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Abstract—Knowledge graphs (KGs) have been widely used
to represent relationships among entities, while KGs cannot
capture new relationships between entities emerging along time.
Since news often provides the latest information regarding
the new entities and relationships, there is an opportunity to
connect emerging relationships from news timely. However, it is
a challenging task due to the source heterogeneity of structured
KGs and unstructured news texts. In order to address the issue,
we propose a tensor-based framework to capture the complex
interactions among multiple types of relations, entities and
text descriptions. We further develop an efficient Text-Aware
MUlti-RElational learning method (TAMURE) that can learn
the embedding representations of entities and relation types
from both KGs and news, by jointly factorizing the interaction
parameters. Furthermore, the complexity of TAMURE is linear
in the number of parameters, which makes it suitable to
large-scale KGs and news texts. Extensive experiments via
TensorFlow demonstrate the effectiveness of the proposed
TAMURE model compared with nine state-of-the-art methods
on real-world datasets.

Keywords-Information Extraction; Emerging Relationships;
Tensor Factorization; Embedding

I. INTRODUCTION

Knowledge graphs (KGs), such as Freebase1 and DB-
pedia2, have been widely used to represent relationships
between entities in the form of triplets (h, r, t). Here h
and t are two entities (head and tail) and r is a relation.
Each triplet is a relation instance3. Entities can be persons,
organizations, locations, etc., and examples of relations can
be person-affiliation and organization-location. The KGs
with relations and entities are useful sources for many real-
word applications in information extraction, natural language
understanding and information retrieval. However, current
KGs have limited coverage of real-world relationships [1],
especially for new entities that arise with new relationships
emerging over time [2, 3] .

Fortunately, with the latest information in news, there is
an opportunity to connect emerging relationships from news
timely. Consider Figure 1 as an example, where an emerg-
ing relationship appears when the publisher “Walt Disney

1https://www.freebase.com/
2http://wiki.dbpedia.org/
3For simplicity, a relation means a relation type in KGs, and a relation-

ship means a triple instance (h, r, t).
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Figure 1. An example of emerging relationships.

Studios” produces a new movie “Zootopia”. Although there
is no information regarding Zootopia in KGs, many pieces
of news are talking about this new movie, the publisher
and the directors. Detecting such emerging relationships has
many benefits in practice. For example, the current KGs can
be expanded and updated with emerging relationships. In
addition, emerging relationships can help news related tasks,
such as news retrieval and ranking, event detection, etc..

However, learning emerging relationships from text de-
scriptions is a challenging task due to the source hetero-
geneity of structured KGs and unstructured news texts.
Although many research works try to mitigate the problem of
knowledge sparsity in KGs [4–9], the main focus of these
works is to utilize the structural information to fill in the
missing relationships in KGs. For instance, Path Ranking
Algorithm (PRA) [10, 11] completes KGs by performing
random walk techniques; some other studies embed entities
and relations into a low-dimensional space and infer missing
relationships by translating relations from head entities to
tail entities in KGs [9, 12, 13]. However, it is nontrivial to
incorporate news texts into these structure-based methods to
connect emerging relationships.

From the other aspect, there are several studies attempting
to embed large-scale texts [14–17]. For example, LINE is
proposed in [16] to embed texts into a low-dimensional
space by constructing a homogeneous word co-occurrence
network from texts. Later PTE is proposed in [17] to improve
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Figure 2. Tensors built for relations, the associated head entities, tail
entities and news texts.

the LINE method by building a heterogeneous text network.
These methods focus on embedding every single word in
texts but ignoring the semantic relations among words.
Therefore, they would fail to capture emerging relationships
from news texts. Recently, some work tries to embed the
KG and the texts jointly [3, 18]. However, the method in
[18] embeds the KG and texts separately. So their indirect
inference according to texts cannot help connect emerging
relationships effectively. Though the method in [3] aims to
detect emerging relationships, it fails to distinguish among
different relation types.

To address the issue, in this paper, we propose a tensor-
based framework to combine KGs and news texts effectively
for detecting not only emerging relationship connection, but
also the relation type. A fourth-order tensor structure is used
to capture the hidden connection between multiple relations
in KGs and multiple text descriptions of relations in news.
Specifically, we model the multimodal interactions among
head entities, relations, tail entities, and text descriptions as
a tensor structure, by taking the tensor product of feature
spaces of entities, relations and texts. Figure 2 shows the
tensor structure constructed from KGs and news. As the
interactions (i.e., tensor product) of entities, relations and
text descriptions can reflect the connection between KGs and
news, we use them to learn the embedding representations
of entities and relations. In this manner, it can deal with
multiple relation types without difficulty.

Noteworthily, directly learning from the tensor structure
would be problematic. First, the space complexity of build-
ing the fourth-order tensor is polynomial to the numbers
of entities, relations and text descriptions, making it chal-
lenging to fit the tensor into memory. Second, due to the
large number of interaction parameters, it is time-consuming
to decompose the built tensor directly and it is prone to
overfitting. Last but not least, how to learn a meaningful
representation of a given news sentence, which consists of
the head and tail entities with the other text descriptions,
and connect the representation to the relation types in KGs
is challenging.

In order to solve the above challenges, we further de-
velop a Text-Aware MUlti-RElational learning method
(TAMURE) to learn the embeddings of entities and rela-

tion types from both news and KGs. By factorizing the
interaction parameters, the proposed TAMURE method can
efficiently learn the latent representation of entities and text
descriptions, without physically building the tensor. Since
the parameters are learned jointly through the factorization,
it also makes the parameter estimation more accurate under
sparsity and renders the model with the capacity to avoid
overfitting. In summary, our contributions are as follows:

• We formulate a new task, connecting emerging re-
lationships, which is to discover relation types with
new entities by fusing information from heterogeneous
sources, i.e., the structured KGs and the unstructured
news texts.

• We introduce a novel tensor-based framework to con-
nect emerging relationships from news. The news texts
and KGs are incorporated into an elegant fourth-order
tensor formulation, where the complex multiple interac-
tions among relation types, entities and text descriptions
are embedded within the tensor structure.

• The proposed TAMURE method can effectively recog-
nize emerging relationships from news, by capturing
not only the fourth- but also lower-order interactions
in the built tensor. The lower-order interactions can
explore hidden compatibility among entities, relations
and text descriptions (see section III-B2 for details).
Furthermore, the complexity of TAMURE is linear in
the number of parameters, which makes it suitable to
large-scale applications.

• We demonstrate the effectiveness of TAMURE by
comparing it with nine state-of-the-art methods via
TensorFlow on real-world KG and news data.

The rest of the paper is organized as follows. Section II
formulates the problem; Section III introduces the details
of the proposed TAMURE method; Section IV presents the
experimental setup and the results; Section V briefly reviews
related work; and Section VI concludes this study.

II. PRELIMINARY

In this paper, we study the problem of connecting emerg-
ing relationships from news. Before proceeding, we first
introduce the related concepts, and then state the problem
of emerging relationship detection from news. Table I lists
basic symbols that will be used throughout the paper.

A. Basic Concepts

Definition 1: Entity, Relation and Relationship: An
entity e can represent a person, an organization, or a lo-
cation, etc.. A relation can be a person-affiliation type or an
organization-location type. A relationship is defined in the
form of triplets (h, r, t), where h is a head entity, t is a tail
entity and r is a relation. For each possible triple (h, r, t),
we use y 2 {0, 1} to indicate whether the triple exists.

Definition 2: Knowledge Graph (KG): A knowledge
graph is denoted as a directed graph Gkg = (Ekg, Ekg),
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Table I
LIST OF BASIC SYMBOLS.

Symbol Definition and description
(h, r, t) a relationship
(h, r, t, d) a relationship with a text description d

x each lowercase letter represents a scale
x each boldface lowercase letter represents a vector
X each boldface uppercase letter represents a matrix
X each calligraphic letter represents a tensor, set or space
[1 : M ] a set of integers in the range of 1 to M inclusively
h·, ·i denotes inner product
� denotes tensor product (outer product)
⇤ denotes Hadamard (element-wise) product

where Ekg is the set of entities and Ekg is the set of known
relationships. Each directed edge in Ekg can be represented
by a triplet (h, r, t), where the entities h and t 2 Ekg , and
the relation r is one type of the relations in the relation set
R.

Nowadays, due to the rapid growth of real-world knowl-
edge, large volumes of emerging relationships are arising
with time. An emerging relationship is defined as follows:

Definition 3: Emerging Relationship: An emerging re-
lationship (h, r, t) exists, if its label y = 1 in the real world
and at least one entity is not included in the given KG (i.e.,
h 62 Ekg or t 62 Ekg).

For example, in Figure 1, (Zootopia, producedBy, Walt
Disney Studios) is an emerging relationship with y = 1 since
Zootopia is a new movie entity and it is produced by the
publisher entity Walt Disney Studios. Similarly, (Zootopia,
directedBy, Byron Howard) and (Zootopia, directedBy, Rich
Moore) are also examples of emerging relationships.

The key of this work is to apply the tensor structure to fuse
the KG and the news for connecting emerging relationships.
In the following, we introduce some related concepts and
notations about the tensor.

Definition 4: Tensor: Tensors are higher order arrays that
generalize the notion of vectors (first order) and matrices
(second order). Following [19], an M -th order tensor is
denoted by X 2 RI1⇥···⇥IM and its elements by xi1,··· ,iM .
An index is denoted by a lowercase letter, spanning the
range from 1 to the uppercase letter of the index, e.g.,
i = 1, 2, · · · , I . All vectors are column vectors unless
otherwise specified.

For an arbitrary matrix X 2 RI⇥J , its i-th row and j-th
column vector are denoted by x

i and xj , respectively. The
inner product of two same-sized tensors X ,Y 2 RI1⇥···⇥IM

is defined by
⌦
X ,Y

↵
=

PI1
i1=1 · · ·

PIM
i1=1 xi1,··· ,iM yi1,··· ,iM .

The outer product of M vectors x

(m) 2 RIm for m 2 [1 :

M ] is an M -th order tensor and defined elementwise by�
x

(1) � · · · � x(M)
�
i1,··· ,iM

= x(1)
i1

· · ·x(M)
iM

for all values of
the indices. In particular, for X = x

(1) � · · · � x(M) and

Y = y

(1) � · · · � y(M), it holds that

⌦
X ,Y

↵
=

MY

m=1

⌦
x

(m),y(m)
↵
=

MY

m=1

x

(m)T
y

(m). (1)

For a general tensor X 2 RI1⇥···⇥IM , its CANDECOM /
PARAFAC (CP) factorization [19–21] is

X =

KX

k=1

x

(1)
k � · · · � x

(M)
k = JX(1), . . . ,X(M)K, (2)

where for m 2 [1 : M ], X(m)
= [x

(m)
1 , · · · ,x(m)

K ] are factor
matrices of size Im ⇥K, K is the number of factors, and
J·K is used for shorthand.

B. Problem Statement

Given a large collection of news and the existing KG
Gkg , the task of connecting emerging relationships aims
to determine the existence of multiple types of relations
among entities. Assume we can extract a set of relationship
candidates, each of which is represented by a triplet (h, r, t)
and is associated with a vector of text descriptions d from
news. Since the entities in the candidates may not exist
in the entity set Ekg of the KG, we denote Enews as
the set of entities that appear in the news, and denote
E = Ekg [ Enews as the set of all the entities. The task
of connecting emerging relationships is to learn a score
function f : (h, r, t,d) ! {0, 1} that correctly predicts the
label of the test instance, where the entities h and t 2 E,
r 2 R and (h, r, t) 62 Ekg .

III. PROPOSED METHOD

In this section, we first introduce how to design the tensor-
based score function for fusing the KG and the news texts.
Then we derive an efficient Text-Aware MUlti-RElational
learning method (TAMURE) that learns the embeddings of
entities and relation types in linear complexity.

A. Tensor-based Score Function

We begin by introducing how to extract entities and
relations from news. We then describe how to design the
score function if only one of the sources (the KG or the news
texts) is available. After that, we show that both sources can
be integrated into an elegant tensor-based model.

Given a large collection of news, entities can be extracted
via popular Named Entity Recognition (NER) techniques in
[22, 23]. The entities that cannot be exactly matched to the
KG are new entities. For existing relationships in the KG, we
can associate their relation types with text descriptions from
news. Given emerging relationships, we aim to determine
their relation types with the help of text descriptions from
news.

Without considering the existence of the KG, the most
common approach is using a linear score function for each
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relation type r based on the text description vector d 2 RID

extracted from news:

fnews(r,d) =
IDX

i=1

ur,idi = d

T
ur, (3)

where ur 2 RID is the weight vector for relation type
r. For learning multiple relation types at the same time,
we let IR = |R| denote the number of relation types and
U 2 RID⇥IR denote the weight matrix to be learned, whose
columns are the vector ur. Let er 2 RIR denote the relation
type indicator vector

er = [0, · · · , 0| {z }
r-1

, 1, 0, · · · , 0]T.

We can observe that U is actually the weight matrix
of a bilinear feature map for modeling the second-order
interactions between the text description vector and the
relation type:

fnews(r,d) = d

T
Uer = hU,d � eri . (4)

Given the KG only, we can use a similar score function
for modeling the interactions between the head entity, tail
entity and relation type. Let IE = |E| denote the number
of entities, and let eh 2 RIE and et 2 RIE denote the
head and tail entity indicators, respectively. We can form
the multilinear score function by

fKG(h, r, t) = e

T
hVret = hV, er � eh � eti . (5)

where Vr 2 RIE⇥IE is the weight matrix between head enti-
ties and tail entities for relation type r, and V 2 RIR⇥IE⇥IE

is a stacked tensor with each slice Vr,:,: = Vr.
Obviously, we can fuse the news and the KG together by

formulating the score function as follows:

f(h, r, t,d) = hW , er � eh � et � di , (6)

where W 2 RIR⇥IE⇥IE⇥ID is the weight tensor to be
learned.

It is worthy to be noted that some existing relationships
in the KG might not have the text description d, such
that the text description d = 0. Besides, in order to
include relationships that are extracted from the news but
not available in the KG, we add a “co-occurrence” relation
type to the existing relations during the learning process and
do not test this relation type in the testing phase.

B. Text-aware Multi-relational Learning

Now the news texts and the KG have been incorporated
into an elegant tensor formulation, such that the complex
multiple interactions among relation types, entities and text
descriptions are embedded within the tensor structure. How-
ever, the space complexity of building the fourth-order tensor
is O(IR ⇥ IE ⇥ IE ⇥ ID). With large volumes of emerging
relationships in news, it is impractical to physically build

the tensor. Moreover, directly learning the weight tensor
W would be problematic. First, due to the large number
of parameters IR ⇥ IE ⇥ IE ⇥ ID, the learning procedure
is prone to overfitting and less effective coupled with its
sparse counterpart er � eh � et �d. Second, since the weight
parameters are learned independently, it cannot model the
interactions that never appear. To address such issues, we
propose an efficient method based on tensor factorization.

1) Efficient Tensor Decomposition Framework: Assume
that the effect of interactions has a low rank, the weight
tensor W can be factorized as

W = JM(r),M(h),M(t),M(d)K,

where M

(r) 2 RIR⇥K and M

(h), M(t) 2 RIE⇥K represent
the embedding matrices for relation types, head entities and
tail entities, respectively; M

(d) 2 RID⇥K represents the
weight matrix for text descriptions. From Eq. 1 and Eq. 6,
we can easily derive that

f(h, r, t,d) =
KX

k=1

D
M

(r)
:,k �M

(h)
:,k �M

(t)
:,k �M

(d)
:,k , er � eh � et � d

E

=

KX

k=1

⇣
e

T
r M

(r)
:,k

⌘⇣
e

T
hM

(h)
:,k

⌘⇣
e

T
t M

(t)
:,k

⌘⇣
d

T
M

(d)
:,k

⌘

=

⇣
e

T
r M

(r)
⌘T ⇣⇣

e

T
hM

(h)
⌘
⇤
⇣
e

T
t M

(t)
⌘
⇤
⇣
d

T
M

(d)
⌘⌘

= r

T
⇣
h ⇤ t ⇤ (dT

M

(d)
)

⌘
,

(7)
where ⇤ is the Hadamard (elementwise) product, r =

e

T
r M

(r), h = e

T
hM

(h) and t = e

T
t M

(t) are the embedding
vectors learned for the relation type r, head entity h and tail
entity t, respectively.

2) Lower-order Constraint on Relation Types: One can
notice that Eq. 7 only models the fourth-order interactions
between the specific relation type r, entities h and t, and
the associated text description d. However, the lower-order
interactions can also be discriminative for determining the
existence of the relationship. For example, if the head entity
is a person, e.g., “Rich Moore”, the relation type r is unlikely
to be “producedBy” no matter which tail entity t is chosen
in the sample instance (h, r, t,d). In this case, even the
pairwise interaction between h and r can be discriminative.
Thus, we consider to incorporate the lower-order interactions
in the predictive model. This can be done by adding bias
vectors in Eq. 7 as follows:

f(h, r, t,d) = r

T
⇣
(h+ bh) ⇤ (t+ bt) ⇤

⇣
d

T
M

(d)
+ bv

⌘⌘
,

(8)
where bv 2 RID , bh and bt 2 RIE are the bias vectors
that are independent to the given instance. To illustrate why
the bias vectors can help model the lower-order interac-
tions, we can decompose Eq. 8 into two parts. The first
part rT

�
h ⇤ (t+ bt) ⇤

�
d

T
M

(d)
+ bv

��
models the fourth-

order interactions between (h, r, t,d), while the second part
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Figure 3. The work flow of TAMURE.

r

T
�
bh ⇤ (t+ bt) ⇤

�
d

T
M

(d)
+ bv

��
with the bias vector

bh models the third-order as well as the lower-order inter-
actions between (r, t,d) without the head entity h involved.
Other types of the third-order interactions and the lower-
order interactions can be derived in a similar way.

We name the model in Eq. 8 as Text-Aware MUlti-
RElational learning method (TAMURE). The work flow
of TAMURE is illustrated in Figure 3. After mapping
the head entity, tail entity and text description extracted
from news into a common embedding space via (h+ bt) ⇤
(t+ bt) ⇤

�
d

T
M

(d)
+ bv

�
, TAMURE learns a meaningful

representation to connect relation types in KGs with news
texts via r

T
�
(h+ bh) ⇤ (t+ bt) ⇤

�
d

T
M

(d)
+ bv

��
.

Clearly, the parameters of the interactions among multiple
relation types, entities, text descriptions are jointly factor-
ized. The joint factorization benefits parameter estimation
under sparsity, since dependencies exist when the interac-
tions share the same entities or text descriptions. Therefore,
the model parameters can be effectively learned without
direct observations of such interactions especially in highly
sparse data. Further, since the interactions are modeled with
the bias vectors, this joint factorization model can easily deal
with missing information and even incomplete information
for relationships.

Another appealing property of TAMURE comes from the
main characteristics of multilinear analysis. After factorizing
the weight tensor W , there is no need to construct the
input tensor physically. Moreover, the model complexity is
O(K(IR + IE + ID)), which is linear in the number of
parameters. This multilinear property can help save memory
and also speed up the learning procedure.

C. Learning Procedure of TAMURE

Given the training set D = {(h, r, t,d)} , TAMURE
learns vector embeddings of the entities, relation types and
text descriptions via the score function f . Following the
same strategy as in [8, 12], we minimize a margin-based
ranking criterion over the training set:

Algorithm 1 The TAMURE algorithm
Input: The training set D, entities E and relation types R, margin �, embedding

dimension K.
Output: Embeddings of entities, relation types and texts.
1: Initialize embeddings h, r, t uniform(� 1p

K
, 1p

K
) for each h 2 E, t 2 E

and r 2 R
2: Initialize weight parameters randomly
3: Normalize entity embeddings
4: while not convergence do
5: //sample a mini-batch of size m

Dbatch  sample(D,m)
6: Sbatch  ;
7: for (h, r, t,d) 2 Dbatch do
8: // Sample a corrupted instance

(h0, r, t0,d0) sample(D0)
9: Sbatch  [{

�
(h, r, t,d), (h0, r, t0,d0)

�
}

10: end for
11: Update embeddings and weight parameters w.r.t. the gradient of Eq. 9 on

Sbatch

12: Constrain entity embeddings with the max-norm regularization
13: end while

L =

X

(h,r,t,d)2D

X

(h0,r,t0,d0)2D0

max(0, f(h, r, t,d) + � � f(h0, r, t0,d0)),

(9)
where � > 0 is a margin hyper-parameter, and

D0 = {(h0, r, t,d0)|h0 2 E} [ {(h, r, t0,d0)|t0 2 E}. (10)

The set of corrupted relationships D0 is composed of training
data with either the head or tail replaced by a random entity
(but not both at the same time). For a relationship from the
KG, the corrupted data is checked to make sure that it is not
in the KG. Notice that since the text description d is always
associated with the entity pairs, when one of the entities is
replaced, the text description vector will also be replaced
accordingly. The loss function in Eq. 9 favors higher scores
for training data than for corrupted data.

The learning process of TAMURE is carried out by Adam
optimizer [24] in mini-batch mode, with the additional max-
norm regularization constraint [12, 25], which constrains the
L2-norm of the embeddings of the entities to be no larger
than 1. No regularization or norm constraints are given to the
relation type and text description embeddings. The detailed
optimization procedure is described in Algorithm 1. At each
main iteration of the algorithm, a small set of data is sampled
from the training set and servers as the training data of the
mini-batch. For each existing relationship, a single corrupted
relationship is sampled accordingly. The parameters are then
updated by taking a gradient step with a constant learning
rate. Before the next iteration, the embedding vectors of
the entities are normalized via the max-norm regularization
constraint.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the proposed TAMURE method. After introducing the
datasets and the experimental settings, we compare different
baseline methods.
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A. Data Processing

We connect emerging relationships from the ClueWeb12
corpus in the FB15k-2374 dataset [26]. FB15k-237 contains
200 million sentences in the ClueWeb12 corpus coupled
with Freebase mention annotations. There are around 3.9
million text descriptions corresponding to the relation types
in Freebase. These texts are represented as full lexicalized
dependency paths. For example, given the news text “Barack
Obama is the 44th and current President of United States.”,
the dependency path for the relation between entity “Barack
Obama” and “United States” is represented as “SUBJECT

nsubj ��� president
prep��! of

obj�! OBJECT”. In the experiment,
we extracted n-gram (n = 1, 2, 3) features from the lexical-
ized dependency paths and concatenated them together as the
features of the text descriptions. In the process of n-gram
feature extraction, we considered the lexical dependencies
such as “nsubj” and “prep” as words. Those n-gram features
with frequencies less than 10 are removed in the experiment.
In FB15k-237, Freebase is used as the KG. A subset of
entities and relations are extracted from Freebase. Almost
all entities occur in the ClueWeb12 corpus.

In order to evaluate the effectiveness of the proposed
TAMURE method, we randomly select half of the entities in
FB15k-237 as new entities to avoid the high-cost of human
labeling. Those relationships associated with new entities are
emerging relationships. In the experiment, relationships with
existing entities are considered as the training set from the
KG. The emerging relationships are equally split into the
validation set and the testing set. We generate the negative
emerging relationships for the validation and testing sets
by replacing each relation type with a random one. The
validation set is used to find the threshold for each relation
by thresholding the real-valued output scores of the proposed
TAMURE model as in [8]. The statistics of the dataset are
summarized in Table II.

B. Compared Methods

In order to show that the proposed TAMURE model can
effectively connect emerging relationships, we compare the
following nine methods:

• TransE: It is the classic KG embedding model by
treating relation types as translations from head entities
to tail entities [12]. Each entity is embedded into a
low-dimensional vector space and each relation type is
represented as a translation vector. The score function
of TransE is f(h, r, t) = ||h+ r� t||`2 .

• Skip-Gram: It is the state-of-the-art word embedding
model [14]. It considers the KG and news texts together
as a large corpus and learns embedding vectors for each
word where each entity or relation type is regarded as
a word.

4https://www.microsoft.com/en-us/download/details.aspx?id=52312

• DeepWalk: It is an embedding model for homogeneous
graphs with binary edges [15]. It learns embeddings
of nodes by applying truncated random walks on the
graph. By viewing entities, relation types and words as
the same type of nodes, we can build a homogeneous
graph from news texts and KGs. Then we apply the
DeepWalk model on this graph.

• LINE: It is the Large-scale Information Network
Embedding method (LINE) [16]. Similar to DeepWalk,
LINE treats entities, relation types and words as one
type of nodes but considers the weights of edges
when learning the embeddings. The weights are the
frequencies of two nodes co-occurring in news or KGs.

• PTE: It is the Predictive Text Embedding method
(PTE) [17]. It learns embeddings of nodes from a het-
erogeneous graph built from news texts and KGs. The
heterogeneous graph includes four types of graphs: a
word-word co-occurrence graph, an entity-entity graph,
a word-entity graph and an entity-relation graph.

• TransE+SG: It is based on the pTransE method for
relationship inference from news texts and knowledge
graphs [18]. It first applies TransE for entity embed-
dings from KGs and Skip-Gram for word embeddings
from news texts. Then the two models are combined
via aligning the embeddings into the same space. Since
the dataset FB15k-237 has already annotated entities in
news, there is no need to apply the alignment model.

• RESCAL: It is a relational learning approach based
on tensor factorization [27]. It focuses on the KG and
embeds relation types into a matrix space that operates
as a bilinear operator on entity embeddings. RESCAL
applies a more flexible tensor decomposition than CP,
as the relation embedding matrix introduces interaction
terms for entity embeddings.

• TAMURE-KG: It is the proposed tensor-based frame-
work on the KG only. We first build a third-order
tensor about head entities, relation types and tail en-
tities from the KG. Then the proposed multi-relational
factorization model is applied to learn embeddings.
The score function of TAMURE-KG is f(h, r, t) =

r

T
((h+ bh) ⇤ (t+ bt)).

• TAMURE-HI: It is the proposed tensor-based frame-
work with the high-order (fourth-order) interactions
only. The lower-order constraint on relation types is
not considered in the predictive model of TAMURE-
HI. The score function is shown in Eq. 7.

• TAMURE: It is the Text-Aware MUlti-RElational
learning model (TAMURE) proposed in this paper. We
build a fourth-order tensor structure to combine the
KG and news texts together for connecting emerging
relationships.

We implement TAMURE via TensorFlow. For fair com-
parisons, we set the dimensionality of embeddings as 20 for
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Table II
STATISTICS OF THE DATASET.

News Entities Relationships Train / Validation / Test

# Texts
# Text

Descriptions
# Entities # Entities

# Existing
Entities

# Emerging
Entities

# Relationships
# Existing

Relationships
# Emerging

Relationships
# Training

Relationships
# Validation
Relationships

# Testing
Relationships

200,000,000 3,978,014 13,937 14,541 7,270 7,271 310,116 82,062 228,054 82,062 114,027 114,027

all the above methods. For a given entity, its embedding
vector is the same when the entity appears as the head
or as the tail of a relation type. The Adam algorithm [24]
within TensorFlow is applied as the optimizer for TransE,
RESCAL, TAMURE-KG, TAMURE-HI and TAMURE. The
learning rate for Adam optimizer is set as 0.01, the mini-
batch size is set as 1000, the maximum number of epochs
is set as 20, and the margin is set as 1 in the experiments.
For the text embedding baselines, we follow the settings in
[14–17].

To evaluate the performance of the compared approaches,
we turn the proposed TAMURE model into a binary classi-
fier as in [8] by thresholding the real-valued output scores
where the thresholds for each relation type are found on the
validation set. For the text embedding baselines (i.e., Skip-
Gram, DeepWalk, LINE and PTE), we follow [17] to apply
the logistic regression model in the LibLinear package5 after
learning the embeddings. The embedding concatenation of
head entities, relation types and tail entities is considered as
the feature during the classification phase. Since there might
be multiple relation types between two entities, we measure
the performance by adopting five popular multi-label eval-
uation metrics in the literature: Micro F1 and Macro F1
that evaluate a classifier’s label set prediction performance
and consider the micro/macro-average of precision and
recall on all binary labels with equal importance [28];
Average Accuracy (AvgAcc), Average AUC (AvgAuc) and
Hamming Loss (HL) that evaluate the average accuracy,
AUC and error rate over all the binary labels (relation types)
[29].

C. Performance Evaluation

In this section, we report the performance of the compared
methods. The testing emerging relationships can be catego-
rized into two groups: one is about those with only one
emerging entity and the other is about those relationships
with both entities not in the KG. In order to show the
effectiveness of the proposed TAMURE method, we not
only show the performance over all emerging relationships,
but also show the results for each group of emerging
relationships. The performance with the rank of each method
is reported in Table III. It can be observed that the pro-
posed TAMURE method consistently outperforms all the
other nine baselines regardless of the groups of emerging
relationships. Specifically, compared with the second best
baseline, TAMURE achieves an improvement of 47% on the

5http://www.csie.ntu.edu.tw/⇠cjlin/liblinear/
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Figure 4. The performance with different percentages of emerging entities.
For the Micro-F1 and Macro-F1 metrics, the larger the value, the better
the performance. For the HL metric, the smaller the better.

HL metric and 24% on the AvgAcc metric. Furthermore, in
the case where both entities are emerging entities, TAMURE
achieves a significant performance improvement (42% and
27% higher than the second best baseline on HL and
AvgAuc, respectively), showing the capability of TAMURE
capturing the interactions between the relation types in KGs
and the text descriptions in news.

Compared with the KG embedding baselines, TAMURE
performs the best since it incorporates the news texts and
the KG into an elegant fourth-order tensor formulation to
capture complex interactions among relation types, entities
and text descriptions. For those emerging relationships with
only one new entity, TransE achieves the second best results.
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Table III
THE CLASSIFICATION PERFORMANCE “VALUE (RANK)” ON CONNECTING EMERGING RELATIONSHIPS. “"” INDICATES THE LARGER THE VALUE, THE

BETTER THE PERFORMANCE. “#” INDICATES THE SMALLER THE BETTER.

(a) Results on emerging relationships with only one entity not in the KG.

Methods
KG Embedding Text Embedding KG+Text Embedding

Criteria TransE RESCAL TAMURE-KG Skip-Gram DeepWalk LINE PTE TransE+SG TAMURE-HI TAMURE
Micro-F1" 0.8239 (2) 0.7923 (5) 0.8001 (4) 0.0723 (10) 0.1019 (9) 0.2792 (8) 0.4263 (7) 0.7893 (6) 0.8012 (3) 0.8738 (1)
Macro-F1 " 0.7022 (2) 0.6746 (5) 0.6810 (4) 0.1189 (10) 0.1603 (9) 0.4296 (7) 0.3215 (8) 0.6654 (6) 0.6881 (3) 0.7827 (1)
AvgAcc " 0.5905 (2) 0.5635 (3) 0.5623 (4) 0.3777 (9) 0.3907 (8) 0.5184 (7) 0.3072 (10) 0.5188 (6) 0.5622 (5) 0.7240 (1)
AvgAuc " 0.6425 (2) 0.4860 (6) 0.5759 (3) 0.1420 (10) 0.1860 (9) 0.4752 (7) 0.1947 (8) 0.5187 (5) 0.5634 (4) 0.7370 (1)
HL # 0.4096 (2) 0.4365 (3) 0.4377 (4) 0.6223 (9) 0.6093 (8) 0.4816 (7) 0.6928 (10) 0.4812 (6) 0.4378 (5) 0.2760 (1)

(b) Results on emerging relationships with both entities not in the KG.

Methods
KG Embedding Text Embedding KG+Text Embedding

Criteria TransE RESCAL TAMURE-KG Skip-Gram DeepWalk LINE PTE TransE+SG TAMURE-HI TAMURE
Micro-F1" 0.7625 (6) 0.7742 (3) 0.7704 (4) 0.1703 (10) 0.2540 (9) 0.3751 (8) 0.6125 (7) 0.7656 (5) 0.7946 (2) 0.8461 (1)
Macro-F1 " 0.6450 (6) 0.6564 (3) 0.6502 (5) 0.1936 (10) 0.2637 (9) 0.5103 (8) 0.5748 (7) 0.6513 (4) 0.6827 (2) 0.7555 (1)
AvgAcc " 0.5090 (4) 0.5035 (6) 0.5080 (5) 0.3243 (10) 0.3438 (9) 0.5025 (7) 0.4266 (8) 0.5150 (3) 0.5575 (2) 0.6885 (1)
AvgAuc " 0.5028 (6) 0.5060 (4) 0.5049 (5) 0.1577 (10) 0.2025 (9) 0.4758 (7) 0.2045 (8) 0.5199 (3) 0.5583 (2) 0.7081 (1)
HL # 0.4910 (4) 0.4965 (6) 0.4920 (5) 0.6757 (10) 0.6562 (9) 0.4975 (7) 0.5734 (8) 0.4850 (3) 0.4425 (2) 0.3115 (1)

(c) Results on all emerging relationships.

Methods
KG Embedding Text Embedding KG+Text Embedding

Criteria TransE RESCAL TAMURE-KG Skip-Gram DeepWalk LINE PTE TransE+SG TAMURE-HI TAMURE
Micro-F1" 0.8033 (2) 0.7863 (5) 0.7902 (4) 0.1083 (10) 0.1599 (9) 0.3139 (8) 0.4948 (7) 0.7819 (6) 0.7957 (3) 0.8647 (1)
Macro-F1 " 0.6877 (2) 0.6675 (5) 0.6700 (4) 0.1414 (10) 0.1918 (9) 0.4459 (7) 0.4129 (8) 0.6632 (6) 0.6830 (3) 0.7754 (1)
AvgAcc " 0.5723 (2) 0.5442 (5) 0.5467 (4) 0.3658 (9) 0.3796 (8) 0.5138 (7) 0.3439 (10) 0.5210 (6) 0.5580 (3) 0.7168 (1)
AvgAuc " 0.6050 (2) 0.4932 (6) 0.5517 (4) 0.1531 (10) 0.1966 (9) 0.4768 (7) 0.2514 (8) 0.5073 (5) 0.5606 (3) 0.7326 (1)
HL # 0.4277 (2) 0.4558 (5) 0.4533 (4) 0.6342 (9) 0.6204 (8) 0.4862 (7) 0.6562 (10) 0.4791 (6) 0.4420 (3) 0.2832 (1)

However, without the help of news texts, TransE cannot
perform well if the relationship has both entities not in
the KG. Since emerging relationships usually first appear
in news, it is important and necessary to consider news
during the detection process. With specific designs for the
KG embedding, it is difficult to incorporate news texts into
TransE and RESCAL. In contrast, the proposed tensor-based
framework (TAMURE-KG) can be easily adapted to add
news information (TAMURE), thereby connecting emerging
relationships effectively.

Another observation is that text embedding baselines do
not perform well for connecting emerging relationships. The
reason lies in the two-step learning of emerging relationships
for these models. First the embedding vectors are learned
and then the emerging relationships are classified based
on the embedding vectors. With two separate steps, it is
difficult to connect emerging relationships with the learning
of embeddings. Though PTE considers the heterogeneity
among entities, relation types and words in news texts, it
still performs worse than the KG embedding models.

Furthermore, compared with TransE+SG, TAMURE-HI
and TAMURE still perform better. TransE+SG combines the
KG and news texts together, thereby achieving reasonable

performance on emerging relationships with both entities not
in the KG. However, TransE+SG embeds the KG and the
news separately. The interactions between the relation types
in KGs and the text descriptions in news are not captured.
Hence, it cannot help detect emerging relationships effec-
tively. The proposed TAMURE-HI and TAMUE methods in
this paper builds a fourth-order tensor to capture the hidden
connections between the KG and the news texts, and thereby
achieving better performance. Since TAMURE considers the
lower-order interactions in the built tensor, it outperforms
TAMURE-HI to a large extent.

In summary, with a tensor structure, the proposed
TAMURE helps connect emerging relationships from news
effectively and outperforms all the nine baseline methods.

D. Effects of Emerging Entities

As mentioned previously, we randomly select half of
the entities in FB15k-237 as new entities to evaluate the
effectiveness of TAMURE. In the following, we assess the
performance of TAMURE with different percentages of
new entities, in the range of 10% to 90%. We select the
best five models according to Table III (TransE, RESCAL,
TAMURE-KG, TAMURE-HI and TAMURE) and represent
their performance in Figure 4. Due to space limit, we

b731afe6-WzJw94iD6zoJQHfhBpOQZhzxQ0g7xVUUBgaHnQ==-500ddfd78926



0 2 5 10 15 20
1umEer of epochs

0.02

0.04

0.06

0.08

0.10

0.12

T
ra

Ln
Ln

g
 L

o
ss

EmEed10

EmEed50

EmEed100

EmEed150

0 2 5 10 15 20
1umEer of epochs

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

7
ra

Ln
Ln

g
 L

o
ss

20% EmergLng EntLtLes

40% EmergLng EntLtLes

60% EmergLng EntLtLes

80% EmergLng EntLtes

Figure 5. The performance with different numbers of epochs.

only show the performance on Micro-F1 and HL. Similar
performance is achieved on the other metrics of Macro-F1,
AvgAcc and AvgAuc.

From Figure 4, we can observe that TAMURE signifi-
cantly outperforms other baselines regardless of how many
percentages of emerging entities we select. In addition,
TAMURE can achieve a stable performance when there are
less than 70% of emerging entities. With less than 30% of
existing entities in the KG, little information can be provided
for connecting emerging relationships from news, thereby
resulting in a drop of performance for TAMURE. However,
TAMURE still achieves the best result compared with other
baseline methods since it captures the hidden connections
between relation types in the KG and text descriptions in
the news.

E. Parameter Analysis

In the following, we analyze the performance of
TAMURE with different embedding sizes and epochs.

1) Influence of Embedding Size: We demonstrate the
performance of TAMURE with different embedding sizes
by fixing the other parameters. In Figure 6, we show the
results on Micro-F1 and Macro-F1 metrics, where “One”
means the results for emerging relationships with only one
entity not in the KG, “Two” is about the relationships
with neither entities in the KG, and “All” is about all the
emerging relationships. It can be observed that, with a larger
embedding size, TAMURE achieves better performance on
both Micro-F1 and Macro-F1. However, when the embed-
ding size is larger than 20, the performance of TAMURE
becomes more stable with small improvement. Therefore,
in our experiment, we set the embedding size as 20. Due to
space limit, we do not show the results on AvgAcc, AvgAuc
and HL metrics, on which similar patterns can be observed.

2) Influence of Epochs: We now investigate the per-
formance of TAMURE with different numbers of epochs.
Figure 5 shows the convergence process of the training loss
of TAMURE, with different embedding sizes and different
percentages of emerging entities, respectively. “Embedk” on
the left of Figure 5 indicates the results with embedding size
k. We can observe that the training loss drops quickly at first
few epochs and becomes stable after 10 epochs, regardless
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Figure 6. The performance with different embedding sizes.

of the embedding size or the percentage of emerging entities.
It demonstrates a fast convergence of the proposed method
TAMURE. In our experiment, we set the number of epochs
as 20 to achieve a stable performance.

V. RELATED WORK

Knowledge graphs (KGs) of real-world relations about
entities are useful sources for a lot of important applications
in information extraction, natural language understanding
and information retrieval [30, 31]. However, knowledge
graph (KG) is incomplete with large amounts of missing
relation types [1].

Due to the limited coverage of KGs, the task of KG
completion has received a lot of attention [6, 7, 9, 13, 32].
Some work learns embedding representations of entities
and relation types in the KG and use these embeddings to
infer missing relationships [4, 5, 8, 12, 33]. In addition,
some studies predict missing relationships from a graph
view [10, 11, 34, 35]. For instance, the Path Ranking
Algorithm (PRA) [10, 11] performs link prediction in the
KG via a random walk inference technique. Recently, the
research work [35] uses a recursive neural network to create
embedded representations of paths learned from [10, 11]. In
our work, the emerging relationships have new entities that
are not included in the KG. Hence, it is impossible to apply
these techniques directly.

Furthermore, some work tries to embed the KG and the
texts jointly [3, 18]. However, the method in [18] embeds
the KG and texts separately. So their indirect inference
according to texts cannot help detect emerging relationships
effectively. Though the method in [3] aims to connect
emerging relationships, it fails to distinguish among different
relation types. In contrast, our proposed TAMURE model
handles multi-label relation types by building a fourth-order
tensor structure.

Our work is also related to the problem of information
network modeling and mining [36–39]. Recently, there are
some work about embedding large-scale texts [14–17]. For
example, DeepWalk and LINE are proposed in [15] and [16]
to embed texts into a low-dimensional space by constructing
a homogeneous word co-occurrence network from texts.
Later PTE is proposed in [17] to improve the LINE method
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by building a heterogeneous text network. These methods
focus on embedding every single word in texts but ignoring
the semantic relation types among words. Therefore, they
cannot help connect emerging relationships from news texts
effectively.

VI. CONCLUSION

In this paper, we formulate a new task of connecting
emerging relationships from news and propose a novel
tensor-based framework to combine KGs and news texts
effectively for connecting emerging relationships. With an
efficient Text-Aware MUlti-RElational learning method
(TAMURE), the complex interactions among relation types,
entities and text descriptions are jointly factorized without
physically building the tensor. Extensive experiments via
TensorFlow demonstrate the effectiveness of the proposed
TAMURE model compared with nine state-of-the-art meth-
ods on real-world datasets.
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