
Speeding Up Neural Machine Translation Decoding by Cube Pruning

Wen Zhang1,2 Liang Huang3,4 Yang Feng1,2 Lei Shen1,2 Qun Liu5,1

1Key Lab. of Intelligent Information Processing, CAS Institute of Computing Technology
2University of Chinese Academy of Sciences, Beijing, China

{zhangwen,fengyang,shenlei17z}@ict.ac.cn

3Oregon State University, Corvallis, OR, USA 4Baidu Research, Sunnyvale, CA, USA
liang.huang.sh@gmail.com

5Huawei Noah’s Ark Lab, Hong Kong, China
qun.liu@huawei.com

Abstract
Although neural machine translation has
achieved promising results, it suffers from
slow translation speed. The direct conse-
quence is that a trade-off has to be made be-
tween translation quality and speed, thus its
performance cannot come into full play. We
apply cube pruning, a popular technique to
speed up dynamic programming, into neural
machine translation to speed up the transla-
tion. To construct the equivalence class, simi-
lar target hidden states are combined, leading
to less RNN expansion operations on the target
side and less softmax operations over the large
target vocabulary. The experiments show that,
at the same or even better translation quality,
our method can translate faster compared with
naive beam search by 3.3× on GPUs and 3.5×
on CPUs.

1 Introduction

Neural machine translation (NMT) has shown
promising results and drawn more attention re-
cently (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014b; Bahdanau et al., 2015; Gehring et al.,
2017a,b; Vaswani et al., 2017). A widely used ar-
chitecture is the attention-based encoder-decoder
framework (Cho et al., 2014b; Bahdanau et al.,
2015) which assumes there is a common seman-
tic space between the source and target language
pairs. The encoder encodes the source sentence
to a representation in the common space with the
recurrent neural network (RNN) (Hochreiter and
Schmidhuber, 1997) and the decoder decodes this
representation to generate the target sentence word
by word. To generate a target word, a probabil-
ity distribution over the target vocabulary is drawn
based on the attention over the entire source se-
quence and the target information rolled by an-
other RNN. At the training time, the decoder is

forced to generate the ground truth sentence, while
at inference, it needs to employ the beam search
algorithm to search through a constrained space
due to the huge search space.

Even with beam search, NMT still suffers from
slow translation speed, especially when it works
not on GPUs, but on CPUs, which are more com-
mon practice. The first reason for the inefficiency
is that the generation of each target word requires
extensive computation to go through all the source
words to calculate the attention. Worse still, due
to the recurrence of RNNs, target words can only
be generated sequentially rather than in parallel.
The second reason is that large vocabulary on tar-
get side is employed to avoid unknown words
(UNKs), which leads to a large number of nor-
malization factors for the softmax operation when
drawing the probability distribution. To accelerate
the translation, the widely used method is to trade
off between the translation quality and the decod-
ing speed by reducing the size of vocabulary (Mi
et al., 2016a) or/and the number of parameters,
which can not realize the full potential of NMT.

In this paper, we borrow ideas from phrase-
based and syntax-based machine translation where
cube pruning has been successfully applied to
speed up the decoding (Chiang, 2007; Huang
and Chiang, 2007). Informally, cube pruning
“coarsens” the search space by clustering similar
states according to some equivalence relations. To
apply this idea to NMT, however, is much more
involved. Specifically, in the process of beam
search, we cluster similar target hidden states to
construct equivalence classes, the three dimen-
sions of which are target words in the target vocab-
ulary, part translations retained in the beam search
and different combinations of similar target hid-
den states, respectively. The clustering operation
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can directly decrease the number of target hidden
states in the following calculations, together with
cube pruning, resulting in less RNN expansion op-
erations to generate the next hidden state (related
to the first reason) and less softmax operations
over the target vocabulary (related to the second
reason). The experiment results show that, when
receiving the same or even better translation qual-
ity, our method can speed up the decoding speed
by 3.3× on GPUs and 3.5× on CPUs.

2 Background

The proposed strategy can be adapted to optimize
the beam search algorithm in the decoder of vari-
ous NMT models. Without loss of generality, we
take the attention-based NMT (Bahdanau et al.,
2015) as an example to introduce our method. In
this section, we first introduce the attention-based
NMT model and then the cube pruning algorithm.

2.1 The Attention-based NMT Model

The attention-based NMT model follows the
encoder-decoder framework with an extra atten-
tion module. In the following parts, we will intro-
duce each of the three components. Assume the
source sequence and the observed translation are
x = {x1, · · · , x|x|} and y = {y∗1, · · · , y∗|y|}.

Encoder The encoder uses a bidirectional GRU
to obtain two sequences of hidden states. The fi-
nal hidden state of each source word is got by con-
catenating the corresponding pair of hidden states
in those sequences. Note that exi is employed to
represent the embedding vector of the word xi.

−→
h i =

−−−→
GRU

(
exi ,
−→
h i−1

)
(1)

←−
h i =

←−−−
GRU

(
exi ,
←−
h i+1

)
(2)

hi =
[−→
h i;
←−
h i

]
(3)

Attention The attention module is designed to
extract source information (called context vector)
which is highly related to the generation of the
next target word. At the j-th step, to get the con-
text vector, the relevance between the target word
y∗j and the i-th source word is firstly evaluated as

rij = vTa tanh (Wasj−1 +Uahi) (4)

Then, the relevance is normalized over the source
sequence, and all source hidden states are added

weightedly to produce the context vector.

αij =
exp (rij)∑|x|

i′=1 exp
(
ri′j
) ; cj =

∑|x|

i=1
αijhi (5)

Decoder The decoder also employs a GRU to
unroll the target information. The details are de-
scribed in Bahdanau et al. (2015). At the j-th de-
coding step, the target hidden state sj is given by

sj = f
(
ey∗j−1

, sj−1, cj

)
(6)

The probability distribution Dj over all the words
in the target vocabulary is predicted conditioned
on the previous ground truth words, the context
vector cj and the unrolled target information sj .

tj = g
(
ey∗j−1

, cj , sj

)
(7)

oj = Wotj (8)

Dj = softmax (oj) (9)

where g stands for a linear transformation, Wo is
used to map tj to oj so that each target word has
one corresponding dimension in oj .

2.2 Cube Pruning
The cube pruning algorithm, proposed by Chiang
(2007) based on the k-best parsing algorithm of
Huang and Chiang (2005), is actually an accel-
erated extension based on the naive beam search
algorithm. Beam search, a heuristic dynamic pro-
gramming searching algorithm, explores a graph
by expanding the most promising nodes in a lim-
ited set and searches approximate optimal results
from candidates. For the sequence-to-sequence
learning task, given a pre-trained model, the
beam search algorithm finds a sequence that ap-
proximately maximizes the conditional probabil-
ity (Graves, 2012; Boulanger-Lewandowski et al.,
2013). Both Sutskever et al. (2014) and Bahdanau
et al. (2015) employed the beam search algorithm
into the NMT decoding to produce translations
with relatively larger conditional probability with
respect to the optimized model parameters. Re-
markably, Huang and Chiang (2007) successfully
applied the cube pruning algorithm to the decod-
ing of SMT. They found that the beam search al-
gorithm in SMT can be extended, and they uti-
lized the cube pruning and some variants to op-
timize the search process in the decoding phase
of phrase-based (Och and Ney, 2004) and syntax-
based (Chiang, 2005; Galley et al., 2006) systems,
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Figure 1: Cube pruning in SMT decoding. (a): the values in the grid denote the negative log-likelihood
cost of the terminal combinations on both dimensions, and each dimension denotes a translation candi-
date in this example; (b)-(d): the process of popping the best candidate of top three items.

GPU CPU
Calculation Units Time(s) Percentage Time(s) Percentage

Eq. (6): sj = f(ey∗j−1
, sj−1, cj) 551.07 75.73% 1370.92 19.42%

Eq. (7): tj = g(ey∗j−1
, cj , sj) 88.25 12.13% 277.76 3.93%

Eq. (8): oj = Wotj 25.33 3.48% 2342.53 33.18%
Eq. (9): Dj = softmax(oj) 63.00 8.66% 3069.25 43.47%

Table 1: Time cost statistics for decoding the whole MT03 testset on GPUs and CPUs with beam size 10.

which decreased a mass of translation candidates
and achieved a significant speed improvement by
reducing the size of complicated search space,
thereby making it possible to actualize the thought
of improving the translation performance through
increasing the beam size.

In the traditional SMT decoding, the cube prun-
ing algorithm aims to prune a great number of
partial translation hypotheses without computing
and storing them. For each decoding step, those
hypotheses with the same translation rule are
grouped together, then the cube pruning algorithm
is conducted over the hypotheses. We illustrate the
detailed process in Figure 1.

3 NMT Decoder with Cube Pruning

3.1 Definitions

We define the related storage unit tuple of the
i-th candidate word in the j-th beam as nij =

(cij , s
i
j , y

i
j , bp

i
j), where cij is the negative log-

likelihood (NLL) accumulation in the j-th beam,
sij is the decoder hidden state in the j-th beam, yij
is the index of the j-th target word in large vocab-
ulary and bpij is the backtracking pointer for the
j-th decoding step. Note that, for each source sen-
tence, we begin with calculating its encoded rep-
resentation and the first hidden state s00 in decoder,

then searching from the initial tuple (0.0, s00, 0, 0)
existing in the first beam1.

It is a fact that Equation (9) produces the prob-
ability distribution of the predicted target words
over the target vocabulary V . Cho et al. (2014b)
indicated that whenever a target word is generated,
the softmax function over V computes probabil-
ities for all words in V , so the calculation is ex-
pensive when the target vocabulary is large. As
such, Bahdanau et al. (2015) (and many others)
only used the top-30k frequent words as target
vocabulary, and replaced others with UNK. How-
ever, the final normalization operation still brought
high computation complexity for forward calcula-
tions.

3.2 Time Cost in Decoding

We conducted an experiment to explore how long
each calculation unit in the decoder would take.
We decoded the MT03 test dataset by using naive
beam search with beam size of 10 and recorded
the time consumed in the computation of Equation
(6), (7), (8) and (9), respectively. The statistical
results in Table 1 show that the recurrent calcula-
tion unit consumed the most time on GPUs, while

1The initial target word index y00 equals to 0, which actu-
ally corresponds to the Beginning Of Sentence (BOS) token
in target vocabulary.



the softmax computation also took lots of time.
On CPUs, the most expensive computational time
cost was caused by the softmax operation over the
entire target vocabulary2. In order to avoid the
time-consuming normalization operation in test-
ing, we introduced self-normalization (denoted as
SN) into the training.

3.3 Self-normalization

Self-normalization (Devlin et al., 2014) was de-
signed to make the model scores which are pro-
duced by the output layer be approximated by
the probability distribution over the target vocab-
ulary without normalization operation. According
to Equation (9), for an observed target sentence
y = {y∗1, · · · , y∗|y|}, the Cross-Entropy (CE) loss
could be written as

Lθ = −
|y|∑
j=1

logDj [y∗j ]

= −
|y|∑
j=1

log
exp

(
oj [y

∗
j ]
)

∑
y′∈V exp (oj [y′])

=

|y|∑
j=1

log
∑
y′∈V

exp
(
oj [y

′]
)
− oj [y∗j ]

(10)

where oj is the model score generated by Equa-
tion (8) at the j-th step, we marked the softmax
normalizer

∑
y′∈V exp (oj [y

′]) as Z.
Following the work of Devlin et al. (2014), we

modified the CE loss function into

Lθ = −
|y|∑
j=1

(
logDj [y∗j ]− α(logZ − 0)2

)
= −

|y|∑
j=1

(
logDj [y∗j ]− α log2 Z

) (11)

The objective function, shown in Equation (11),
is optimized to make sure logZ is approximated
to 0, equally, make Z close to 1 once it converges.
We chose the value of α empirically. Because the
softmax normalizer Z is converged to 1 in infer-
ence, we just need to ignore Z and predict the tar-
get word distribution at the j-th step only with oj :

Dj = oj (12)

3.4 Cube Pruning

Table 1 clearly shows that the equations in the
NMT forward calculation take lots of time. Here,
according to the idea behind the cube pruning
algorithm, we tried to reduce the time of time-
consuming calculations, e.g., Equation (6), and
further decrease the search space by introducing
the cube pruning algorithm.

3.4.1 Integrating into NMT Decoder
Extended from the naive beam search in the NMT
decoder, cube pruning, treated as a pruning al-
gorithm, attempts to reduce the search space and
computation complexity by merging some simi-
lar items in a beam to accelerate the naive beam
search, keeping the 1-best searching result almost
unchanged or even better by increasing the beam
size. Thus, it is a fast and effective algorithm to
generate candidates.

Assume that T restores the set of the finished
translations. For each step in naive beam search
process, beamsize−|T| times forward calcula-
tions are required to acquire beamsize−|T| prob-
ability distributions corresponding to each item in
the previous beam (Bahdanau et al., 2015). while
for each step in cube pruning, in terms of some
constraints, we merge all similar items in the pre-
vious beam into one equivalence class (called a
sub-cube). The constraint we used here is that
items being merged in the previous beam should
have the same target words. Then, for the sub-
cube, only one forward calculation is required to
obtain the approximate predictions by using the
loose hidden state. Elements in the sub-cube are
sorted by previous accumulated NLL along the
columns (the first dimension of beam size) and
by the approximate predictions along the rows
(the second dimension of vocabulary size). Af-
ter merging, one beam may contain several sub-
cubes (the third dimension), we start to search
from item in the upper left corner of each sub-
cube, which is the best one in the sub-cube, and
continue to spread out until enough candidates are
found. Once a item is selected, the exact hidden
state will be used to calculate its exact NLL.

Through all above steps, the frequency of for-
ward computations decreases. We give an exam-
ple to dive into the details in Figure 2.

Assume that the beam size is 4. Given the 10th

2Note that, identical to Bahdanau et al. (2015), we only
used 30k as the vocabulary size.
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Figure 2: Cube pruning diagram in beam search process during NMT decoding. We only depict the
accumulated NLL and the word-level candidate for each item in the beam (in the bracket). Assume the
beam size is 4, we initialize a heap for the current step, elements in the 10th beam are merged into two
sub-cubes C1 and C2 according to the previous target words; (a) the two elements located in the upper-
left corner of the two sub-cubes are pushed into the heap; (b) minimal element (6.2, 674) is popped out,
meanwhile, its neighbor (8.6, 8357) is pushed into the heap; (c) minimal element (7.3, 8) is popped out,
its right-neighbor (7.7, 880) and lower-neighbor (7.8, 8) are pushed into the heap; (d) minimal element
(7.7, 880) is popped out, its right-neighbor (9.8, 29) and down-neighbor (8.2, 880) are pushed into the
heap; (e) minimal element (7.8, 8) is popped out, then its down-neighbor (8.1, 8) is pushed into the heap.
4 elements have been popped out, we use them to construct the 11th beam. Yellow boxes indicate the
4-best word-level candidates to be pushed into the 11th beam.

beam, we generate the 11th beam. Different from
the naive beam search, we first group items in the
previous beam into two sub-cubes C1 and C2 in
term of the target word yj−1. As shown in part
(a) of Figure 2, (6.1, 433) constructs the sub-cube
C1; (6.5, 35), (7.0, 35) and (7.3, 35) are put to-
gether to compose another sub-cube C2. Items in
part (a) are ranked in ascending order along both
row and column dimension according to the ac-
cumulated NLL. For each sub-cube, we use the
first state vector in each sub-cube as the approx-
imate one to produce the next probability distribu-
tion and the next state. At beginning, each upper-
left corner element in each sub-cube is pushed into
a minimum heap, after popping minimum element
from the heap, we calculate and restore the exact
NLL of the element, then push the right and lower
ones alongside the minimum element into heap.
At this rate, the searching continues just like the
“diffusion” in the sub-cube until 4 elements are
popped, which are ranked in terms of their exact
NLLs to construct the 11th beam. Note that once
an element is popped, we calculate its exact NLL.
From the step (e) in Figure 2, we can see that 4

elements have been popped from C1 and C2, and
then ranked in terms of their exact NLLs to build
the 11th beam.

We refer above algorithm as the naive cube
pruning algorithm (called NCP)

3.4.2 Accelerated Cube Pruning
In each step of the cube pruning algorithm, after
merging the items in the previous beam, some sim-
ilar candidates are grouped together into one or
more sub-cube(s). We also try to predict the ap-
proximate distribution for each sub-cube only ac-
cording to the top-1 state vector (the first row in
the sub-cube in Figure 2), and select next candi-
dates after ranking. The predicted probability dis-
tribution will be very similar to that of the naive
beam search. Besides, Each sub-cube only re-
quires one forward calculation. Thus, it could save
more search space and further reduce the computa-
tion complexity for the decoder. Unlike the naive
cube pruning algorithm, accelerated cube pruning
pops each item, then still use the approximate NLL
instead of the exact one. We denote this kind of
accelerated cube pruning algorithm as ACP.



4 Experiments

We verified the effectiveness of proposed cube
pruning algorithm on the Chinese-to-English (Zh-
En) translation task.

4.1 Data Preparation
The Chinese-English training dataset consists of
1.25M sentence pairs3. We used the NIST 2002
(MT02) dataset as the validation set with 878 sen-
tences, and the NIST 2003 (MT03) dataset as the
test dataset, which contains 919 sentences.

The lengths of the sentences on both sides were
limited up to 50 tokens, then actually 1.11M sen-
tence pairs were left with 25.0M Chinese words
and 27.0M English words. We extracted 30k most
frequent words as the source and target vocabular-
ies for both sides.

In all the experiments, case-insensitive 4-gram
BLEU (Papineni et al., 2002) was employed
for the automatic evaluation, we used the script
mteval-v11b.pl4 to calculate the BLEU score.

4.2 System
The system is an improved version of attention-
based NMT system named RNNsearch (Bahdanau
et al., 2015) where the decoder employs a con-
ditional GRU layer with attention, consisting of
two GRUs and an attention module for each step5.
Specifically, Equation (6) is replaced with the fol-
lowing two equations:

s̃j = GRU1(ey∗j−1
, sj−1) (13)

sj = GRU2(cj , s̃j) (14)

Besides, for the calculation of attention in Equa-
tion (4), sj−1 is replaced with s̃j−1. Other compo-
nents of the system keep the same as RNNsearch.
Also, we re-implemented the beam search algo-
rithm as the naive decoding method, and naive
searching on the GPU and CPU server were con-
ducted as two baselines.

4.3 Training Details
Specially, we employed a little different settings
from Bahdanau et al. (2015): Word embedding
sizes on both sides were set to 512, all hidden sizes

3These sentence pairs are mainly extracted from
LDC2002E18, LDC2003E07, LDC2003E14, Hansards por-
tion of LDC2004T07, LDC2004T08 and LDC2005T06

4
https://github.com/moses-smt/mosesdecoder/blob/

master/scripts/generic/mteval-v11b.pl
5
https://github.com/nyu-dl/dl4mt-tutorial/blob/

master/docs/cgru.pdf

in the GRUs of both encoder and decoder were
also set to 512. All parameter matrices, including
bias matrices, were initialized with the uniform
distribution over [−0.1, 0.1]. Parameters were up-
dated by using mini-batch Stochastic Gradient De-
scent (SGD) with batch size of 80 and the learning
rate was adjusted by AdaDelta (Zeiler, 2012) with
decay constant ρ=0.95 and denominator constant
ε=1e-6. The gradients of all variables whose L2-
norm are larger than a pre-defined threshold 1.0
were normalized to the threshold to avoid gradi-
ent explosion (Pascanu et al., 2013). Dropout was
applied to the output layer with dropout rate of
0.5. We exploited length normalization (Cho et al.,
2014a) strategy on candidate translations in beam
search decoding.

The model whose BLEU score was the high-
est on the validation set was used to do testing.
Maximal epoch number was set to 20. Training
was conducted on a single Tesla K80 GPU, it took
about 2 days to train a single NMT model on the
Zh-En training data. For self-normalization, we
empirically set α as 0.5 in Equation (11)6.

4.4 Search Strategies
We conducted experiments to decode the MT03
test dataset on the GPU and CPU server respec-
tively, then compared search quality and efficiency
among following six search strategies under differ-
ent beam sizes.

NBS-SN: Naive Beam Search without SN
NBS+SN: Naive Beam Search with SN
NCP-SN: Cube Pruning without SN
NCP+SN: Cube Pruning with SN
ACP-SN: Accelerated Cube Pruning without

SN
ACP+SN: Accelerated Cube Pruning with SN

4.5 Comparison of Average Merging Rate
We first give the definition of the Average Merging
Rate (denoted as AMR). Given a test dataset, we
counted the total word-level candidates (noted as
Nw) and the total sub-cubes (noted as Nc) during
the whole decoding process, then the AMR can be
simply computed as

m = Nw/Nc (15)

The MT03 test dataset was utilized to com-
pare the trends of the AMR values under all

6Following Devlin et al. (2014), we had tried 0.01, 0.1,
0.5 1.0 and 10.0 for the value of α, we found that 0.5 pro-
duced the best result.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v11b.pl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v11b.pl
https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf


Figure 3: AMR comparison on the MT03 test
dataset. Decoding the MT03 test dataset on a sin-
gle GeForce GTX TITAN X GPU server under the
different searching settings. y-axis represents the
AMR on the test dataset in the whole searching
process and x-axis indicates beam size. Unsurpris-
ingly, we got exactly the same results on the CPU
server, not shown here.

six methods. We used the pre-trained model
to translate the test dataset on a single GeForce
GTX TITAN X GPU server. Beam size varies
from 1 to 40, values are included in the set
{1, 2, 3, 4, 8, 10, 15, 18, 20, 30, 40}. For each
beam size, six different searching settings were ap-
plied to translate the test dataset respectively. The
curves of the AMRs during the decoding on the
MT03 test dataset under the proposed methods are
shown in Figure 3. Note that the AMR values of
NBS are always 1 whether there is SN or not.

Comparing the curves in the Figure 3, we could
observe that the naive beam search does not con-
duct any merging operation in the whole searching
process, while the average merging rate in the cube
pruning almost grows as the beam size increases.
Comparing the red curves to the blue ones, we can
conclude that, in any case of beam size, the AMR
of the accelerated cube pruning surpasses the ba-
sic cube pruning by a large margin. Besides, self-
normalization could produces the higher average
merging rate comparing to the counterpart without
self-normalization.

4.6 Comparison on the GPU Server

Intuitively, as the value of the AMR increases, the
search space will be reduced and computation ef-
ficiency improves. We compare the two proposed
searching strategies and the naive beam search in
two conditions (with self-normalization and with-
out self-normalization). Figure 4 demonstrates
the results of comparison between the proposed

searching methods and the naive beam search
baseline in terms of search quality and search effi-
ciency under different beam sizes.

By fixing the beam size and the dataset, we
compared the changing trend of BLEU scores for
the three distinct searching strategies under two
conditions. Without self-normalization, Figure 4a
shows the significant improvement of the search
speed, however the BLEU score drops about 0.5
points. We then equipped the search algorithm
with self-normalization. Figure 4b shows that the
accelerated cube pruning search algorithm only
spend about one-third of the time of the naive
beam search to achieve the best BLEU score with
beam size 30. Concretely, when the beam size is
set to be 30, ACP+SN is 3.3 times faster than the
baseline on the MT03 test dataset, and both per-
formances are almost the same.

4.7 Comparison on the CPU Server
Similar to the experiments conducted on GPUs,
we also translated the whole MT03 test dataset
on the CPU server by using all six search strate-
gies under different beam sizes. The trends of the
BLEU scores over those strategies are shown in
Figure 5.

The proposed search methods gain the similar
superiority on CPUs to that on GPUs, and the
decoding speed is obviously slower than that on
GPUs. From the Figure 5a, we can also clearly
see that, compared with the NBS-SN, NCP-SN
only speeds up the decoder a little, ACP-SN pro-
duces much more acceleration. However, when
we did not introduce self-normalization, the pro-
posed search methods will also result in a loss of
about 0.5 BLEU score. The self-normalization
made the ACP strategy faster than the baseline
by about 3.5×, in which condition the NBS+SN
got the best BLEU score 38.05 with beam size
30 while the ACP+SN achieved the highest score
38.12 with beam size 30. The results could be ob-
served in Figure 5b. Because our method is on the
algorithmic level and platform-independent, it is
reasonable that the proposed method can not only
perform well on GPUs, but also accelerate the de-
coding significantly on CPUs. Thus, the acceler-
ated cube pruning with self-normalization could
improve the search quality and efficiency stably.

4.8 Decoding Time
In this section, we only focus on the consuming
time of translating the entire MT03 test dataset.



(a) BLEU vs. decoding speed, without self-normalization (b) BLEU vs. decoding speed, with self-normalization

Figure 4: Comparison among the decoding results of the MT03 test dataset on the single GeForce GTX
TITAN X GPU server under the three different searching settings. y-axis represents the BLEU score of
translations, x-axis indicates that how long it will take for translating one word on average.

(a) BLEU vs. decoding speed, without self-normalization (b) BLEU vs. decoding speed, with self-normalization

Figure 5: Comparison among the decoding results of the MT03 test dataset on the single AMD
Opteron(tm) Processor under the three different searching settings. y-axis represents the BLEU score
of translations, x-axis indicates that how long it will take for translating one word on average.

Under the two conditions, we calculated the times
spent on translating the entire test dataset for dif-
ferent beam sizes, then draw the curves in Figure
6 and 7. From the Figure 6a and 6b, we could
observe that accelerated cube pruning algorithm
speeds up the decoding by about 3.8× on GPUs
when the beam size is set to 40. Figure 7a and
7b show that the accelerated cube pruning algo-
rithm speeds up the decoding by about 4.2× on
CPU server with the beam size 40.

5 Related Work

Recently, lots of works devoted to improve the ef-
ficiency of the NMT decoder. Some researchers
employed the way of decreasing the target vocabu-
lary size. Jean et al. (2015) improved the decoding
efficiency even with the model using a very large
target vocabulary but selecting only a small sub-
set of the whole target vocabulary. Based on the
work of Jean et al. (2015), Mi et al. (2016b) intro-

duced sentence-level and batch-level vocabularies
as a very small subset of the full output vocabu-
lary, then predicted target words only on this small
vocabulary, in this way, they only lost 0.1 BLEU
points, but reduced target vocabulary substantially.

Some other researchers tried to raise the effi-
ciency of decoding from other perspectives. Wu
et al. (2016) introduced a coverage penalty α and
length normalization β into beam search decoder
to prune hypotheses and sped up the search pro-
cess by 30%∼40% when running on CPUs. Hu
et al. (2015) used a priority queue to choose the
best hypothesis for the next search step, which
drastically reduced search space.

Inspired by the works of Mi et al. (2016b)
and Huang and Chiang (2007), we consider prun-
ing hypothesis in NMT decoding by using cube
pruning algorithm, but unlike traditional SMT de-
coding where dynamic programming was used to
merge equivalent states (e.g., if we use phrase-



(a) Time spent on translating MT03 test dataset for different
beam sizes without self-normalization

(b) Time spent on translating MT03 test dataset for different
beam sizes with self-normalization

Figure 6: Comparison among the decoding results of the MT03 test dataset on the single GeForce GTX
TITAN X GPU server under the three different searching settings. y-axis represents the BLEU score of
translations, x-axis indicates that how long it will take for translating one word on average.

(a) Time spent on translating MT03 test dataset for different
beam sizes without self-normalization

(b) Time spent on translating MT03 test dataset for different
beam sizes with self-normalization

Figure 7: Comparison among the decoding results of the MT03 test dataset on the single AMD
Opteron(tm) Processor under the three different searching settings. y-axis represents the BLEU score
of translations, x-axis indicates that how long it will take for translating one word on average.

based decoding with trigram language model, we
can merge states with same source-side coverage
vector and same previous two target words). How-
ever, this is not appropriate for current NMT de-
coding, since the embedding of the previous target
word is used as one input of the calculation unit of
each step in the decoding process, we could group
equivalence classes containing the same previous
target word together.

6 Conclusions

We extended cube pruning algorithm into the de-
coder of the attention-based NMT. For each step
in beam search, we grouped similar candidates
in previous beam into one or more equivalence
class(es), and bad hypotheses were pruned out.
We started searching from the upper-left corner in
each equivalence class and spread out until enough

candidates were generated. Evaluations show that,
compared with naive beam search, our method
could improve the search quality and efficiency to
a large extent, accelerating the NMT decoder by
3.3× and 3.5× on GPUs and CPUs, respectively.
Also, the translation precision could be the same
or even better in both situations. Besides, self-
normalization is verified to be helpful to accelerate
cube pruning even further.
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