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SIGN-FULL RANDOM PROJECTIONS

Sign-Full Random Projections

Ping Li, Baidu Research USA, PINGLI98@GMAIL.COM

Abstract

The1 method of 1-bit (“sign-sign”) random projections has been a popular tool for efficient search

and machine learning on large datasets. Given two D-dim data vectors u, v ∈ R
D , one can gen-

erate x =
∑D

i=1
uiri, and y =

∑D

i=1
viri, where ri ∼ N(0, 1) iid. The “collision probability” is

Pr (sgn(x) = sgn(y)) = 1− cos
−1 ρ

π
, where ρ = ρ(u, v) is the cosine similarity.

We develop “sign-full” random projections by estimating ρ from (e.g.,) the expectationE(sgn(x)y) =
√

2

π
ρ, which can be further substantially improved by normalizing y. For nonnegative data, we rec-

ommend an interesting estimator based on E (y−1x≥0 + y+1x<0) and its normalized version. The

recommended estimator almost matches the accuracy of the (computationally expensive) maximum

likelihood estimator. At high similarity (ρ → 1), the asymptotic variance of recommended estima-

tor is only 4

3π
≈ 0.4 of the estimator for sign-sign projections. At small k and high similarity, the

improvement would be even much more substantial.

In applications such as near neighbor search, duplicate detection, knn-classification, etc, the train-

ing data are first transformed via random projections and then only the signs of the projected data

points are stored (i.e., the sgn(x)). The original training data are discarded. When a new data point

arrives, we apply random projections but we do not necessarily need to quantize the projected data

(i.e., the y) to 1-bit. Therefore, sign-full random projections can be practically useful. Roughly

speaking, compared to the classical sign-sign random projections, sign-full random projections can

reduce storage (and number of projections) by a factor of 2. This gain essentially comes at no

additional cost. (All technical proofs are in the Appendix.)

1. Introduction

Consider two high-dimensional data vectors, u, v ∈ R
D. Suppose we generate a D-dim random

vector whose entries are iid standard normal, i.e., ri ∼ N(0, 1), and compute

x =
D
∑

i=1

uiri, y =
D
∑

i=1

viri

We have in expectation E(xy) = 〈u, v〉 =
∑D

i=1 uivi. If we generate x and y independently for

k times, then 1
k

∑k
j=1 xjyj ≈ E(xy) = 〈u, v〉, and the quality of approximation improves as k

increases. This idea of random projections has been widely used for large-scale search and machine

learning (Johnson and Lindenstrauss, 1984; Vempala, 2004; Papadimitriou et al., 1998; Dasgupta,

1999; Datar et al., 2004; Li et al., 2006).

1. The work was first presented in Stanford Statistics Department.
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1.1 Sign-Sign (1-Bit) Random Projections

A popular variant is the “1-bit” random projections, which we refer to as “sign-sign” random pro-

jections, based on the following result of “collision probability”

Pr (sgn(x) = sgn(y)) = 1− cos−1 ρ

π
(1)

where ρ = ρ(u, v) =
∑D

i=1 uivi
√

∑D
i=1 u

2
i

√

∑D
i=1 v

2
i

is the “cosine” similarity between the two original data

vectors u and v. Note that by using only the signs of the projected data, we will lose the informa-

tion about the norms of the original vectors. Thus, in this context, with no loss of generality, we

will assume that the original data vectors are normalized, i.e.,
∑D

i=1 u
2
i =

∑D
i=1 v

2
i = 1, just for

notational convenience. In other words, without loss of generality, we can assume that x ∼ N(0, 1)
and y ∼ N(0, 1).

The result (1) was seen in (Goemans and Williamson, 1995) and (Charikar, 2002). The method

of sign-sign random projections has become popular, for example in web search (Henzinger, 2006;

Manku et al., 2007; Grimes and O’Brien, 2008). It is known that the method is effective in the

high-similarity region (ρ → 1).

In this paper, we take advantage of E(sgn(x)y) and several variants to considerably improve

1-bit random projections. This gain essentially comes at no additional cost. Basically, the training

data after projections are stored using signs (e.g., sgn(x)). When a new data vector arrives, however,

we need to generate its random projections (y) but do not necessarily have to quantize them. This

is the motivation.

1.2 Estimators Based on Full Information

In this context, since we are only concerned with estimating the cosine ρ, we can without loss of

generality assume that the original data are normalized, i.e., ‖u‖ = ‖v‖ = 1. The projected data

thus follow a bi-variant normal distribution:2

[

xj
yj

]

∼ N

([

0
0

]

,

[

1 ρ
ρ 1

])

, iid j = 1, 2, ..., k.

where ρ =
∑D

i=1 uivi. The obvious estimator for ρ is based on the inner product of random projec-

tions:

ρ̂f =
1

k

k
∑

j=1

xjyj, E (ρ̂f ) = ρ

V ar (ρ̂f ) =
Vf

k
, Vf = 1 + ρ2

See the derivation of variance (Vf ) in (Li et al., 2006). Note that V ar(ρ̂f ) is the largest when

|ρ| = 1. This is disappointing, because when two data vectors are identical, we ought to be able to

estimate their similarity with no error.

2. Even if the data are not normalized, the results presented in this paper remain essentially the same. For un-normalized

estimators there will be a scaling factor. For example, E(sgn(x)y) =
√

2
π
ρ‖v‖ instead of E(sgn(x)y) =

√

2
π
ρ.

2
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One can improve the estimator by simply normalizing the projected data. See (Anderson, 2003)

for the derivation.

ρ̂f,n =

∑k
j=1 xjyj

√

∑k
j=1 x

2
j

√

∑k
j=1 y

2
j

, E (ρ̂f,n) = ρ+O

(

1

k

)

V ar (ρ̂f,n) =
Vf,n

k
+O

(

1

k2

)

, Vf,n =
(

1− ρ2
)2

In particular, Vf,n = 0 when |ρ| = 1, as desired.

One can further improve ρ̂f,n but not too much. The theoretical limit (i.e., the Cramér-Rao

bound) of the asymptotic variance (Lehmann and Casella, 1998) can be obtained by the maximum

likelihood estimator (MLE), which is the solution of the following cubic equation:

ρ3 − ρ2
k
∑

j=1

xjyj + ρ



−1 +

k
∑

i=1

x2j +

k
∑

j=1

y2j



−
k
∑

j=1

xjyj = 0

This cubic equation can have multiple real roots with a small probability (Li et al., 2006), which

decreases exponentially fast with increasing k. The MLE is asymptotically unbiased and its asymp-

totic variance becomes:

E (ρ̂f,m) = ρ+O

(

1

k

)

V ar (ρ̂f,m) =
Vf,m

k
+O

(

1

k2

)

, Vf,m =

(

1− ρ2
)2

1 + ρ2

1.3 Estimator Based on Sign-Sign Random Projections

From Pr (sgn(xj) = sgn(yj)) = 1− 1
π cos−1 ρ, we have an asymptotically unbiased estimator and

its variance:

ρ̂1 = cos π



1− 1

k

k
∑

j=1

1sgn(xj)=sgn(yj)



 ,

E (ρ̂1) = ρ+O

(

1

k

)

, V ar (ρ̂1) =
V1

k
+O

(

1

k2

)

,

V1 = cos−1 ρ
(

π − cos−1 ρ
)

(1− ρ2)

As later will be shown in Lemma 7, we have when |ρ| → 1,

V1 = 2
√
2π (1− |ρ|)3/2 + o

(

(1− |ρ|)3/2
)

,

This rate is slower than O
(

(1− |ρ|)2
)

, which is the rate at which Vf,n and Vf,m approach 0. Fig-

ure 1 compares the estimators in terms of V1
Vf,m

,
Vf

Vf,m
, and

Vf,n

Vf,m
. Basically, Vf,n < Vf always which

means we should always use the normalized estimator. Note that V1 < Vf if |ρ| > 0.5902.

3
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Figure 1: Ratios of variance factors: V1
Vf,m

,
Vf

Vf,m
, Vm

Vf,m
,

Vf,n

Vf,m
. Because Vf,m is the theoretically

smallest variance factor, the ratios are always larger than 1, and we can use them to

compare estimators (lower the better). Note that Vm is the variance factor for the MLE of

sign-full random projections (see Section 2).

2. Estimators for Sign-Full Random Projections

In many practical scenarios such as near-neighbor search and near-neighbor classification, we can

store signs of the projected data (i.e., sgn(xj)) and discard the original high-dimensional data.

When a new data vector arrives, we generate its projected vector (i.e., y). At this point we actually

have the option to choose whether we would like to use the full information or just the signs (i.e.,

sgn(yj)) to estimate the similarity ρ. If we are able to find a better (more accurate) estimator by

using the full information of yj , there is no reason why we have to only use the sign of yj .

We first examine the maximum likelihood estimator (MLE), to understand the theoretical limit

of sign-full projections.

Theorem 1 Given k iid samples (sign(xj), yj), j = 1, 2, ..., k, with xj ∼ N(0, 1), yj ∼ N(0, 1),
E(xjyj) = ρ, the maximum likelihood estimator (MLE, denoted by ρ̂m) is the solution to the

following equation:

k
∑

j=1

φ

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ

(

ρ√
1−ρ2

sgn(xj)yj

)sgn(xj)yj = 0 (2)

where φ(t) = 1√
2π
e−t2/2 and Φ(t) =

∫ t
−∞ φ(t)dt are respectively the pdf and cdf of the standard

normal.

E (ρ̂m) = ρ+O

(

1

k

)

V ar (ρ̂m) =
Vm

k
+O

(

1

k2

)

4
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where

1

Vm
=E















ρ

(1− ρ2)7/2

φ

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ

(

ρ√
1−ρ2

sgn(xj)yj

)sgn(xj)y
3
j















+E















1

(1− ρ2)3

φ2

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ2

(

ρ√
1−ρ2

sgn(xj)yj

)y2j















(3)

−E















3ρ

(1− ρ2)5/2

φ

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ

(

ρ√
1−ρ2

sgn(xj)yj

)sgn(xj)yj















Proof: See Appendix A. �.

As the MLE equation (2) is quite sophisticated, we study this estimator mainly for theoretical

interest, for example, for evaluating other estimators. We can evaluate the expectations in (3) by

simulations. Figure 1 already plots Vm
Vf,m

, to compare ρ̂m with three estimators: ρ̂1, ρ̂f , ρ̂f,n. The

figure shows that ρ̂m indeed substantially improves ρ̂1.

Next, we seek estimators which are much simpler than ρ̂m. Ideally, we look for estimators

which can be written as “inner products”. In this paper, we propose four such estimators. We first

present a Lemma which will be needed for deriving these estimators and proving their properties.

Lemma 2

∫ ∞

0
te−t2/2Φ

(

ρt
√

1− ρ2

)

dt =
1 + ρ

2
(4)

∫ ∞

0
t3e−t2/2Φ

(

ρt
√

1− ρ2

)

dt =
1

2

(

2 + 3ρ− ρ3
)

(5)

∫ ∞

0
t2e−t2/2Φ

(

ρt
√

1− ρ2

)

dt = 1ρ≥0

√

π

2
−
√

1

2π

(

tan−1

√

1− ρ2

ρ
− ρ
√

1− ρ2

)

(6)

where we denote that tan−1
(

1
0

)

= tan−1
(

1
0+

)

= π
2 .

Proof: See Appendix B. �.
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The first estimator we present is based on the theoretical moments of (sgn(xj)yj) as shown in

Theorem 3.

Theorem 3

E(sgn(xj)yj) =

√

2

π
ρ (7)

E
(

(sgn(xj)yj)
3
)

=
1√
2π

(

6ρ− 2ρ3
)

(8)

E
(

(sgn(xj)yj)
2
)

= 1, E
(

(sgn(xj)yj)
4
)

= 3 (9)

Proof: See Appendix C. �.

Theorem 3 leads to a simple estimator ρ̂g and its variance:

ρ̂g =
1

k

k
∑

j=1

√

π

2
sgn(xj)yj, E (ρ̂g) = ρ (10)

V ar (ρ̂g) =
Vg

k
, Vg =

π

2
− ρ2 (11)

The variance does not vanish when |ρ| → 1. Interestingly, the variance can be substantially reduced

by applying a normalization step on yj , as shown in Theorem 4.

Theorem 4 As k → ∞, the following asymptotic normality holds:

√
k





∑k
j=1 sgn(xj)yj

√
k
√

∑k
j=1 y

2
j

−
√

2

π
ρ





D
=⇒ N (0, Vg,n) (12)

Vg,n = Vg − ρ2
(

3/2 − ρ2
)

(13)

where Vg =
π
2 − ρ2 as in (11).

Proof: See Appendix D. �.

Theorem 4 leads to the following estimator ρ̂g,n:

ρ̂g,n =

√

π

2





∑k
j=1 sgn(xj)yj

√
k
√

∑k
j=1 y

2
j



 (14)

E (ρ̂g,n) = ρ+O

(

1

k

)

V ar (ρ̂g,n) =
Vg,n

k
+O

(

1

k2

)

While this normalization always helps (since Vg,n ≤ Vg), the estimator still does not have the desired

property that the variance should approach 0 as |ρ| → 1.

6
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It turns out that we can improve ρ̂g,n at least for nonnegative data (ρ ≥ 0), based on the results

in Theorem 5.

Theorem 5

E (y−1x<0 + y+1x≥0) =
1 + ρ√
2π

(15)

E (y−1x<0 + y+1x≥0)
2 = 1ρ≥0 −

1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

(16)

E (y−1x≥0 + y+1x<0) =
1− ρ√
2π

(17)

E (y−1x≥0 + y+1x<0)
2 = 1ρ<0 +

1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

(18)

Proof: See Appendix E. �.

This leads to another estimator, denoted by ρ̂s:

ρ̂s = 1−
√
2π

k

k
∑

j=1

[

yj−1xj≥0 + yj+1xj<0

]

(19)

E (ρ̂s) = ρ, V ar (ρ̂s) =
Vs

k

Vs = 2π

[

1ρ<0 +
1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

− (1− ρ)2

2π

]

(20)

Recall that we denote tan−1
(

1
0

)

= tan−1
(

1
0+

)

= π
2 .

The variance of ρ̂s has the desired property that it approaches zero as ρ → 1. However, when

ρ → −1, the variance becomes large. In fact, even at ρ = 0, the variance is already fairly large as

we will soon show. Thus, we still hope to be able to reduce the variance by normalizing y.

Theorem 6

√
k





∑k
j=1 yj−1xj≥0 + yj+1xj<0

√
k
√

∑k
j=1 y

2
j

− 1− ρ√
2π





D
=⇒ N (0, Vs,n) (21)

Vs,n = Vs −
(1− ρ)2

4π

(

1− 2ρ− 2ρ2
)

(22)

where Vs is in (20).

Proof: See Appendix F. �.

7
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This leads to the following estimator:

ρ̂s,n = 1−
∑k

j=1

√
2π
[

yj−1xj≥0 + yj+1xj<0

]

√
k
√

∑k
j=1 y

2
j

(23)

E (ρ̂s,n) = ρ+O

(

1

k

)

, V ar (ρ̂s,n) =
Vs,n

k
+O

(

1

k2

)

where Vs,n is in (22). The resultant estimator ρ̂s,n still has the property that the variance approaches

0 as ρ → 1. The normalization step however does not always help. From (22), we have Vs ≥ Vs,n if

ρ ≤
√
3−1
2 ≈ 0.3660. On the other hand, as shown in Figure 2, the normalization step only increases

the variance slightly if ρ > 0.3660.

Figure 2 plots the rations: Vm
V1

,
Vg

V1
,

Vg,n

V1
, Vs

V1
,
Vs,n

V1
, to compare those five estimators in terms

of their improvements relative to the 1-bit estimator ρ̂1. As expected, the MLE ρ̂m achieves the

smallest asymptotic variance and Vm
V1

= 2
π at ρ = 0 and Vm

V1
≈ 0.36 at |ρ| → 1. This means in the

high similarity region, using ρ̂m can roughly reduce the required number of samples (k) by a factor

of 3. Overall, ρ̂s,n is the recommended estimator for practical use, because ρ̂s,n is computationally

simple and its variance is very close to the variance of the MLE, at least for ρ ≥ −0.4.
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Figure 2: Variance factor ratios: Vm
V1

,
Vg

V1
,
Vg,n

V1
, Vs
V1

,
Vs,n

V1
, to compare the five estimators developed

for sign-full random projections, in terms of the relative improvement with respect to

the 1-bit estimator ρ̂1. The MLE (ρ̂m, solid blue curve) achieves the lowest asymptotic

variance. When ρ = 0, Vm
V1

=
Vg

V1
=

Vg,n

V1
= 2

π ≈ 0.6366, Vs
V1

= 4
π − 4

π2 ≈ 0.8680,
Vs,n

V1
= 4

π − 6
π2 ≈ 0.6653. When ρ → 1, Vs

V1
=

Vs,n

V1
= 4

3π ≈ 0.4244. However,
Vg

V1
= ∞

and
Vg,n

V1
= ∞ when ρ → 1, indicating that ρ̂g and ρ̂g,n are poor estimators for the high

similarity region. Overall, ρ̂s,n is a very good estimator, at least for nonnegative data.

We summarize some numerical values in Lemma 7.

8



SIGN-FULL RANDOM PROJECTIONS

Lemma 7 At ρ = 0,

Vm

V1
=

Vg

V1
=

Vg,n

V1
=

2

π
≈ 0.6366, (24)

Vs

V1
=

4

π
− 4

π2
≈ 0.8680, (25)

Vs,n

V1
=

4

π
− 6

π2
≈ 0.6653 (26)

As |ρ| → 1,

V1 = 2
√
2π (1− |ρ|)3/2 + o

(

(1− |ρ|)3/2
)

(27)

As ρ → 1,

Vs

V1
=

Vs,n

V1
=

4

3π
≈ 0.4244, (28)

Vg

V1
= ∞,

Vg,n

V1
= ∞ (29)

Proof: See Appendix G. �.

Overall, ρ̂s,n is recommended, at least for nonnegative data (ρ ≥ 0, which is common in prac-

tice). Typical applications are often concerned with the high similarity region. At ρ → 1, the asymp-

totic variance of ρ̂s,n approaches zero at the same rate as the MLE (ρ̂m), in particular,
Vs,n

Vm
≈ 1.18.

3. A Simulation Study

In this section, we provide a simulation study to verify the theoretical properties of the proposed

four estimators for sign-full random projections: ρ̂g, ρ̂g,n, ρ̂s, ρ̂s,n, as well as the estimator for

sign-sign projections: ρ̂1:

ρ̂1 = cos π



1− 1

k

k
∑

j=1

1sgn(xj)=sgn(yj)



 ,

ρ̂g =
1

k

k
∑

j=1

√

π

2
sgn(xj)yj,

ρ̂g,n =

√

π

2





∑k
j=1 sgn(xj)yj

√
k
√

∑k
j=1 y

2
j



 ,

ρ̂s = 1−
√
2π

k

k
∑

j=1

[

yj−1xj≥0 + yj+1xj<0

]

,

ρ̂s,n = 1−
∑k

j=1

√
2π
[

yj−1xj≥0 + yj+1xj<0

]

√
k
√

∑k
j=1 y

2
j

9
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For a given ρ, we simulate k standard bi-variate normal variables (xj , yj) with E(xjyj) = ρ,

j = 1, ..., k. Then we choose an estimator ρ̂ to estimate ρ. With 106 simulations, we assume that

the empirical bias and variance of ρ̂ are close to the true values. We plot the empirical mean square

errors (MSEs): MSE(ρ̂) = Bias2(ρ̂) + V ar(ρ̂), together with the theoretical variance of ρ̂. If the

empirical MSE curve and the theoretical variance overlap, we know that the estimator is unbiased

and the theoretical variance formula is verified.

Figure 3 presents the results for 6 selected ρ values: 0.99, 0.95, 0.750,−0.95,−0.99. Those

simulations verify that both ρ̂g and ρ̂s are unbiased, while their normalized versions ρ̂g,n and ρ̂s,n
are asymptotically (i.e., when k is not too small) unbiased. The (asymptotic) variance formulas for

these four estimators are verified since the solid and dashed curves overlap (when k is not small).
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M
S

E

 = 0.99
g

g,n

s
s,n

10  100 1000
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10-4

10-3
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10-1

M
S

E

 = 0.95

g

g,n

s
s,n

10  100 1000
k

10-3

10-2

10-1

M
S

E

 = 0.75

g

g,n

s
s,n

10  100 1000
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10-3

10-2

10-1

M
S

E

 = 0

g
g,n

s
s,n

10  100 1000
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E

 = - 0.95

g

g,n

s

s,n
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10-3
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10-1

M
S

E

 = - 0.99

g

g,n

s

s,n

Figure 3: Empirical MSEs (solid curves) for four proposed estimators, together with the theoretical

(asymptotic) variances (dashed curves), for 6 selected ρ values (one in each panel). For

ρ̂g and ρ̂s, the solid and dashed curves overlap, confirming that they are unbiased and

the variance formulas are correct. For ρ̂g,n and ρ̂s,n, the solid and dashed curves overlap

when k is not too small.

10
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Figure 4 presents the ratios of empirical MSEs (solid curves):
MSE(ρ̂1)
MSE(ρ̂s,n)

and
MSE(ρ̂1)
MSE(ρ̂g,n)

, to-

gether with the theoretical asymptotic variance ratios (dashed curves): V1
Vs,n

and V1
Vg,n

(i.e., the re-

ciprocal of those in Figure 2). These curves again confirm the asymptotic variance formulas. In

addition, they indicate that in the high similarity region, when the sample size k is not too large,

the improved gained from using ρ̂s,n can be substantially more than what are predicted by theory.

For example, when ρ is close to 1 (e.g., ρ = 0.99), theoretically V1
Vs,n

= 3
4π ≈ 2.3562, the actual

improvement can be as much as a factor of 8 (at k = 10). This is the additional advantage of ρ̂s,n.
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Figure 4: Empirical MSE rations:
MSE(ρ̂1)
MSE(ρ̂s,n)

and
MSE(ρ̂1)
MSE(ρ̂g,n)

, together with the theoretical asymp-

totic variance ratios (dashed curves): V1
Vs,n

and V1
Vg,n

(i.e., the reciprocal of those in Fig-

ure 2). When k is not small, the solid and dashed curves overlap. The results indicate that

at high similarity and small k, the improvement from using sign-full random projections

would be even much more substantial (e.g., the actual ratio can be as high as 8).

Figure 5 provides the histograms of the estimates from five estimators, for ρ = 0.95 and k ∈
{100, 1000}. In addition to showing the expected bell-shaped curves, the histograms reveal that ρ̂g
does not have another desired property that the estimates should be smaller than 1. The normalized

version ρ̂g,n helps but it is still not good enough. This figure once again confirms that ρ̂s,n is an

overall good estimator.
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Figure 5: Histograms of the estimates from five estimators: ρ̂1, ρ̂g, ρ̂g,n, ρ̂s, ρ̂s,n (top to bottom),

for k = 100 (left panels) and 1000 (right panels). ρ̂s and ρ̂s,n have the desired property

that the estimates are smaller than 1. The truth ρ = 0.95.
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4. An Experimental Study

To further verify the theoretical results, we conduct an experimental study on the ranking task for

near-neighbor search on 4 public datasets (see Table 1 and Figure 6).

Table 1: Information about the datasets

Dataset # Train # Query # Dim

MNIST 10,000 10,000 780

RCV1 10,000 10,000 47,236

YoutubeAudio 10,000 11,930 2,000

YoutubeDescription 10,000 11,743 12,183,626
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Figure 6: Histograms of all pairwise ρ values for the 4 datasets.

These four datasets are downloaded from either the UCI repository or the LIBSVM website.

When a dataset contains significantly more than 10,000 training samples, we only use a random

sample of it. The datasets represent a wide range of application scenarios and data types. See

Figure 6 for the frequencies of all pairwise ρ values.

For each data point in the query set, we estimate its similarity with every data point in the

training set, using random projections. The goal is to return training data points with which the

estimated similarities are larger than a pre-specified threshold ρ0. For each query point, we rank all

the (estimated) similarities and return top-L points. We can then compute the precision and recall

Precision =
# retrieved points with true similarities ≥ ρ0

L
,

Recall =
# retrieved points with true similarities ≥ ρ0
#total points with true similarities ≥ ρ0
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We report the averaged precision-recall values over all query data points. By varying L from 1 to

the number of training data points, we obtain a precision-recall curve. Therefore, for each ρ0 and k,

and each estimator (ρ̂1, ρ̂s,n, or ρ̂g,n), we report one precision-recall curve.

Figure 7 presents the results for the RCV1 datasets, for ρ0 = 0.95, 0.9, 0.8, 0.6, 0.4 (top to bot-

tom, one ρ0 per row), and for k = 50, 100, 200 (left to right, one k per column). In the first row

(i.e., ρ0 = 0.95), we can see that ρ̂s,n is substantially more accurate than both ρ̂1 and ρ̂g,n. Since

this case represents the high-similarity region, as expected, ρ̂g,n performs poorly. When ρ0 ≤ 0.6,

ρ̂s,n and ρ̂g,n are essentially identical and substantially better than ρ̂1, also as expected.

Figure 8, Figure 9, and Figure 10 present the results for the other three datasets. The trends are

pretty much similar to what we observe in Figure 7. These results confirm that ρ̂s,n is an overall

good estimator, which we recommend for practical use.

5. Conclusion

The method of sign-sign (1-bit) random projections has been a standard tool in practice. In many

practical scenarios such as near-neighbor search and near-neighbor classification, we can store signs

of the projected data and discard the original high-dimensional data. When a new data point arrives,

we generate its projected vector and we can use the full-time to estimate the similarity. We develop

four simple estimators for sign-full random projections. In particular, we recommend ρ̂s,n which

almost matches the accuracy of the MLE at least for nonnegative data. The improvement over 1-bit

projections is substantial especially for high similarity region.
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Figure 7: RCV1: precision-recall curves for selected ρ0 and k values, and for three estimators ρ̂s,n
(recommended), ρ̂g,n, ρ̂1.
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Figure 8: MNIST: precision-recall curves for selected ρ0 and k values, and for three estimators

ρ̂s,n (recommended), ρ̂g,n, ρ̂1.
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Figure 9: YoutubeAudio: precision-recall curves for selected ρ0 and k values, and for three esti-

mators ρ̂s,n (recommended), ρ̂g,n, ρ̂1.
17



PING LI

0.6 0.7 0.8 0.9 1
0.85

0.9

0.95

1

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.95, k = 50

1

g,n

s,n

0.6 0.7 0.8 0.9 1
0.92

0.94

0.96

0.98

1

Recall

P
re

ci
si

on

ρ
0
 = 0.95, k = 100

g,n

1

s,n

YoutubeDescription

0.6 0.7 0.8 0.9 1
0.95

0.96

0.97

0.98

0.99

Recall

P
re

ci
si

on

ρ
0
 = 0.95, k = 200

YoutubeDescription

s,n

1

g,n

0.6 0.7 0.8 0.9 1
0.91

0.92

0.93

0.94

0.95

0.96

0.97

Recall

P
re

ci
si

on

ρ
0
 = 0.9, k = 50

YoutubeDescription

s,n

g,n

1
0.6 0.7 0.8 0.9 1

0.94

0.95

0.96

0.97

0.98

0.99

Recall

P
re

ci
si

on

ρ
0
 = 0.9, k = 100

1

s,n

g,n

YoutubeDescription

0.6 0.7 0.8 0.9 1
0.95

0.96

0.97

0.98

0.99

Recall

P
re

ci
si

on

ρ
0
 = 0.9, k = 200

YoutubeDescription

s,n

1

g,n

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.8, k = 50

1

g,n
s,n

0.6 0.7 0.8 0.9 1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Recall

P
re

ci
si

on

ρ
0
 = 0.8, k = 100

YoutubeDescription

s,n
g,n

1
0.6 0.7 0.8 0.9 1

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.8, k = 200

s,n

g,n

1

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.6, k = 50

1

g,n
s,n

0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.6, k = 100 1

g,n
s,n

0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.6, k = 200

1

g,n
s,n

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.4, k = 50

1

g,n
s,n

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.4, k = 100 1

g,n
s,n

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

ci
si

on

YoutubeDescription

ρ
0
 = 0.4, k = 200 1

g,n
s,n

Figure 10: YoutubeDescription: precision-recall curves for selected ρ0 and k values, and for three

estimators ρ̂s,n, ρ̂g,n, ρ̂1.
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Appendix A. Proof of Theorem 1

Consider two high-dimensional vectors, u, v ∈ R
D. The idea is to multiply them with a random

normal projection matrix R ∈ R
D×k, to generate two (much) shorter vectors x, y:

x = u×R ∈ R
k, y = v ×R ∈ R

k, R = {rij}Di=1
k
j=1, rij ∼ N(0, 1) i.i.d.

In this context, without loss of generality, we assume ‖u‖ = ‖v‖ = 1 in this paper. The joint

distribution of (xj, yj) is hence a bi-variant normal:

[

xj
yj

]

∼ N

([

0
0

]

,

[

1 ρ
ρ 1

])

, i.i.d. j = 1, 2, ..., k.

where ρ =
∑D

i=1 uivi (assuming ‖u‖ = ‖v‖ = 1). The joint likelihood is

L(sgn(xj), yj) =
∏

sgn(xj)=−1

∫ 0

−∞
φ(x, y)dx

∏

sgn(xj)=1

∫ ∞

0
φ(x, y)dx

In this paper, we denote

φ(x, y; ρ) =
1

2π
√

1− ρ2
e
−x2−2ρxy+y2

2(1−ρ2) , −1 ≤ ρ ≤ 1

φ(x) =
1√
2π

e−x2/2, Φ(x) =

∫ x

−∞
φ(x)dx

The joint log-likelihood is

l = l(sgn(xj), yj) = logL(sgn(xj), yj)

=
∑

sgn(xj)=−1

log

∫ 0

−∞
φ(x, y; ρ)dx +

∑

sgn(xj)=1

log

∫ ∞

0
φ(x, y; ρ)dx

where

∫ ∞

0
φ(x, y; ρ)dx =

∫ ∞

0

1

2π
√

1− ρ2
e
−x2−2ρxy+y2

2(1−ρ2) dx

=
1

2π
√

1− ρ2
e−

y2

2

∫ ∞

0
e
− (x−ρy)2

2(1−ρ2) dx =
1

2π
√

1− ρ2
e−

y2

2

∫ ∞

−ρy√
1−ρ2

e−
u2

2

√

1− ρ2du

=
1√
2π

e−
y2

2

∫ ∞

−ρx√
1−ρ2

1√
2π

e−
u2

2 du =
1√
2π

e−
y2

2 Φ

(

ρy
√

1− ρ2

)

and

∫ 0

−∞
φ(x, y; ρ)dx =

1√
2π

e−
y2

2 Φ

(

−ρy
√

1− ρ2

)
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Thus,

l =
∑

j,sgn(xj)=−1

log

[

1√
2π

e−
y2j
2 Φ

(

−ρyj
√

1− ρ2

)]

+
∑

j,sgn(xj)=1

log

[

1√
2π

e−
y2j
2 Φ

(

ρyj
√

1− ρ2

)]

=
k
∑

j=1

log Φ

(

ρ
√

1− ρ2
sgn(xj)yj

)

irrelevant terms are neglected

Once we have the likelihood function, we obtain the MLE equation by setting its derivative l′(ρ) = 0

l′(ρ) =

k
∑

j=1

φ

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ

(

ρ√
1−ρ2

sgn(xj)yj

)

sgn(xj)yj

(1− ρ2)3/2
= 0

We will also need to the second derivative l′′ in order to assess the asymptotic variance of the

MLE by classification theory of statistics. After some algebra, we obtain

l′′(ρ) =
−ρ

(1− ρ2)7/2

k
∑

j=1

φ

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ

(

ρ√
1−ρ2

sgn(xj)yj

)sgn(xj)y
3
j −

1

(1− ρ2)3

k
∑

j=1

φ2

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ2

(

ρ√
1−ρ2

sgn(xj)yj

)y2j

+
3ρ

(1− ρ2)5/2

k
∑

j=1

φ

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ

(

ρ√
1−ρ2

sgn(xj)yj

)sgn(xj)yj

We can evaluate the Fisher Information −E(l′′(ρ) numerically or by simulations. The asymp-

totic variance is the reciprocal of −E(l′′(ρ).

Appendix B. Proof of Lemma 1

Let c = ρ√
1−ρ2

, we have

∫ ∞

0
te−

t2

2 Φ (ct) dy =

∫ ∞

0
−Φ (ct) de−

y2

2

=

∫ ∞

0
e−

y2

2 φ (cy) cdy +
1

2

=c

√

1

1 + c2

∫ ∞

0

1√
2π

√

1 + c2e−(1+c2)y/2dy +
1

2

=c

√

1

1 + c2
1

2
+

1

2
=

1 + ρ

2
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∫ ∞

0
t3e−t2/2Φ(ct)dt = −

∫ ∞

0
t2Φ(ct)de−t2/2

=

∫ ∞

0
e−t2/2

[

2tΦ(ct) + ct2φ(ct)
]

dt− 0

=−
∫ ∞

0
2Φ(ct)de−t2/2 +

∫ ∞

0
ct2e−t2/2 1√

2π
e−

c2t2

2 dt

=

∫ ∞

0
2ce−t2/2φ(ct)dt + 1 +

∫ ∞

0
ct2

1√
2π

e−
(1+c2)t2

2 dt

=

∫ ∞

0

1√
1 + c2

2c

√
1 + c2√
2π

e−
(1+c2)t2

2 dt+ 1

+

∫ ∞

0

1√
1 + c2

ct2
√
1 + c2√
2π

e−
(1+c2)t2

2 dt

=
c√

1 + c2
+ 1 +

c

2(1 + c2)3/2

=ρ+ 1 + ρ(1− ρ2)/2 = 1 + 3/2ρ− ρ3/2

Consider c > 0, we have

∫ ∞

0
y2e−y2/2Φ(cy)dy

=

∫ ∞

0

2

c2
ue−u/c2Φ(

√
2u)

√
2

c

1

2

1

u1/2
du

=

√
2

c3

∫ ∞

0

√
ue−u/c2Φ(

√
2u)du

=

√
2

2c3

∫ ∞

0

√
ue−u/c22

(

Φ(
√
2u)− 1

)

du+

√
2

c3

∫ ∞

0

√
ue−u/c2du

=−
√
2

2c3
1√
π

(

tan−1 1
c

1
(c2)3/2

− 1

1/c2(1 + 1/c2)

)

+

√
2π

2

=

√

π

2
−
√

1

2π

(

tan−1 1

c
− c

c2 + 1

)

where we have used the result in (Gradshteyn and Ryzhik, 1994, 8.258.5) which says

∫ ∞

0

√
xerfc(

√
x)e−βxdx =

∫ ∞

0

√
x
(

2− 2Φ(
√
2x)
)

e−βxdx

=
1√
π

(

tan−1
√
β

β3/2
− 1

β(1 + β)

)

Note that (Gradshteyn and Ryzhik, 1994, 8.258.5) incorrectly included a 1
2 factor.

21



PING LI

Now consider c < 0, we have

∫ ∞

0
y2e−y2/2Φ(cy)dy =

∫ ∞

0
y2e−y2/2 (1− Φ(−cy)) dy

=

√
2π

2
−
∫ ∞

0
y2e−y2/2Φ(−cy)dy

=

√
2π

2
−
√

π

2
+

√

1

2π

(

tan−1 1

−c
− −c

c2 + 1

)

=−
√

1

2π

(

tan−1 1

c
− c

c2 + 1

)

Note that when c = 0, we have

∫ ∞

0
y2e−y2/2Φ(cy)dy =

√
2π

2

∫ ∞

0
y2

1√
2π

e−y2/2dy =

√
2π

4

Therefore, for general c, we have

∫ ∞

0
y2e−y2/2Φ(cy)dy = 1c≥0

√

π

2
−
√

1

2π

(

tan−1 1

c
− c

c2 + 1

)

Note that we follow the convention that tan−1 1
0 = tan−1 1

0+ = π
2 .

Appendix C. Proof of Theorem 2

Firstly, it is obvious that E
(

(sgn(xj)
2yj)

2
)

= E
(

y2j

)

= 1, and E
(

(sgn(xj)yj)
4
)

= E
(

y4j

)

=

3. Because (xj , xj) is bi-variate normal, we have xj|yj ∼ N
(

ρyj, (1− ρ2)
)

and

E (sgn(xj)yj)) = E (yjE (sgn(xj)|yj))
=E (yjPr (xj |yj ≥ 0)− yjPr (xj |yj < 0))

=E

(

yj

(

1− 2Φ

(

−ρyj
√

1− ρ2

)))

=E

(

yj

(

2Φ

(

ρyj
√

1− ρ2

)

− 1

))

=2

∫ ∞

−∞
tφ(t)Φ

(

ρt
√

1− ρ2

)

dt

=4

∫ ∞

0
tφ(t)Φ

(

ρt
√

1− ρ2

)

dt− 2

∫ ∞

0
tφ(t)dt

=4
1 + ρ

2

1√
2π

− 2
1√
2π

=

√

2

π
ρ, using result from Lemma 1
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Similarly

E
(

sgn(xj)y
3
j )
)

=4

∫ ∞

0
t3φ(t)Φ

(

ρt
√

1− ρ2

)

dt− 2

∫ ∞

0
t3φ(t)dt

=
1√
2π

(

6ρ− 2ρ3
)

, using result from Lemma 1

Appendix D. Proof of Theorem 3

First, we denote Zk =
∑k

j=1 sgn(xj)yj
√
k
√

∑k
j=1 y

2
j

. As k → ∞, we have

1

k

k
∑

j=1

y2j → E
(

y2j
)

= 1, a.s. Zk =
1
k

∑k
j=1 sgn(xj)yj

√

1
kk
√

1
k

∑k
j=1 y

2
j

→
√

2

π
ρ = g, a.s.

We express the deviation Zk − g as

Zk − g =
1
k

∑k
j=1 sgn(xj)yj − g + g
√

1
k

∑k
j=1 y

2
j

− g

=
1
k

∑k
j=1 sgn(xj)yj − g
√

1
k

∑k
j=1 y

2
j

+ g
1−

√

1
k

∑k
j=1 y

2
j

√

1
k

∑k
j=1 y

2
j

=
1

k

k
∑

j=1

sgn(xj)yj − g + g
1 − 1

k

∑k
j=1 y

2
j

2
+OP (1/k)

Thus, to analyze the asymptotic variance, it suffices to study:

E

(

sgn(x)y − g + g
1 − y2

2

)2

= E
(

sgn(x)y − g(1 + y2)/2
)2

=E(y2) + g2E(1 + y4 + 2y2)/4− gE(sgn(x)(y + y3))

=1 + g2(1 + 3 + 2)/4 − gE(sgn(x)(y + y3))

=1 + 3/2g2 − g2 − gg3 = 1 + g2/2− gg3 = 1− 1

π

(

5ρ2 − 2ρ4
)

where we recall

g3 =E
(

sgn(x)y3)
)

=
1√
2π

(

6ρ− 2ρ3
)
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Appendix E. Proof of Theorem 4

E (y−1x≥0 + y+1x<0) = 2

∫ ∞

0

∫ 0

−∞
yφ(x, y; ρ)dxdy

=2

∫ ∞

0

∫ 0

−∞

1

2π
√

1− ρ2
ye

−x2−2ρxy+y2

2(1−ρ2) dxdy

=2

∫ ∞

0

∫ ∞

0

1

2π
√

1− ρ2
ye

−x2+2ρxy+y2

2(1−ρ2) dxdy

=
2

2π
√

1− ρ2

∫ ∞

0
ye−

y2

2

∫ ∞

0
e
− (x+ρy)2

2(1−ρ2) dxdy

=
2

2π

∫ ∞

0
ye−

y2

2

∫ ∞

ρy√
1−ρ2

e−
x2

2 dxdy

=
2√
2π

∫ ∞

0
ye−y2/2Φ

(

− ρy
√

1− ρ2

)

dy

=
2√
2π

1− ρ

2
=

1− ρ√
2π

E (y−1x≥0 + y+1x<0)
2 = 2

∫ ∞

0

∫ 0

−∞
y2φ(x, y; ρ)dx

=
2√
2π

∫ ∞

0
y2e−

y2

2 Φ

(

−ρy
√

1− ρ2

)

dy

=
2√
2π

(

1ρ<0

√

π

2
+

√

1

2π

(

tan−1

(

√

1− ρ2

ρ

)

+ ρ
√

1− ρ2

))

=1ρ<0 +
1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

Similarly, we can prove

E (y−1x<0 + y+1x≥0) =
1 + ρ√
2π

E (y−1x<0 + y+1x≥0)
2 = 1ρ≥0 −

1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

�
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Appendix F. Proof of Theorem 5

Firstly, it is easy to see that, as k → ∞, we have

1
k

∑k
j=1 yj−1xj≥0 + yj+1xj<0
√

1
kk
√

1
k

∑k
j=1 y

2
j

→ 1− ρ√
2π

= s, a.s.

To analyze the asymptotic variance, it suffices to study:

E

(

{y−1x>0 + y+1x<0} − s+ s
1− y2

2

)2

=E
(

{y−1x>0 + y+1x<0} − s(1 + y2)/2
)2

=E {y−1x>0 + y+1x<0}2 + s2E(1 + y4 + 2y2)/4 − sE({y−1x>0 + y+1x<0} (1 + y2))

=1ρ<0 +
1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

+ s2 (1 + 3 + 2) /4− s2 − s
1√
2π

(

2− 3ρ+ ρ3
)

=

[

1ρ<0 +
1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

− (1− ρ)2

2π

]

− (1− ρ)2

4π

(

1− 2ρ− 2ρ2
)

where we have used the previous results

E (y−1x≥0 + y+1x<0) =
1− ρ√
2π

E (y−1x≥0 + y+1x<0)
2 = 1ρ<0 +

1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

E(y2 {y−1x≥0 + y+1x<0}) = 2E
(

y3+1x<0

)

=
1√
2π

(

2− 3ρ+ ρ3
)

Appendix G. Proof of Lemma 2

V1 = cos−1 ρ
(

π − cos−1 ρ
)

(1− ρ2)

Vg =
π

2
− ρ2

Vg,n = Vg − ρ2
(

3/2− ρ2
)

Vs = 2π

[

1ρ<0 +
1

π

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

− (1− ρ)2

2π

]

Vs,n = Vs −
(1− ρ)2

4π

(

1− 2ρ− 2ρ2
)

Let t = cos−1 ρ, i.e., ρ = cos t. When ρ → 1 (i.e., t → 0), we have ρ = 1 − t2

2 + O
(

t4
)

, i.e.,

t = cos−1 ρ ≈
√

2(1 − ρ). When ρ → −1 (i.e., t → π), we have ρ = cos t = − cos(π − t) =

−1 + (π−t)2

2 +O (π − t)4, i.e., t = cos−1 ρ ≈ π −
√

2(1 + ρ). Combining the results, we have

V1 =cos−1 ρ
(

π − cos−1 ρ
)

(1− ρ2)

=2
√
2π (1− |ρ|)3/2 + o

(

(1− |ρ|)3/2
)

, as |ρ| → 1
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When ρ = 0, we have

1

Vm
= E















1

(1− ρ2)3

φ2

(

ρ√
1−ρ2

sgn(xj)yj

)

Φ2

(

ρ√
1−ρ2

sgn(xj)yj

)y2j















= E

{

1/(2π)

1/4
y2j

}

=
2

π

V1 =
π2

4
, Vm = Vg = Vg,n =

π

2
, Vs = π − 1, Vs,n = π − 3

2

Vm

V1
=

Vg

V1
=

Vg,n

V1
=

2

π
≈ 0.6366,

Vs

V1
=

4

π
− 4

π2
≈ 0.8680,

Vs,n

V1
=

4

π
− 6

π2
≈ 0.6653

Consider ρ → 1 and let ∆ = 1 − ρ. We have already shown that V1 = π
√
2∆2∆ + o

(

∆3/2
)

.

Moreover,

Vs =2

(

tan−1

(

√

1− ρ2

ρ

)

− ρ
√

1− ρ2

)

− (1− ρ)2

=2 tan−1
(
√

2∆−∆2
(

1 + ∆+O
(

∆2
))

)

− 2(1 −∆)
√

2∆−∆2 −∆2

=2
(
√

2∆ −∆2 (1 + ∆)− 2
√
2∆3/2/3

)

− 2
√
2∆(1−∆)

√

1−∆/2 + o
(

∆3/2
)

=2
√
2∆

((

1 +
3

4
∆

)

−∆
2

3
−
(

1− 5

4
∆

))

+ o
(

∆3/2
)

=8
√
2∆∆/3 + o

(

∆3/2
)

Vs,n =Vs −
∆2

2

(

1− 2ρ− 2ρ2
)

= 8
√
2∆∆/3 + o

(

∆3/2
)

Thus, Vs
V1

=
Vs,n

V1
= 4

3π ≈ 0.4244, as ρ → 1.
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