 | 32.51 20.99 21.34 | 20.37 20.88
MiR 99.56 | 92.24 | 97.42 99.55 87.47 | 99.86 72.03 99.92 69.24 | 99.91
MiF 83.71 | 93.19 | 64.82 | 76.02 | 45.15 | 49.05 | 32.51 | 35.17 | 31.48 | 34.54

Table 3: The level-wise performance for macro measures with Top K and OFO. This table aims at showing the incremental
improvements on the micro measures when the new features added stepwise for each level. Meanwhile, in a smilar fashion to
Table 2, for each level, results for TopK without optimization and with optimization as OFO are shown there as well.

Embeddings ‘ Levels ‘ Level 1 ‘ Level 2 ‘ Level 3 ‘ Level 4 ‘ Level 5 ‘ Level 6 ‘ Level 7
MEDLINE Measures | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO
Collections MaP 23.32 59.96 | 29.32 56.18 | 22.96 | 81.40 20.63 36.84 | 20.15 | 48.95 22.18 | 69.94 | 20.29 | 78.73

MaR 96.26 | 94.83 65.17 | 76.03 | 47.00 | 43.99 | 44.18 72.64 | 56.18 81.53 75.90 | 48.65 85.73 | 65.01
MaF 37.55 73.47 | 40.44 | 64.61 30.85 57.11 28.13 | 48.89 29.66 61.12 34.32 57.38 | 32.81 71.22
MEDLINE TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO

Collections & MaP 33.54 | 9256 | 37.69 | 85.33 | 33.84 | 82.88 | 32.63 | 80.68 34.52 61.53 33.92 69.44 | 36.34 | 76.97

keywords MaR 91.35 70.23 68.27 | 55.80 | 61.33 | 48.79 | 48.94 | 52.16 55.77 77.55 72.94 | 86.25 82.88 | 92.67

MaF 49.07 | 79.87 | 48.57 | 67.48 | 43.61 6142 | 39.15 | 63.36 | 42.64 | 68.62 | 42.64 | 79.63 46.30 | 84.09

MEDLINE TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO | TopK | OFO
Collections MaP 42.33 80.53 | 45.46 | 82.52 | 41.46 70.48 | 38.99 7590 | 4349 | 84.52 | 4349 | 86.46 | 49.34 | 92.09

& keywords & MaR 87.77 | 85.53 62.37 | 64.59 58.34 | 60.06 52.35 56.80 52.35 65.96 70.44 | 77.32 78.63 | 83.58
upper & lower labels MaF 57.11 | 82.96 | 52.59 | 72.46 | 48.47 | 64.85 | 46.05 | 64.97 | 44.69 | 74.10 | 53.78 | 81.64 | 60.63 | 87.63

the correct predictions are still kept in the prediction set. Evidently,
this tuning strategy greatly boosts the performance.

3.5 Level-wise Performance

As discussed in Section 2, our framework decomposes the task
of XMLC into level-wise model constructions. Therefore, in this
section, we report level-wise prediction results in order to see the
intermediate developments and improvements of the whole model.

As is shown in Figure 2, the level-wise neural models learn la-
bel embeddings from the MEDLINE collections, keywords and the
predicted labels from the upper or lower levels. Here we report
the performance of the level-wise neural models with different em-
beddings. We further show the effectiveness of OFO by comparing
with the level-wise neural models by fixing the top K labels for
each level. We test on different K from 1 to 10 and find that the best
performance is achieved when K is 5.

Table 2 reports the micro performance for the level-wise model
with OFO and top K fixing strategies. Here K is set to 5 for the best
results. We also show the performance for the macro measurement
in Table 3. We can see that OFO always perform better than the
strategy of fixing top K, no matter on the micro or the macro
measurements.

Table 2 and Table 3 also report the level-wise prediction with
three different embeddings for MeSH. Although the evaluation for
AmazonCat13K dataset is not based on F-scores, we also report
micro measures for AmazonCat13K to show the advantages of OFO.
After all, the result of P@K and NDCG@X for it is computed on the
filtered output with OFO. From this result, we can see an evident
incremental trend for all seven levels. Namely, with keywords and
predicted MeSH terms of upper and lower levels added, the pre-
diction sees quick improvements accordingly. It is not hard to see
that in general, macro results are better than micro results. Among
them, the third level and the fourth level of MeSH while the fourth



and the fifth level of AmazonCat13K yield worse results than others
while level 1 obtain much better results for both datasets. This is
understandable considering the larger number of labels for third
and the fourth (4,484 and 6,568 for MeSH while 6,181 and 5,372 for
AmazonCat13K respectively).

3.6 Performance of final merging

The proposed Deep Level-wise XMLC will merge the level-wise
predictions into one unified label set with a pointer generation
model. In this section, we further compare with five state-of-the-art
approaches to demonstrate the effectiveness of the pointer genera-
tion model, including MTIDEF [12], MeSH Now [22], MeSHLabeler,
MeSHRanker [21] and Deep Mesh [28] for MeSH results. All these
existing systems make heavy use of feature engineering. In con-
trast, Deep Level-wise XMLC uses limited external resources. For
AmazonCat13K, we report results of XML-CNN, the state of the art
systems on this benchmark dataset.

Let us start from MeSH labeling. After we achieve the level-wise
results, the hierarchical pointer generation model is trained with
predicted results from all levels as the input and the gold standard
labels as the output. For model training, the inputs can be organized
with each label as an independent unit or with labels of the same
level as one unit (known as sentence in the summarization commu-
nity). Hence, two pointer generation models are trained, with the
former known as Deep Level-wise XMLCj,p; and with the latter
as Deep Level-wise XMLCj,,.;- For comparison, we also report
results which adds results of all levels together and then filter less
relevant labels by their prediction probabilities and by the label dis-
tributions in the gold standard (Deep Level-wise XMLCs4mpiing)-

Table 4: Performance of Deep Level-wise XMLC for MeSH
dataset. From the bold numbers, we can see that the best per-
formances come from Deep Level-wise XMLC. It is obvious
to see that level based and dynamic pooling obtain better
performance than label based and dynamic pooling.

Methods MaP  MaR MaF
No Level-wise XMLC

MTIDEF 49.39 | 51.40 50.37
BC_D2V-TFIDF 47.41 | 46.33 46.86
MeSHRanker 53.64 | 54.13 53.89
MeSHLabeler 54.50 | 51.72 50.54
DeepMesh 53.80 | 55.05 54.42
MeSH Now 51.28 | 53.72 52.47
Deep Level-wise XMLC without pointer generation network
Sampling 49.56 | 51.21 50.37
Max pooling 51.56 | 65.52 57.70
Deep Level-wise XMLC with pointer generation network
Dynamic pooling & label-based | 61.20 | 57.21 59.14
Dynamic pooling & level-based | 53.22 | 70.65 | 60.77

As shown in Table 4, both Deep Level-wise XMLCj;5.; and Deep
Level-wise XMLC,,; outperform other systems much on macro
measures in precisions, recalls as well as F-scores. Due to the page

limit, we do not report the micro measures, which have similar
trends.

By involving embeddings from MEDLINE collections and key-
words, Deep Level-wise XMLC; ;3. and Deep Level-wise XMLCj¢ 1
achieve much better performances than all other existing cutting
edge frameworks. To our interest, it seems that different organi-
zations of the inputs will lead to different performances in pre-
cision and recall although F scores are quite similar. Deep Level-
wise XMLCj,pe; achieves better precision while Deep Level-wise
XMLCjpq e better recall. This seems to indicate that our hierarchi-
cal pointer generation model takes into considerations the correla-
tions between labels within the unit. Therefore, Deep Level-wise
XMLCeqel> Which has longer input unit, obtains better recall. Yet,
it also includes more false positives, thus reducing its precision. In
contrast, Deep Level-wise XMLC;,p.; Wins in precision probably it
considers more smaller units and then misses more true positives.

Meanwhile, we can see that Deep Level-wise XMLCjgpmpiing
obtains much poorer results than most of existing systems. This
shows that the hierarchical pointer generation model plays essential
roles in reaching the optimal performances in the end. Besides,
we also report results of Deep Level-wise XMLCj,,; With max
pooling. By default, all of our systems work with dynamic max
pooling. Evidently, the result shows that dynamic max pooling
gains advantages over the usual max pooling strategies.

Table 5: Performance of Deep Level-wise XMLC for Ama-
zonCat13K. We use the version with pointer generation net-
work and dynamic pooling & level-based. As stated in 3.1,
in order to extend our methodology from medical field to
more general ones, we test our model on AmazonCat13K
as well. For those who use AmazonCat13K, they prefer re-
porting precision@XK and NDCG@K. We also list the perfor-
mance of XML-CNN for AmazonCat13K for comparisons.

P@l | P@3 | P@5 | G@1 | G@3 | G@5

XML-CNN 95.06 | 79.86 | 63.91 | 95.06 | 89.48 | 87.06

Deep Level-wise XMLC | 96.52 | 83.72 | 67.89 | 97.48 | 92.32 | 87.52

For AmazonCat13K, the result is given in Table 5. We also copy
the state of the art results from XML-CNN from their work [20]
in Table 5. We can see higher results from our work. Due to the
differences of the testing data, we cannot tell which work is better
from those results (our testing dataset are extracted from the raw
text data with labels of each level for better evaluations). Their work
is tested on the standard test dataset prepared by data collectors. Yet,
it at least shows that our model can achieve results as comparable
to the best model.

4 RELATED WORK

4.1 Tree-based methods

Due to the huge number of labels, the prediction of XMLC may
involve high cost in both time and space. Tree-based methods make
efforts to reduce both training and testing cost. For example, the
label partitioning by sub-linear ranking (LPSR) method attempts
to reduce the prediction time by learning a hierarchy over a base



classifier [17, 18, 33]. Argrawal et al., 2013 [1] proposes a method
as the multi-label random forest (MLRF), which seeks to learn an
ensemble of randomized trees instead of relying on the learning
of a base classifier. FastXML [29] is proposed to learn a hierarchy
not over the label space but over the feature space. It defines the
set of labels active in a region to be the union of the labels of all
training points present in that region. At each node of the hierarchy,
an NDCG-based objective is optimized. Namely, at each node, a
hyperplane is induced and it splits the set of documents in the
current node into two subsets. Predictions are made by returning
the ranked list of the most frequently occurring labels in all the leaf
nodes. Recently, Mu et al [26] develops multi-label classifications
for social streams based on ensemble random forests. It integrates
a base learner and a label-based learner to learn hierarchical labels.
However, these approaches suffer from high cost of training due to
the dimensionality of both label space and feature space.

4.2 Embedding methods

Embedding methods attempt to overcome the intractability issue
brought by the huge number of labels by projecting label vectors
onto a low dimensional space and thus reducing the number of
labels. The assumption is that the label matrix is low-rank. Due to
its strong theoretical foundations and the ability to handle label cor-
relations, embedding methods have proved to be the most popular
approach for tackling XMLC problems [2, 5, 8, 10]. In particular, the
recently proposed embedding method SLEEC [4] greatly increases
the accuracy after they incorporates the non-linear neighborhood
constraints in the low-dimensional embedding space for training
and use a simple k-nearest neighbor (k-NN) clustering in the em-
bedding space for testing. In our approach, we take steps further by
exploring level-wise label embedding to improve the predictions of
our neural structure.

4.3 Max-margin method

Max-margin method is also employed to handle multi-label clas-
sification. Yen et al [36] proposes a model named as PD-Sparse.
Essentially, a linear classifier is learned for each label with L1 and
L2 norm penalty on the weight matrix associated with this label.
This results in a sparse solution in both the primal and dual spaces.
Their fully-Corrective Block-Coordinate Frank-Wolfe training algo-
rithm achieves sub-linear training time w.r.t the number of primal
and dual variables while getting better performance than 1-vs-all
SVM and logistic regression on multi-label classification, with sig-
nificantly reduced training time and model size. However, same as
1-vs-all SVM, the method is algorithmically not scalable to extreme
multi-label learning.

4.4 Deep learning based method

Deep learning based method has also been used for multi-label
learning [20, 37]. Zhang et al. [37] incorporate label space em-
bedding into feature embedding. Specifically, they construct an
adjacency matrix for labels A and derive the label graph matrix
with the equation M = (A + A%)/2. Then, for each nonzero entry in
the matrix, a tuple composed of the index p, g and My is fed to a
label embedding network to train a compound network together
with the word-embedding. In the prediction stage, k-NN search is

performed in the low-dimensional feature representation to find
similar samples from training datasets. The average of the k-NN’s la-
bels is set as final label prediction. [20] proposes to take multi-label
co-occurrence patterns into the nueral network objective to im-
prove the classification performance. They also propose to employ
dynamic max pooling to capture rich information from different
regions of the document and an additional hidden bottleneck layer
to reduce model size. Moreover, a binary cross-entropy loss over
sigmoid output is tailored to XMLC. However, these methods are
not applicable for data with complex hierarchical labels like ours
since the decomposition of label hierarchies reduce the label space
greatly. In addition, Yan et al [35] proposes Boltzmann CNNs-based
hybrid learning network to handle biomedical literature classifica-
tion. Their work is enriched with data sequence embeddings. This
design is not good for huge label space. Their experiments only fo-
cus on classes fewer than 2,000 MeSH labels. The work mostly close
to ours is hierarchical multi-label classification network (HMCN)
proposed by [7]. Their HMCN is claimed to be capable of simulta-
neously optimizing local and global loss functions for discovering
local hierarchical class-relationships and global information from
the entire class hierarchy while penalizing hierarchical violations.
But their work has higher computational complexity due to the
utilization of fully feed-forward layers. Even if they simplify their
network with an LSTM-like model with shared weights, it still has
high computation burden. It seems that is why they only report
works on datasets of at most about 4000 labels.

5 CONCLUSION

In this work, we propose deep learning based level-wise framework
to handle extreme multi-label learning and classification, named
as Deep Level-wise XMLC. The innovation of Deep Level-wise
XMLC includes a few points. Firstly, we develop a split model
training mechanism, with which, labels are divided into multiple
levels so that the curse of dimensionality and training cost are both
lessened to a large degree. Secondly, category-dependent dynamic
max pooling and weights adjustments with macro F-measure are
integrated into the neural architecture so that the final predictions
fit more to the distributions of the levels and their hierarchical
relations. Thirdly, we successfully design a hierarchical pointer
generation model to merge level-wise outputs into one unified label
prediction.

The results show that Deep Level-wise XMLC achieves the state-
of-the-art results by utilizing MEDLINE collections, keywords and
predicted labels from upper and lower levels are utilized. The re-
sults for AmazonCat13K also show that Deep Level-wise XMLC is
generic enough to handle diverse datasets.

In this work, it is not hard to see that Deep Level-wise XMLC
can be conveniently transferred to tasks, like large scale semantic
indexing for constructing more efficient and accurate information
retrieval engines and reducing expensive manual expert efforts as
shown in this work.

In future work, more experiments will be done on diverse datasets.
Besides, model improvements can be made on designing more ro-
bust loss functions as well as adding more layers for handling fea-
ture refinements or weight adjustments and meanwhile improving
running efficiency.
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