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Abstract—Deep learning models have achieved great suc-
cesses these days. There are intensive studies of word repre-
sentation learning for question classification. As questions are
typically short texts, existing techniques are often not effective
for extracting discriminative representations of questions just
from a limited number of words. This motivates us to exploit
additional information beyond words in order to improve
the representation learning of questions. On one hand, topic
modeling often captures meaningful semantic structures from
the question corpus. Such global topical information should be
helpful for question representations. On the other hand, entities
extracted from question themselves provide more auxiliary
information for short texts from a local viewpoint. Together
with words, topics and entities, question representations can
be substantially improved.

In this paper, we propose a unified neural network frame-
work by integrating Topic modeling, Word embedding and
Entity Embedding (TWEE) for question representation learn-
ing. Concretely, we introduce a novel topic sparse autoencoder
to incorporate discriminative topics into the representation
learning of questions. In addition, both words and entity related
information are embedded into the network to help learn a
more comprehensive question representation. Empirical exper-
iments show that the proposed TWEE framework outperforms
the state-of-the-art methods on different datasets.

Keywords-Representation Learning; Topic Sparse Autoen-
coder; Entity Embedding; Question Classification

I. INTRODUCTION

Question answering (QA) is the basic activity of daily
human communications. Over the past years, online question
answering websites, such as quora.com and stackover-
flow.com, have become increasingly popular for sharing
knowledge on a wide range of subjects. People can ask
questions in diverse categories through these platforms. Due
to the large volumes of questions arriving every second, the
first and key step is to effectively understand questions. A
better question understanding will help build a more efficient
online communication systems. The problem of question
understanding and classification has received considerable
attention in the last few years [1–6].

The conventional approaches focus on representation
learning for question classification as shown in Figure 1.
Bag-of-words representation models simply construct lan-
guage models with words or tokens, including the deep
average network [1, 7], word autoencoders [8], etc. These
methods ignore word orders during the learning process.

Question 1: Which team won the 52nd
Super Bowl Game?

Question 2: Who won the Presidential
Campaign of US on year 1984?

Question n-1: What is entropy?

Question n: What is the average house
income of American family in 2016?

Sports
Q 1 ...

Politics
Q 2 ...

Economy
Q n ...

Science
Q n-1 ...
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Figure 1. A Scenario of question understanding and classification where
the left plate are a series of questions asked by users. The middle small
plate is procedure of question processing, we call question understanding.
On the right, diverse questions are classified into predefined categories.

Sequence representation models, such as Dynamic convo-
lutional neural networks (dynamic CNN) [2] and recurrent
neural networks of long short-term memory (LSTM) are
proposed to take word orders into consideration. Later, struc-
tured representation models are proposed to learn question
representations. For example, a tree-structured LSTM [4]
generalizes LSTMs to tree-structured network topologies. It
captures both word orders and internal structures of ques-
tions. Furthermore, attention-based representation models
use the attention mechanism to build representations by
scoring words and sentences differently [6].

For learning question representations, one inherent chal-
lenge is that questions are typically short texts. The existing
approaches often cannot effectively extract discriminative
representations of questions from a limited number of words.
This motivates us to exploit both entity and topic modeling
to improve the representation learning of questions. It is
known that topic modeling [9, 10] can capture meaningful
semantic structures from the question corpus.

In this paper, we propose a unified neural network
framework by integrating Topic modeling, Word embedding
and Entity Embedding (TWEE) for question representa-
tion learning. In particular, we introduce a Topic Sparse
AutoEncoder (TSAE) by integrating a probabilistic topic
modeling algorithm into a sparse autoencoder. Topic distri-
butions of questions are generated from a global viewpoint
and are utilized to enable autoencoder to learn topical repre-



Table I
LIST OF NOTATIONS

Notation Definition and description
V , N , M and K Numbers of words, entities, questions and topics
Dt, De and Dw Dimensions for topic, entity and word related embeddings
x ∈ RV and a ∈ RDt Bag-of-word for a question and vector for the topic related embedding
ue ∈ RK and ee ∈ RDe One-hot vector for an entity e and vector for the entity embedding
vw ∈ RV and ew ∈ RDw One-hot vector for a word w and vector for the word embedding
Tw ∈ RV ×K and Tq ∈ RM×K Topic distributions over words and questions
h ∈ RDt×K Topic distribution for the topic related embedding
W ∈ RDt×V Weight matrix for Topic Sparse Autoencoder (TSAE)
b ∈ RDt and c ∈ RDt Bias vectors for encoder and decoder in TSAE
γ Regularization parameter for TSAE to prevent over-fitting
ρ and θ Sparsity parameter and the topic sparsity parameter in TSAE
α and β Weights of the sparsity term and the topic guidance term in TSAE
x̂ ∈ RV Decoding representation for a question in TSAE
ρ̂j Average activation of the j-th topic related embedding
θ̂k Average activation of topic related embedding for the k-th topic

sentations. A sparsity constraint is added to ensure the most
discriminative representations are related to question topics.
In addition, both words and entity related information are
embedded into the network from different local viewpoints.
Together with topic modeling, word embedding and entity
embedding, the proposed TWEE model not only explores
information from local contexts of words and entities, but
also incorporates global topical structures for a more com-
prehensive representation learning.

In summary, our contributions are the following:
• We propose a unified neural network TWEE for

question representation learning by embedding topics,
words and entity-related information together.

• We design a novel topic sparse autoencoder (TSAE) to
incorporate topic information into a sparse autoencoder
for the representation learning process.

• We introduce an interactive mechanism between TSAE,
word embedding and entity embedding to coordinate
global topics and local contexts of questions.

• We demonstrate the effectiveness of the proposed
TWEE model by comparing it with several state-of-
the-art methods on question classification.

II. NOTATIONS AND PROBLEM DEFINITIONS

We first introduce the notations used in this paper. We
use bold uppercase letters such as Z to represent matrices,
bold lowercase letters such as h to represent vectors or em-
beddings, regular upper case letters such as H to represent
scalar constants, and regular lowercase letters such as zit,h
to represent scalar variables. Table I lists notations which
are used throughout this paper.

Given a question, we denote its bag-of-word represen-
tation as x ∈ RV , where V is the number of words in
the question set. We denote Dt, De and Dw to be the
dimensions for topic, entity and word related embeddings,
respectively. We assume the total number of topics is K
and each question focuses on only a small amount of topics.
Given M questions, a classic topic model, such as LDA [11],
can help extract topic distributions Tw ∈ RV×K over words
and Tq ∈ RM×K over questions. The proposed TSAE
will incorporate the topic information Tw into a sparse
autoencoder and learn a topic-related embedding a ∈ RDt .
In addition, given N entities extracted from the questions,
we apply the skip-gram model [12] to learn an entity-related
embedding ee ∈ RDe . Entity types (e.g., location, person or
media) are used for embeddings since they are more relevant
and important to the process of question understandings.
Similarly, a word embedding ew ∈ RDw is learned via the
skip-gram model. With the representations a, ee and ew, the
proposed TWEE framework coordinates global topics and
local contexts of a question to learn its representation for
question classifications. The full architecture of the proposed
TWEE framework is illustrated in Figure 2.

III. METHODOLOGY

In this section, we introduce the details of the proposed
TWEE framework, which integrates topic modeling, word
embedding and entity embedding for question representa-
tion learning. Firstly, a topic sparse autoencoder (TSAE)
incorporates a probabilistic topic modeling algorithm into
a sparse autoencoder. The global topical representations of
questions will be learned. Then we introduce how word
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Figure 2. The network structure of TWEE, which is constructed by three input components, namely, the topic sparse autoencoder, the word embedding
and the entity embedding. They are concatenated into convolutional layers and passed into LSTM to train a classifier for question types.

embeddings are learned from questions to capture the local
context information. Furthermore, we explain how to get
entity embeddings to improve the representation learning
of questions. Finally, we show how the proposed TWEE
framework is built for a more comprehensive representation
learning of questions.

A. Topic Sparse Autoencoder (TSAE)
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Figure 3. Topic sparse autoencoder for input questions. The encoder is
enhanced with topics learned from topic modeling. Topic distributions for
words are fed into hidden states so that the representation learning is more
discriminative.

In order to learn topic-related representations of ques-
tions, we adopt the classic sparse autoencoder (SAE) using

the self-reconstruction criterion [13–16]. Autoencoder is
an unsupervised feedforward neural network that applies
backpropagation by fitting the input using the reconstructed
output. It is often used to reduce high-dimensional features
and pre-train deep learning models. Basically, SAE encodes
the i-th input question xi to a hidden representation ai ∈
RDt by a feedforward propagation

ai = f(Wxi + b).

Here ai is the topic related embeddings for the i-th question.
W ∈ RDt×V is a weight matrix and b ∈ RDt is a hidden
bias vector. f(·) is the activation function (e.g., the sigmoid
function f(x) = 1

1+exp(x) or ReLU). After the feedforward
pass, ai is decoded to a representation

x̂i = f(W>ai + c).

c ∈ RDt is a bias vector for the decoder. A sparsity
constraint is imposed on the hidden representation of ai to
reduce noise in SAE. The overall cost function of SAE is

LSAE(W,b) =
1

M

M∑
i=1

1

2
||x̂i − xi||2

+
γ

2
||W||2 + α

Dt∑
j=1

KL(ρ||ρ̂j),

where the first term is the average of reconstruction loss
on all questions with sum-of-squares. The second term is
a regularization term to prevent over-fitting, where γ is the
regularization parameter. It aims to control the sparsity of the
weight and bias parameters W and b. The third term is the



Kullback-Leibler (KL) divergence between two Bernoulli
random variables with mean ρ and ρ̂j , respectively:

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log 1− ρ

1− ρ̂j

for penalizing ρ̂j deviating significantly from the sparsity
parameter ρ. α is the weight of the sparsity term in the
overall cost function. We let

ρ̂j =
1

M

M∑
i=1

aij

be the average activation of the j-th hidden representation.
aij ∈ ai is the j-th hidden unit for the i-th question.

As questions are typically short texts, directly applying
SAE to short questions often cannot effectively extract
discriminative representations from a limited number of
words. Thus, we take advantage of the topical information
hidden in questions to improve the representation learning
of questions as shown in Figure 3. Our aim is to encapsulate
topical information into the overall cost function of SAE so
that the learned hidden representations also reflect the topic
distributions of questions. In order to achieve this goal, we
propose to add the fourth term as a topic guidance term
and the goal of the TSAE (topic sparse autoencoder) is to
minimize the following objective function:

LTSAE(W,b) =
1

M

M∑
i=1

1

2
||x̂i − xi||2 +

γ

2
||W||2

+α

Dt∑
j=1

KL(ρ||ρ̂j) + β

K∑
k=1

KL(θ||θ̂k),

where θ is the topic sparsity parameter for the hidden
representations and β is the weight of the topic guidance
term in the overall objective function. θ̂k is the average
activation of the hidden layer for the k-th topic:

θ̂k =
1

MDt

M∑
i=1

Dt∑
j=1

||hijk||2,

where hijk ∈ hi ∈ RDt×K is the topic distribution of the
j-th hidden state over the k-th topic for the i-th question.

hi = aix
>
i Tw

is the topic distribution for the hidden representation ai.
The topic guidance term is designed for hidden representa-

tions learning of a. It reflects the global topical information
of questions. The KL divergence KL(θ||θ̂k) helps recon-
struct the input with the activation that is related to the most
discriminative topics. Figure 3 shows the learning process of
TSAE. The global topical information is incorporated into
the sparse autoencoder for the representation learning of a.
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Figure 4. The network for both word and entity embedding learning.
Input one-hot representation of words is transformed into low-dimensional
vectors. The predictions are context words

B. Word Embedding

The embedding a learned from the above TSAE module
reflects global topical information of questions while the
word embedding considers local context information. In this
paper, we apply the skip-gram method [12] to learn word
embeddings ew, considering that, as our corpus is composed
of short texts and in medical field, there are quite a few
number of rare words or phrases. The training objective of
the skip-gram model is to learn word representations that are
helpful for predicting the nearby words. Given a sequence
of training words Sw = {w1, w2, · · · , ws} extracted from
questions, the formal objective of the skip-gram model is to
maximize the average log probability

Lword =
1

|Sw|
∑

wi∈Sw

∑
wj∈C(wi)

log p(wj |wi),

where wi is a target word and C(wi) represents the context
words of wi. C(wi) is generated by collecting a window of
words to the left and to the right of the target word wi. We
use c to denote the window size. The conditional probability
p(wj |wi) is defined as

p(wj |wi) =
exp(e>wj

vwi)∑V
k=1 exp(e

>
wk

vwi
)
,

where vw is the input one-hot vector representation of
word w and ew is the corresponding embedding vector
representation. V is the number of words in the question
vocabulary. Since the cost of computing the derivative of
log p(wj |wi) is proportional to V , the stochastic gradient
descent with negative sampling [12, 17, 18] is deployed to
the skip-gram model. Figure 4 illustrates the learning process
of word embeddings.



C. Entity Embedding

The embeddings a and ew learn both global topical
information and local contexts from questions. They are
helpful for question understandings. Moreover, entities in
questions often provide more auxiliary information for short
texts from a different local viewpoint. By incorporating
entity information into the representation learning process,
the understanding of questions can be further improved.

Similar to the word embedding process, we apply the
skip-gram method [12] to learn entity embeddings ee. By
maximizing an average log probability, entity embeddings
can be learned to help predict nearby entities. The formal
objective can be formulated as

Lentity =
1

|Se|
∑
ei∈Se

∑
ej∈Q(ei)

log p(ej |ei),

where Se = {e1, e2, · · · , es} is a sequence of training
entities extracted from questions. ei is a target entity and
Q(ei) represents the co-occurred entities with ei in ques-
tions. Q(ei) is generated by collecting a window of entities
to the left and to the right of the target entity ei. We still
use c to denote the window size. The conditional probability
p(ej |ei) can be defined in a similar way as

p(ej |ei) =
exp(e>ejuei)∑N
k=1 exp(e

>
ek
uei)

,

where ue is the input one-hot vector representation of
entity e and ee is the corresponding embedding vector
representation. N is the number of entities in the questions.
The stochastic gradient descent with negative sampling is
deployed to speed up the computational time. Its learning
process is quite similar to word embeddings and thus we
illustrate the learning network with Figure 4 as well.

D. The Full Architecture of TWEE

Together with the topic, word and entity embeddings, the
proposed TWEE framework trains a neural classifier for
the question type classification as shown in Figure 2. For
simplicity, TWEE concatenates the three types of embedding
representations together and feeds them into a convolutional
layer where multiple filter vectors slide over the embedding
sequence to detect features at different positions. The ReLU
function is employed on the detected feature maps to do
the nonlinear transformations. With n filters, TWEE ob-
tains a successive high-order window representation, which
concatenates the feature maps of n filters by column. A
max-pooling is applied on the representation to select the
most important features. Then LSTM [19] is employed
for sequential processing. In the LSTM layer, a range of
repeated modules for each time step are defined. Namely, at
each time step, the output of the module is a function of the
old hidden state and the input of the current time step.

The output is controlled by a set of gates at the current
time step, including the forget gate, the input gate and the
output gate. These gates collectively decide how to update
the current memory cell and the current hidden state. After
the LSTM layer is processed, the output of the hidden state at
the last time step of LSTM is fed into a fully connected layer
for a compact representation of a question. Then a prediction
layer using softmax is on the top of the fully connected layer.
The cross entropy loss is calculated to make classifications
on question types. Back propagations are made at each epoch
for the optimal solution of the TWEE framework.

IV. EXPERIMENTS

In this section, we report extensive experiments to evalu-
ate the proposed TWEE framework.

A. Datasets and Experimental Setup

Two datasets are used in the experiment for the question
classification. One is a Chinese medical QA dataset on how
patients with diabetes or hypertensions manage daily life.
The other dataset is the frequently used TREC dataset [20]
for factoid question type classification. Our experiments
show that TWEE perform well in both the Medical QA
dataset (Chinese) and the Trec dataset (English). We should
also explain that the medical QA dataset focuses on the
specific topic of diseases while the TREC dataset is more
general with diverse topics.

For the medical QA dataset, we aim at classifying the
questions into three types, i.e.,“yes-no”, “selection” and
“description”. We collected a total of 100,024 questions and
labeled their types by three domain experts with 99% of
inter-annotator agreements. A popular text segmentation tool
Jieba 1 is used to tokenize the questions and detect entities.
The total number of tokens is 37,875. Since the disease
related entities are the most important for the medical
QA dataset, we map the recognized entities with several
medical knowledge resources. The embeddings of entity-
related information are trained with random initialization in
skip-gram. The word embeddings are initialized with the 300
dimensional pretrained vector representations learned from
a large Chinese medical corpus via the GloVe model [21].

For the TREC dataset, there are 5,952 questions with
9,592 words. The questions are divided into 6 categories,
including “human”, “entity”, “location”, “description”, “ab-
breviation” and “numeric”. The support verbs and lexical
answer types are considered as entities for the TREC dataset.
They are extracted from the questions and mapped with
WordNet 2. The embeddings of entity-related information
are also trained with skip-gram. The word embeddings are
initialized with the 300 dimensional pretrained vectors 3

from the Common Crawl of 840 billion tokens and 2.2

1https://github.com/fxsjy/jieba
2https://wordnet.princeton.edu/
3https://nlp.stanford.edu/projects/glove/

https://github.com/fxsjy/jieba
https://wordnet.princeton.edu/
https://nlp.stanford.edu/projects/glove/


Table II
STATISTICS OF THE DATASETS, WHERE WE USE STANDARD DIVISION OF DATA INTO TRAINING, VALIDATION AND TESTING SETS. CHINESE MEDICAL
QA DATASET AND TREC HAVE QUITE DIFFERENT DISTRIBUTIONS IN WORDS (37,875 VS 9592 WORDS) AND ENTITIES (20 VS 2400 ENTITY TYPES)

Datasets #Classes #Questions #Training #Validation #Testing #Words #Entity Types

Chinese medical QA 3 100,024 70,130 10,045 20,039 37,875 20
TREC 6 5,952 5,000 452 500 9,592 2,400

million vocabularies. The statistics of the datasets are sum-
marized in Table II.

In the experiment, we test the embedding dimensions
ranging from 50 to 300. TWEE achieves the best perfor-
mance when the embedding size is 50 and 100 for the TREC
and medical QA datasets, respectively. The number of topics
is set as 10 for the TREC dataset and 7 for the medical
QA dataset. The regularization parameter γ is set to 0.01
for both datasets. The sparsity parameter ρ and the topic
sparsity parameter θ are both set to 0.05 in the experiment.
The weights α for the sparsity term and β for the topic
guidance term are both set to 0.1.

B. Experimental Results

The results for the medical QA dataset are reported in
Table III. For comparisons, we ran two models (CNN and
LSTM based) [22] after making little adaptation for question
classification to get two groups of results as seen in the
first two rows. In Table III, From the fourth row to the
end, representation learning for words are obtained with
sparse autoencoder (SAE), topic sparse autoencoder (TSAE),
integration of TSAE and skip-gram word embedding and
finally our proposed TWEE with the integration of TSAE,
skip-gram WV and entity embedding (EE) respectively
(TSAE+WV+EE+CNN-LSTM). We make use of CNN and
CNN-LSTM to train the classifiers to show how much dif-
ference between CNN and CNN-LSTM can bring under the
context of TSAE. The results show a few trends: topic sparse
autoencoder achieves better results than sparse autoencoder;
the integration of TSAE and WV boosts the performance;
the propose TWEE with the integration of TSAE, WV and
entity embedding further improves the classification results.

Table III
THE PERFORMANCE ON THE MEDICAL QA DATASET. WE FOCUS ON

DEEP LEARNING METHODS PLUS DIFFERENT WORD VECTORS AIMING
AT HIGHLIGHTING THE EFFECTIVENESS OF OUR PROPOSED TSAE

METHODS. IT IS CLEAR TO SEE THE INCREMENTAL TREND.

Model Acc (%) Pre (%) Rec (%) F1 (%)

WV+CNN 92.0 91.5 92.2 91.8
WV+CNN-LSTM 94.1 93.3 92.9 93.1
AE+CNN 51.0 49.2 47.3 48.2
SAE+CNN 78.2 75.5 77.6 76.5
TSAE+CNN 84.5 83.3 84.2 83.7
TSAE+CNN-LSTM 86.0 84.5 85.4 84.9
TSAE+WV+CNN-LSTM 95.0 94.2 93.3 93.7
TWEE 96.2 95.4 96.5 95.4

The results for TREC are reported in Table IV, where
e compare TWEE with a variety of models. Traditional
approaches construct a classifier over a large number of
manually engineered features and hand-coded resources.
The best classification results with that approach comes
from [23]. They trained an SVM classifier with unigrams,
bigrams, wh-word, head word, POS tags and hypernyms,
WordNet synsets and 60 hand-coded rules and achieved
95% accuracy. Besides SVM, we list the classification
performance of other baselines related to CNN or LSTM
in Table IV. TWEE consistently outperforms all published
neural baseline models. Our result is also better than that
of the state-of-the-art SVM that depends on highly engi-
neered features. Such engineered features not only demands
human laboring but also leads to the error propagation in
the existing NLP tools. With the ability of automatically
learning semantic sentence representations, our framework
does not require any human-designed features and has a
better scalability. Without doubt, entity embedding plays an
essential role for the final win-out over that of SVM.

Table IV
THE PERFORMANCE ON THE TREC DATA. BESIDES HIGHLIGHTING

EFFECTIVENESS OF PROPOSED TSAE METHOD, WE MADE
COMPARISONS WITH RESULTS WHICH ARE AVAILABLE FROM

REFERENCED PAPERS.

Model Acc (%)

SVM [23] 95.0
DCNN [2] 93.0
Group Sparse CNNs [24] 94.2
D-LSTM [19] 94.8
WV+CNN 91.8
WV+CNN-LSTM 93.6
AE+CNN 65.5
SAE+CNN 83.4
TSAE+CNN 87.5
TSAE+CNN-LSTM 92.0
TSAE+WV+CNN-LSTM 94.0
TWEE 96.5

C. Parameter Analysis

We provide a study on how the number of topics influence
the performance of the proposed TWEE framework. Intu-
itively speaking, questions belonging to the same category
focus on a certain topic. Therefore, the number of topics



should be larger than or equal to the number of classes.
Figure 5 shows the classification accuracy of TWEE on the
TREC and medical QA datasets. For the TREC dataset, we
analyze the results with topic numbers of 4, 6, 8, 10 and 12.
The best performance is achieved when the topic number is
10. Since the number of classes is 6 for TREC, 10 topics
will help distinguish the semantic information from different
classes. On the other hand, the performance of TWEE drops
when the topic number is larger than 10, which in part
reflects the fact that questions are usually short texts. The
longest sentence in TREC has only 37 words. More topics
cannot help TWEE learn discriminative embeddings from
short sentences. Therefore, in the experiment, we set the
number of topics as 10 for the TREC dataset.

For the medical QA dataset, we select the number of
topics from 3, 5, 7 and 9. Figure 5 (right panel) shows the
accuracy of TWEE, which shows that the performance is
best when the number of topics is 7, which is larger than 3,
the number of classes in the medical QA dataset. Thus in
the experiment, we set 7 for the number of topics.
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Figure 5. Performance with different topic numbers. As we see, for both
the TREC dataset and Medical QA dataset, best performances come from
some topic numbers which are higher than the number of classes. This
shows some correlations between the class numbers and the topic numbers

V. RELATED WORK

The main theme of this work is to improve the ques-
tion classification with representation learning. Therefore,
the relevant works involve the following two aspects: (1)
representation learning; and (2) question classification.

A. Representation Learning

Representation learning has been intensively studied and
plays an important role for diverse machine learning tasks,
classification in particular. The success of deep learning, to
a large degree, lies in its embedded capacity of doing repre-
sentation learning. Word embedding, for example, resolved
the issues that deep learning is a framework suitable for con-
tinuous data, like image processing while NLP is internally
a task of handling discrete data. However, representation
learning of words can be further improved if we can usher in
the combinations of global context and local context. Word
embedding based on skip gram or continuous bag of words
is local context focused learning while topic modeling or

autoencoder aims at global context learning. There is no
existing work which incorporates global topics and local
context for representation learning in question classification.

Topic modeling: As illustrated in Subsection III-A, the
fourth term of LTSAE(W,b) in TSAE aims at adding
topic sparsity to autoencoder. In theory, topic sparsity can
be derived from diverse clustering results. However, the
selection of clustering methods plays an important role in
guaranteeing the model robustness. LDA, as a representative
of topic modeling, is a powerful unsupervised tool to reveal
the latent semantic structure from a text corpus based on
its global document-word context information. As a soft-
clustering model, LDA does not seek a hard clustering on
the documents and the words. Instead, it only assigns topic
distributions to them. In the process of back-propagation,
LDA generates more suitable clustering constraints to SAE.

B. Question Classification

The traditional methods for question classification basi-
cally make use of linear classifiers and preprocessed feature
vectors to construct classification models. The more recent
algorithms construct neural networks, with lower layers
focusing on feature extractions and representation learning
and the final layer for classification.

Traditional Question Classification: Traditional methods
to question classification, like any other traditional machine
learning tasks, heavily depend on feature engineering and
hand-coded rules before adopting some machine learning
models, such as logistic regression or support vector ma-
chines [23] or boosted trees [25]. Even though such ap-
proaches can construct highly accurate classifiers, they are
not robust to unseen datasets. In order to extract discrimi-
native features, those approaches make full use of external
resources, including domain ontologies and relevant knowl-
edge graphs. For example, wordNet, the lexical database for
English, has been used for synset extractions in the question
classification for TREC dataset [26].

Deep Learning Based Question Classification: The first
success in deep learning based question classification came
from the work of [27], where pre-trained word vectors are
fed into a CNN models. As it is known, CNN-based question
classification uses linear feature mapping in its convolution
operation. Group sparse CNNs [24] is proposed for question
classification by making use of information from answer set.
CNNs are good at capturing local invariant regularities, but
it has the limitation of ignoring word sequence information.
On the contrary, recurrent neural network (RNN) represents
word sequence with their ordering information. Therefore,
quite a few RNN-based works fill this gap. Due to the
superior ability to memorize long distance dependencies,
LSTMs have been applied to extract the sentence-level
continuous representation [28]. The combination of CNNs
and LSTMs achieves good performances [29].



VI. CONCLUSION

We propose TWEE for the task of question classification,
by integrating topic modeling, word embedding and entity
embedding into a unified neural network framework. The
work is inspired by: (1) Topic modeling often captures
meaningful semantic structures from the question corpus.
Such global topical information are helpful for question rep-
resentations; (2) Entities extracted from question themselves
provide more auxiliary information for short texts from a
local viewpoint. In TWEE, we introduce a novel topic sparse
autoencoder to incorporate discriminative topics into the
representation learning of questions. A sparsity constraint
is added to ensure the most discriminative representations
are related to question topics. In addition, both words and
entities are embedded into the network to help learn a com-
prehensive question representation. Our extensive empirical
experiments on two representative datasets clearly demon-
strate that TWEE outperforms the state-of-the-art methods.
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