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Abstract

For modeling data matrices, this paper introduces Probabilistic Co-Subspace Ad-
dition (PCSA) model by simultaneously capturing the dependent structures among
both rows and columns. Briefly, PCSA assumes that each entry of a matrix is gen-
erated by the additive combination of the linear mappings of two low-dimensional
features, which distribute in the row-wise and column-wise latent subspaces re-
spectively. In consequence, PCSA captures the dependencies among entries in-
tricately, and is able to handle non-Gaussian and heteroscedastic densities. By
formulating the posterior updating into the task of solving Sylvester equations,
we propose an efficient variational inference algorithm. Furthermore, PCSA is
extended to tackling and filling missing values, to adapting model sparseness, and
to modelling tensor data. In comparison with several state-of-art methods, experi-
ments demonstrate the effectiveness and efficiency of Bayesian (sparse) PCSA on
modeling matrix (tensor) data and filling missing values.

1 Introduction

This paper focuses on modeling data matrices by simultaneously capturing the dependent structures
among both rows and columns, which is especially useful for filling missing values. Using Gaussian
Process (GP), Xu et al [25] modified the kernel to incorporate relational information and drew
outputs from GPs. Widely used in geostatistics, Linear Models of Corregionalization (LMC) [5]
learns the covariance structures over the vectorized data matrix. In [12, 16], Bayesian probabilistic
matrix factorization (PMF) is investigated via modeling the row-wise and column-wise specific
variances and inferred based on suitable priors. Probabilistic Matrix Addition (PMA) [1] describes
the covariance structures among rows and columns, showing promising results compared with GP
regression, PMF and LMC. However, both LMC and PMA are inefficient on large scale matrices.

On high dimensional data, subspace structures are usually designed in statistical models with re-
duced numbers of free parameters, leading to improvement on both learning efficiency and accuracy
[3, 11, 24]. Equipping PMA with the subspace structures, this paper proposes a simple yet novel
generative Probabilistic Co-Subspace Addition (PCSA) model, which, as its name, assumes that all
entries in a matrix come from the sums of linear mappings of latent features in row-wise and column-
wise hidden subspaces. Including many existing models as its special cases (see Section 2.1), PCSA
is able to capture the dependencies among entries intricately, fit the non-Gaussian and heteroscedas-
tic density, and extract the hidden features in the co-subspaces.

We propose a variational Bayesian algorithm for inferring both the parameters and the latent di-
mensionalities of PCSA. For quick and stable convergence, we formulate the posterior updating
procedure into solving Sylvester equations [10]. Furthermore, Bayesian PCSA is implemented in
three extensions. First, missing values in data matrices are easily tackled and filled by iterating
with the variational inference. Second, with a Jeffreys prior, Bayesian sparse PCSA is implemented
with an adaptive model sparseness [4]. Finally, we extend the PCSA on matrix data (i.e., 2nd-order
tensor) to PCSA-£ for modelling tensor data with an arbitrary order &.



On the task of filling missing values in matrix data, we compare (sparse) PCSA with several state-
of-art models/approaches, including PMA, Robust Bayesian PMF and Bayesian GPLVM [21]. The
datasets under consideration range from multi-label classification data, user-item rating data for
collaborative filtering, and face images. Further on tensor structured face image data, PCSA is com-
pared with the M2SA method [6] that uses consecutive SVDs on all modes of the tensor. Although
simple and not designed for any particular application, through experiments PCSA shows results
promisingly comparable to or better than the competing approaches.

2 PCSA Model and Variational Bayesian Inference

2.1 Probabilistic Co-Subspace Addition (PCSA)

The PCSA model defines distributions over real valued matrices. Letting X € RP1*P2 be an
observed matrix with D; < Dy without loss of generality', we start by outlining a generative model
for X. Consider two hidden variables y ~ N (y|0q4,,14,) and z ~ N(2z|04,,14,) with d; < D,
and do < Ds, where 04 denotes a d-dim vector with all entries being zeros and I; denotes a
d x d identity matrix. Using the concatenation nomenclature of Matlab, two matrices of hidden
factors Y = [y.1,...,Y«p,] € R4*P2 and Z = [z,1,...,2«p,] € R¥®*DP1 are column-wise
independently generated, respectively. Through two linear mapping matrices A € RP1*% and
B € RP2%4z each entry x;; € X is independent given Y and Z by z;; = a;.y+; + bj«Zsi + €35,
where a;, is the i-th row of A. Each e;; ~ N(e;;|0,1/7) is independently Gaussian distributed and
independent from Y, Z. The generative process of X thus is:

e Get'Y by independently drawing each vector y,; ~ N (y.;]04,,14,) for j =1,..., Do;
e Get Z by independently drawing each vector z,; ~ N (2.;|04,,14,) fori =1,..., Dy;

e Get E € RP1*P2 by independently drawing each element e;; ~ N'(e;;]0, 1/7) for Vi, 5;
e Get X = AY + (BZ)" + E given Y and Z, i.e., additively combines the co-subspaces.

Given parameters 8 = { A, B, 7}, the joint distribution of X, Y and Z is p(X,Y,Z|0) =

Do D, D1 D>
TN 5104, 10)] - [[[ NV (2il0a,, 1a)] - [[ T TT N (@351@0055 + bjuzas, 1/7)). (D
j=1 =1 1=17=1

Properties and relations to existing work. Albeit its simple generative process, PCSA owns
meaningful properties and can be viewed as an extension of several existing models.

o Intricate dependencies between entries in X. Although each entry z;; € X is indepen-
dent given Y and Z, the PCSA model captures the dependencies along rows as well as
columns in the joint X. Particularly, assuming D, is the data dimensionality while D5 is
the sample size, the samples (column vectors) in X is dependent from each other by PC-
SA. When B is constrained as 0, PCSA will degenerate to Probabilistic PCA (PPCA) [3],
which insists the sample i.i.d. assumption.

e Non-Gaussianity and heteroscedasticity. If we still consider D; as the data dimensional-
ity and D as the sample size, the PCSA model handles the non-Gaussianity in samples of
X. As an extreme example, if all columns of Z "B T are discretized to take values from a
set of n vectors, PCSA degenerates to Mixture of PPCA [7, 20] with n components, whose
subspace loadings are the same. That is, learning such a PCSA model actually implements
the group PPCA [24] throughout different components. Also, if marginalizing Z, we are
describing the column samples of X with a dependent heteroscedasticity.

e Co-subspace feature extraction. Although able to describe the row-wise and column-
wise covariances, PMA [1] requires estimating and inverting two (large) kernel matrices
with sizes D1 x Dy and Do X D5 respectively, which is intractable for many real world
applications. In contrast, PCSA has (D, d; + D2ds + 1) free parameters and inverts smaller
matrices, and recovers PMA when d; = D; and do = Ds. Moreover, PCSA is able to
extract the hidden features Y and Z simultaneously.

! Otherwise, we can transpose X. This assumption is for efficient Sylvester equation solving in the sequel.



2.2 Variational Bayesian Inference

Given X and the hidden dimensionalities (d,ds), we can estimate PCSA’s parameters 0 =
{A,B, 7} by maximizing the likelihood p(X|8). However, the capacity control is essential to gen-
eralization ability, for which we proceed to deliver a variational Bayesian inference on PCSA.

By introducing hyper-parameters ¢ = [c1,...,54,] and ¢ = [p1,...,¢aq,]" for a hierarchical
Normal-Gamma prior on (A, ) and (B, ¢) respectively [3, 7, 20], we have the prior p(@) as

p(0,s,¢) = p(7)p(A,s)p(B, p), . p(r) =D(r[u”,v7),

p(A, <) =p(Als)p(s), p(Als) = [[N(awil0p,,In, /<), HF (silus, v5)

’L 1

p(B, ) = p(Ble)p(¢), p(Blp) = HN (b.i[0p,, In, /¢:), HF (piluf vf), ()

i=1

where I'(+|u, v) denotes a Gamma distribution with a shape parameter « and an inverse scale param-
eter v. Each column a,; of the mapping matrix A priori independently follows a spherical Gaussian
with a precision scalar ¢;, i.e., an automatic relevance determination (ARD) type prior [14]. Each
precision g; further follows a Gamma prior for completing the specification of the Bayesian model.

It is computationally intractable to evaluate the marginal likelihood p(X) = [ p(X|®)p(©)dO,
where ©® = {Z,Y,0,¢, p} represents the set of all parameters and latent variables. Since MCMC
samplers are inefficient for high dimensional data, this paper chooses variational inference instead
[11], which introduces a distribution Q(@®) and approximates maximizing the log marginal like-

lihood log p(X) by maximizing a lower bound £(Q) = [ Q(© ) log &5 P (X @)dG For tractability,
Q(O) is factorized into the following mean-field form:

Do D,
Q(0) =Q(Y)Q(Z)Q(A)QB)Q(1)Q(s)Q(¢), Q(Y) = HQ(y*i), Q(Z) = HQ(ZM‘),

dy do dy do
=HQ<aﬂ«), Q(B)z_HQ(b*,»), Q<c>=HQ<<,»>, Q(SO):HQ(w)- 3)

Maximizing £(Q) w.r.t. the above Q(¥}) for Vi) € © leads to the following explicit conjugate forms
Q(Y*t) (Y*tl}_’*tv iy)) Q(2xi) :_L-é\/gﬁ*i‘z*iz EZ),
Qi) = I'(silug, 57), Q(ei) = Dlpilu],vf),
Q(a*l) - N(a*1|a*la 1/JAID1)7 Q(b*l) = N(b*ilb*ivql)BI[b)a Q(T) = F(T|'L_LT?’DT)' “4)

For expression simplicity, we denote A = [a,, ..., a.q,] and similarly for B, Y and Z. During
maximizing £(Q), the solutions of Y and Z are bundled and conditional on each other:
Y =(nS*AT(X-Z"B"), =¥ =84 S$4=[(1+(r)D1),, + (nATA]",
Z=(r)SPBT(X—AY)", £7=88 88— |1+ (r)Dy")L,, +(nB'B] ", 5
where (-) is expectation and (7) = @" /3". Directly updating by the above converges neither quickly

nor stably. Instead after putting one equation into the other, we attain a Sylvester equation [10] and
can efficiently solve it by many tools. Then Z is obtained by solving L#ZL% — Z + L% =0,

with LZ = (r)?SPBTB, LY = AS*AT, LY = (r)SPB'X " (Ip, — (1)AS*AT), (6)
whose solution is further put into Eq.(5) to update Y?2. Given Y and Z, updating (A, B) is similar.

The remainders of Q(®) in Eq.(4) are updated as

WA = dy Jt (SY_1> .SV = [(MKY +diag((s)] ', KY =YY + D5V,

VB = dy/tr (sZ‘l) . SZ=[(NKZ +diag((e))] '\,  KZ=ZZ" + D57,

2The choice of computing Z first is based on the assumption D1 < D, for learning efficiency.
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F =0+ (S ATA + 0 KY) + 2u(S7BTB + 0PK) + L [|(X - AY ~ 2B},

DA Dyyp®
2 2

" =u" +

1 - 1 -
V=V + 5diag(AJA) + 14, VP =v¥ + 5diag(BTB) + 14,, (7)
where () = [u$/75,... 1y, /051", (p) = [af/v5,...,a], /o7 ] ", tr(-) stands for trace, diag(-)

inter-converts between a vector and a diagonal matrix, and || - || is the Frobenius norm.

In implementation, all Gamma priors in Eq.(2) are set to be vague as I'(-|1073,107%). During
learning, redundant columns of A and B will be pushed to approach zeros, which actually makes
Bayesian model selection on hidden dimensionalities d; and ds.

3 Extensions

3.1 Filling Missing Values

In many real applications, X is usually partially observed with some missing entries. The goal here
is to infer not only the PCSA model but also the missing values in X based on the model structure.

Similar to the settings of PMA in [1], let us begin with a full matrix X, where the missing values
are randomly filled. We denote M = {(4,j) : Z;; is missing} as the index set of the missing

values therein. In each iteration, we pretend” that X is the observed matrix and update Q(®) by
Egs.(6~7). Then given Q(®), the missing entries {Z;; : (i,j) € M} are updated by maximizing
L£(Q),i.e., ;j = Z;; with X = argmaxx £(Q) = AY + Z"B'. This updating manner plays a
role of adaptive regularization [2], and performs well in experiments as to be shown in Section 4.
Moreover, filling missing values in PMA [1] needs to infer the column and row factors by either
Gibbs sampling or MAP. In contrast, PCSA directly employs Y U Z that were estimated already in
the variational inference, and thus saves the computing cost.

3.2 Bayesian Sparse PCSA

As discussed above, PCSA describes observations by mapping hidden features (Y and Z) in the
co-subspaces through A and B respectively, i.e., A and B serve similarly to the transformation
matrix in Factor Analysis and PPCA. For high dimensional data, the parameters A and B probably
suffer from inaccurate estimations and are difficult to interpret. Sparsification is one popularly-
used method to improve model interpretability in the literature. In this part, we extend to provide a
Bayesian treatment on the sparse PCSA model.

LASSO [19] encourages model sparseness by adding an ¢; regularizer, which is equivalent to a
Laplacian prior. In [4], the sparseness is adaptively controlled by assigning a hierarchical Normal-
Jeffreys (NJ) prior. Paper [9] showed that the NJ prior performs better than the Laplacian on sparse
PPCA. In this paper, we choose to adopt the NJ prior for learning a sparse PCSA model.

Different from Eq.(2), each column of A and B follows a hierarchical Normal-Jeffreys prior:

p(Ala?) HN (2.i|0,0'Ip,), plc H pes witha® = [af,...,a]",
’L 1

p(Bla?) HJ\/ (b.i|0,aP1p,), pla H B, with o [al,...,adB;]T, (8)
=1

which also encourages the variances in a* and a” of redundant dimensions to approach zeros.

The prior on 7 remains the same as in Eq.(2). Still under the variational inference framework,
we now let @ = {Z,Y,0} and Q(®) = Q(Y)Q(Z)Q(0) takes the conjugate form same as in

Eq.(4). In consequence, we optimize £(Q; a?,aP) = [ Q(O)log %‘g)”ﬁd@ w.rt. Q(O),

a? and af, where £(Q;a?,a?) < logp(X|a?, ). Posterior mference remains the same
as above, except that all appearances of (¢) and (p ) are replaced with [1/af',... 1/ ozj?l]T and



[1 1{1 af,...,1/al]" respectively. Then given Q( ), the variances o and o are updated via

«a [dlag(ATA) + 4] and af = Duts L [diag(BTB) + ¢7].

D1 +2
3.3 Modeling High-Order Tensor Data

Up till now, we have been talking about modeling X when it is a matrix, and this part extends the
PCSA model and its Bayesian inference to cover the cases when X is structured as a tensor. Tensors
are higher-order generalizations of vectors (1st-order tensors) and matrices (2nd-order tensors) [6].
Each dimension of a tensor is called as a mode, and the order of a tensor is determined as the number
of its modes. Let us denote tensors with open-face uppercase letters (e.g., X, Y, Z), in comparison
with the bold uppercase letters (e.g., X, Y, Z) for matrices. A kth-order tensor X can be denoted
by X € RP1xD2x...xDk where its dimensionalities in each mode are D1, Dy, . .., D}, respectively.
An element and a (1st-mode) vector of X are denoted by z;, ;,..;, and X.;,.. j, respectively, where
1< j;, < D;foreachi = 1,..., k. Moreover, the 1st-mode flattening transform of X, denoted by
F(X) € RD 1X (D 2Ds--Dx) is obtained by concatenating all the (1st-mode) vectors of X. Vice versa,
éDl’ . )-tensorization of a matrix X € RP1*(P2:-Dr) s defined as T(X, [Dy, ..., Dy]) €
1x Dy XDk , SO that ’JI‘ F(X),[Ds,...,Dy]) = X. An ith mode-shift transform is defined as
]1\/I(X7 i) € RPi XDip1 ... x DyxDix..ox D"—l, which shifts the modes sequentially in a cycle and until
the ith-mode in X becomes the 1st-mode in M (X ).

Based on the above definitions, the PCSA model describes a kth-order tensor data XP1%-- %Dk
through the following generative process: (i) for each mode ¢, all elements of the hidden tensor

(2) di XDjt1X...XDpXD1X...XxD;_1 .
Y e R&x&u are assumed i.i.d. drawn from N(yj R T (V9 OF

(ii) draw each element x;, j, ~ N(xj, | ZZ 1 gllyij{“ Geingie 1/7T)s ie, Xis actually
generated by a mode-shift co-subspace addition:

X:E+Zk:M(T (X(“,[Di,...,Dk,Dl,...,Di,l]),k+2—z’), 9)

where each X() = AGDF(Y®) and the matrix A®) € RP:*4 maps Y to X. Shortly named as
PCSA-k, this model has latent tensors {Y (¥ }*_, and parameters @ = {7} U {A()}%_ with latent
scales {d;}¥_,. When k = 2, PCSA-2 is exactly the PCSA in Section 2.1 on matrix data. Also, it
can be imagined as a kind of group Factor Analysis [24].

Same as Eq.(2), each column of A takes a hierarchical Normal-Gamma prior, and the Bayesian
inference in Section 2.2 can be trivially extended for covering PCSA-k model. Please see the details
in the supplementary materials. Except the involvement of the tensor structure and its operators,
there is another difference compared with the variational posterior updating based on a matrix X.
Remembering (Q(Y),Q(Z)) and (Q(A), Q(B)) pairwise were decoupled and updated by solving
Sylvester equations, we can decouple neither {Q(Y ()}, nor {Q(A ")}, into Sylvester equations
for the general k& > 2. Instead, sequentially for each i = 1,...,%, we update only Q(Y?) (or

Q(A ™)) and keep the remaining {Q(Y )}, (or {Q(A™)},;) fixed.

4 Experimental Results

4.1 Predicting Missing Entries in Weight Matrices

On Emotions and CAL500 Data. The proposed PCSA model can be viewed as a rather direct
extension of the PMA model, which showed advantages over GPR, LMC and PMF in [1]. Following
[1], the first experiment compares PCSA with PMA in filling the missing entries of a truncated log-
odds matrix in multi-label classification. For n samples and m classes, the class memberships can
be represented as an n X m binary matrix G. A truncated log-odds matrix X is constructed with
245 = cif g;; = 1 and &;; = —cif g;; = 0, where ¢ is nonzero constant. In experiments, certain
entries x;; are assumed to be missing and filled as ;; by an algorithm, and the performance is
evaluated by the class membership prediction accuracy based on sign(z;;).

Two multi-label classification datasets are under consideration, namely Emotions [22] and
CAL500 [23]. Already used in [1], the Emotions contains 593 samples with 72 numeric at-



tributes in 6 classes, and the number of classes that each sample belongs to ranges from 1 to 3. The
constructed X for Emot ions is thus 593 x 6. The CAL500 contains 502 samples with 68 numeric
attributes in 174 classes, and the min and max numbers of classes that each sample belongs to are
13 and 48 respectively. The constructed X for CAL500 is thus 502 x 174, i.e., its size is larger and
more balanced than the one for Emotions.

To test the capability in dealing with missing values, the proportion of the missing labels is increased
from 10% to 50%, with 5% as a step size. Instead of Gibbs sampling, the MAP inference is used in
PMA implementation for a fair comparison. After 10 independent runs on each dataset, Fig.1 report-
s the error rates for recovering the missing labels in the truncated log-odds matrices, by Bayesian
PCSA, Bayesian sparse PCSA and PMA. On the relatively unbalanced Emot ions data, PCSA out-
performs sparse PCSA when the missing proportion is no larger than 40%, while sparse PCSA takes
over the advantage when too many entries are missing due to the increasing importance of model
sparsity. On the more balanced CAL500 data, the sparse PCSA keeps a slight outperformance over
PCSA, again due to the sparsity. Moreover, PCSA and sparse PCSA always perform considerably
better than PMA on both datasets. Table 1 reports the average time cost, where sparse PCSA shows
a little quicker convergence than PCSA. Both are much quicker than PMA, since they do not need
to either invert large covariances or infer the factor during filling missing values (see Section 3.1).
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Figure 1: Error rates of 10 independent runs for
recovering the missing labels in Emot ions (left)
and CAL500 (right) data.

Table 1: Average time cost (in seconds)
on each dataset throughout 10 indepen-
dent runs and all missing proportions.

On MovieLens and JesterJoke Data. In many real applications, e.g. collaborative filtering,
the size of the matrix X is much larger than the above. We proceed to consider on two larger
weight datasets: the MovieLens100K data’ and the JesterJoke3 data [8]. Particularly, the
MovieLens100K dataset contains 100K ratings of 943 users on 1682 movies, which are ordinal
values on the scale [1,5]. The JesterJoke3 data contains ratings of 24983 users who have rated
between 15 and 35 pieces of the total 100 jokes, where the ratings are continuous in [—10.0, 10.0].

Recently in [12], Robust Bayesian Matrix Factorization (RBMF) was proposed by adopting a
Student-¢ prior in probabilistic matrix factorization, and showed promising results on predicting
entries on both MovieLens100K and JesterJoke3 data. Following [12], in each run we ran-
domly choose 70% of the ratings for training, and use the remaining ratings as the missing values
for testing. Given the true test ratings {r;}._; and the predictions {7, }._,, the performance is eval-

uated based on the rooted mean squared error (RMSE), i.e., RMSE = \/ % Zle(n —7¢)?, and
the mean absolute error (MAE), i.e., MAE = % 23:1 |re — 7.

After 10 independent runs, the average RMSE and MAE values obtained by (sparse) PCSA are
reported in Table 2, in comparison with the best results by RBMF (i.e., RBMF-RR) collected from
[12]. Since PMA runs inefficiently on high dimensional data as in Table 1, it is not considered to fill
the ratings in this experiment. It is observed that the performance by PCSA on predicting ratings is
comparable with RBMF. On both RMSE and MAE scores, the sparse PCSA further improves the
correctness and performs similarly to or better than RBMF.

Table 2: Average RMSE and MAE on MovieLens100K (left) and JesterJoke3 (right).

model RMSE MAE model RMSE MAE
PCSA 0.903  0.708 PCSA 4446 3.447
sparse PCSA 0.898 0.706 sparse PCSA 4413 3.434
RBMF-RR [12] 0.900 0.705 RBMF-RR [12] 4.454 3.439

*Downloaded from www.grouplens.org/node/73.



4.2 Completing Partially Observed Images

We consider two greyscale face image datasets, namely Frey [15] and ORL [17]. Specifically, Frey
has 1965 images of size 28 x 20 taken from one person, and the data X is thus a 560 x 1965 matrix;
ORL has 400 images of size 64 x 64 taken from 40 persons (10 images per person), and the data X
is thus a 4096 x 400 matrix. Applied on these matrices, the PCSA model is expected to extract the
latent correlations among pixels and images. In [13], Neil Lawrence proposed a Gaussian process
latent variable model (GPLVM) for modeling and visualizing high dimensional data. Recently a
Bayesian GPLVM [21] was developed and showed much improved performance on filling pixels in
partially observed Frey faces. This experiment compares PCSA with Bayesian GPLVM*.

While PCSA can utilize the partial observed samples, the Bayesian GPLVM cannot. Thus in each
run, we randomly pick ny images as fully observed, and a half pixels of the remaining images are
further randomly chosen as missing values. Same as [21], Bayesian GPLVM uses the n s images for
training and then infers the missing pixels. In contrast, (sparse) PCSA uses all images as a whole
matrix. In order to test the robustness, the ny for Frey is decreased gradually from 1000 to 200,
and for ORL is decreased gradually from 300 to 50. Performance is evaluated by the correlation
coefficient (CORR) and the MAE between the filled pixels and the ground truth.

On Frey and ORL data respectively, Fig.2 and Fig.3 report the CORR and MAE values of 10
independent runs by PCSA, sparse PCSA and Bayesian GPLVM. Both PCSA and sparse PCSA
perform more accurately than Bayesian GPLVM in completing the missing pixels, and PCSA gives
the best matching. Also, (sparse) PCSA shows promising stability against the decreasing fully
observed sample size ny, and this tendency is kept even when we assign all images are partially
observed (i.e., ny = 0), as exemplified by Fig.4. The results by Bayesian GPLVM deteriorate more
obviously, because the partially observed images have no contribution during learning. Furthermore,
the advantage of PCSA becomes more significant, as we shift from the Frey data for a single
person, to the ORL data for multiple persons. It indirectly reflects the importance of extracting the
correlations among different images, rather than keeping them independent. Sparse PCSA performs
worse than PCSA in this task, mainly because it leads to a little too many sparse dimensions.
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Figure 2: Results of 10 runs on Frey faces. Figure 3: Results of 10 runs on ORL faces.
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Figure 4: Reconstruction examples by PCSA when all images are partially observed: Frey (left)
and ORL (right). Three rows from top are true, observed, and reconstructed images, respectively.

4.3 Completing Partially Observed Image Tensor

We proceed to consider modeling the face image data arranged in a tensor. The dataset under consid-
eration is a subset of the CMU P IE database [18], and totally has 5100 face images from 30 individ-
uals. Each person’s face exhibits 170 images corresponding to 170 different pose-and-illumination
combinations. Each normalized image has 32 x 32 greyscale pixels, and the dataset is thus a tensor
X € R1024x30x170 "whoge three modes correspond to pixel, identity, and pose/illumination, respec-
tively. Figure 5 shows some image examples of two persons. The PCSA-k model (with & = 3 on the

*We use the code in http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/vargplvm/.



3rd-order tensor X) in Section 3.3 is expected to extract the co-subspace structures (i.e., correlations
among pixels, identities, and poses/illuminations respectively) and fill the missing values in X. In
[6], an M2SA method was proposed to conduct multilinear subspace analysis with missing values
on the tensor data, via consecutive SVD dimension reductions on each mode.

MR = S =] 5
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Figure 5: Typical normalized face images from the CMU PIE database.
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Figure 6: Typical missing images filled by PCSA-3. Original images (in the odd rows) are
randomly picked and removed, and PCSA-3 fills the images in the even rows.

Table 3: Average CORR (left) and MAE (right) of 10 runs
by PCSA-3 and M?SA on the CMU PIE data.

missing proportion:  10%  20%  30%

PCSA-3 0.937 0.926 0.908

MZ2SA 0.928 0914 0.893
missing proportion: 10% 20% 30%
PCSA-3 146 183 21.5
MZ2SA 17.8 21.9 2438

Here, the randomly drawn missing values are not pixels as in Section 4.2 but images. Compared with
the true missing images, the goodness of the filled missing images is evaluated again by CORR and
MAE. Still to test the capability in dealing with missing values, the proportion of the missing images
is considered as 10%, 20% and 30%, respectively. After 10 independent runs for each proportion, the
averages CORR and average MAE of filing the missing images by PCSA-3 and M2SA are compared
in Table 3. During implementing M2SA, the ratio of the subspace rank over the original rank is set
as 0.6 according to Fig.9 in [6]. As shown in Table 3, PCSA-3 achieves the better performance in
all cases. For demonstration, Fig.6 shows some filled missing images when the missing proportion
is 20%, which match the original images steadily well.

S Concluding Remarks

We have introduced the Probabilistic Co-Subspace Addition (PCSA) model, which simultaneously
captures the dependent structures among both rows and columns in data matrices (tensors). Vari-
ational inference is proposed on PCSA for an approximate Bayesian learning, and the posteriors
can be efficiently and stably updated by solving Sylvester equations. Capable to fill missing values,
PCSA is extended to not only sparse PCSA with the help of a Jeffreys prior, but also PCSA-£ that
models arbitrary kth-order tensor data. Although somewhat simple and not designed for any partic-
ular application, the experiments demonstrate the effectiveness and efficiency of PCSA on modeling
matrix (tensor) data and filling missing values. The performance by PCSA may be further improved
by considering nonlinear mappings with the kernel trick, which however is not that direct due to the
coupling inner products between the co-subspaces.
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