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ABSTRACT
Online social networks nowadays enjoy their worldwide prosperity,
as they have revolutionized the way for people to discover, to share,
and to distribute information. With millions of registered users and
the proliferation of user-generated contents, the social networks be-
come “giants”, likely eligible to carry on any research tasks. How-
ever, the giants do have their Achilles Heel: extreme data sparsity.
Compared with the massive data over the whole collection, individ-
ual posting documents, (e.g., a microblog less than 140 characters),
seem to be too sparse to make a difference under various research
scenarios, while actually they are different. In this paper we pro-
pose to tackle the Achilles Heel of social networks by smoothing
the language model via influence propagation. We formulate a so-
cialized factor graph model, which utilizes both the textual corre-
lations between document pairs and the socialized augmentation
networks behind the documents, such as user relationships and so-
cial interactions. These factors are modeled as attributes and de-
pendencies among documents and their corresponding users. An
efficient algorithm is designed to learn the proposed factor graph
model. Finally we propagate term counts to smooth documents
based on the estimated influence. Experimental results on Twitter
and Weibo datasets validate the effectiveness of the proposed mod-
el. By leveraging the smoothed language model with social factors,
our approach obtains significant improvement over several alterna-
tive methods on both intrinsic and extrinsic evaluations measured
in terms of perplexity, nDCG and MAP results.
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1. INTRODUCTION
Along with the prosperity of Web 2.0, online social networks

have emerged as a brand new medium in spotlight and revolution-
ized the way for people to discover, to share and to propagate infor-
mation via peer-to-peer interactions [13]. Among the popular web-
sites which provide social services, big names cover nearly every
corner of online social life and events: Facebook1 encourages pho-
to/video/blog sharing and leaving comments among friends, Twit-
ter2 provides succinct, fast spreading microblogs for news feeds,
Foursquare3 is a location based mobile social network which pro-
vides comments generally about places of interest.

In this sense, we are living in an era with “giants”: with incred-
ibly large number (in billions [1]) of affiliated users and the prolif-
eration of user-generated contents, the online social networks are
the mighty giants of our times, plausibly invincible and eligible to
carry on any kind of research tasks. In fact, people have conducted
a series of studies on social networks, such as search and retrieval
[31], information recommendation [36, 5], link prediction [12, 7]
and summarization [16, 38].

Although powerful as giants, social networks still suffer from
their weakness: extreme sparsity. For many textual related re-
searches such as retrieval, mining or recommendation etc., accurate
estimation of document language models are likely to be an essen-
tial part to the success of new methods and models. More observed
data generally allow people to establish a more accurate statistical
model. However, due to the real-time propagation on social net-
works, the posted documents are sometimes officially limited with-
in a restricted length to facilitate fast spreading (e.g., 140 characters
per tweet on Twitter). In this case, we have to estimate the language
model based on a small piece of texts (e.g., a tweet), while given
1https://www.facebook.com
2https://www.twitter.com
3https://www.foursquare.com
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limited data sampling, the language model estimation usually en-
counters with severe zero count problem: the maximum likelihood
estimator would give unseen terms a zero probability rather than
a reliable approximation. Therefore, sparsity actually becomes the
Achilles Heel of social networks for texts related studies, and we
aim at tackling the bottleneck.

Statistical language models have attracted much attention in the
information retrieval community due to their solid theoretical back-
ground as well as their success in a variety of tasks [25, 14]. Lan-
guage model smoothing is proposed to address the sparsity prob-
lem, and has been demonstrated to affect retrieval performance sig-
nificantly [40]. The quality of textual related tasks heavily relies
on proper smoothing of the document language model. Although
much work on language model smoothing has been investigated,
the intuitions behind are generally related to two major concerns: 1)
semantic association [34, 18, 30] and 2) positional proximity [41,
19, 34]. However, for social networks, there is much more infor-
mation hidden in social factors, which could be utilized to measure
language model smoothing. Therefore, social interaction could be
a third direction to investigate better language modeling.

The key idea for language model smoothing is to propagate ter-
m counts via certain ways of projection to other places where they
originally do not really exist. Hence we propose a socialized factor
graph model to investigate various factors which could have im-
pacts on language models, and measure the influence propagated
along the factor graph. According to the influence estimated, we
propagate the term occurrence in discounted counts and hence s-
mooth the original language models. To the best of our knowledge,
we are the first one to mapping social influence onto the textual di-
mension to facilitate socialized language model smoothing. Our 1st
contribution is to fuse a series of social attributes with textual infor-
mation and form an integrated objective function to balance both.
Intuitively, a smoothed language model should enhance the coher-
ence between terms with semantic association, and analogously for
those through social interactions. In other words, the terms that
are associated via close friends based on the social linkage could
have similar (or smoothed) probabilistic distributions: stronger so-
cial ties could also lead to more similar smoothed language models.

Another main technical challenge lies in how to define the at-
tributes, factors and formulate the propagation functions to model
the joint probabilistic factor graph. We explore several different
factors captured from posting document pairs and user pairs, and
evaluate their dependencies on each other. To be more specific, we
have examined features such as text similarity, text quality, social
status and social interactions and so on, and then grouped them as
factor functions. Factor functions are finally formulated into one
objective function to calculate the estimated influence and hence to
smooth the language model accordingly.

In this paper, we define the problem of Socialized Language
Model Smoothing (SLMS) based on the factor graphs. We eval-
uate the effectiveness of our proposed language model smoothing
method using two different social network datasets from Twitter
and Weibo4. Both of them are mainstream microblogs, one in En-
glish and the other one in Chinese. We apply intrinsic evaluation
measured in perplexity and extrinsic evaluation measured in nDCG
and MAP in our experimental setups. Experimental results show
that our proposed influence propagation based language model s-
moothing on factor graphs consistently outperforms the baseline

4https://www.weibo.com

smoothing methods, and the improvement is significant, which in-
dicates the effectiveness of our approach. In other words, the social
factors along with the textual information in combination could to
some extent tackle the Achilles Heel of social networks.

The rest of the paper is organized as follows. We start by intro-
ducing the problem definition and then the influence propagation
based language model smoothing on factor graphs, using textual
and social information in combination. We describe the experi-
ments and evaluation in Section 4, review previous works in Sec-
tion 5 and finally draw the conclusions.

2. PROBLEM FORMULATION
In this section, we introduce some notations and representations

necessary for language modeling and smoothing on social network-
s, and then elaborate the problem of Socialized Language Model
Smoothing (SLMS) via factor graph model.

Definition 1. (Document and Collection.) Given a posting
document d0 to smooth, we have a whole document collection
D = {d1, d2, . . . , dn} as the background set to smooth d0.

In the context of web documents on social networks, e.g. Twit-
ter or Weibo, etc., each posting document is written by a partic-
ular user. Compared with traditional documents that are defined
merely based on plain texts, these posting documents are associated
with more interesting elements. For instance, social networks sup-
port particular relationships established among users, i.e., follower-
followee on Twitter. Also, there are social interactions spread be-
tween the posting documents, e.g., replying, sharing and reposting
documents. We hence have a hidden network structure behind the
document collection. User activities implicitly reflect more infor-
mation behind the documents to model the textual properties. We
believe that the social relationships would help to better describe
the text information. Thus, integrating the document contents and
social information can disclose a more accurate estimation of the
document language model to smooth. In this paper, we mainly em-
ploy the microblogging service as the basis for our study and hence
make a good utilization of its characteristics for illustration.

Specifically, given a posting document di, and its associated user
ui, together with the associated user networks, we give the follow-
ing definition of socialized augmentation network.

Definition 2. (Socialized Augmentation Network.) We have
the heterogeneous graph of posting documents and their correspond-
ing users. We denote the whole graph G as a collection of nodes
V and edges E, and have G=(V,E)=(Vu, Vd, Eu, Ed, Eu,d). It
is obvious to see that there are three kinds of relationships asso-
ciated: 1) (Vd, Ed) is a weighted directed graph between posting
document pairs, where Vd = {di|di ∈ D} is the posting collec-
tion with a size of |D|, and Ed is the set of relationships, indicating
the influence from source postings to the target postings, which is
our goal to estimate; 2) (Vu, Eu) is also a weighted directed graph
indicating the social ties between users. Vu = {ui|ui ∈ Vu} is
the set of users with a size of |Vu|. Eu is established by the so-
cial behavior among users, which will be described in Section 3.2;
3) (Vu,d, Eu,d) is the unweighted bipartite graph representing au-
thorship of posting documents and users. Vu,d = Vu ∪ Vd. Edges
in Eu,d connect each posting document with all of its authors and
help mapping from social dimension to textual dimension. Usually
a posting document d is written by only one user u.

Now we give a formal definition of our proposed SLMS problem:
Input: Given the entire document set D, and the socialization

augmentation networks, we aim to smooth the language model of
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the target document, denoted as P (w|d0), based on the influence
from all other documents di where {di|di ∈ D}.

Output: The smoothed language model of P (w|d+0 ) for every
original document d0.

With these preliminaries, we show that relationships from doc-
ument pairs, user pairs and user-document pairs can be all formu-
lated and hence mapped as the instances on the factor graph using
potential functions to form a combined objective function.

3. METHODOLOGY
In this section, we propose a socialized factor graph to com-

pute influence propagation, and formulate the socialized language
model smoothing problem into a unified learning framework. The
model simultaneously incorporates all resources (i.e., texts and so-
cial information) into the augmentation contexts to generate high-
quality estimation for document language models after smoothing.

The socialized language model smoothing problem contains sev-
eral sub-problems: 1) document pair influence measurement, 2) us-
er pair influence measurement, and 3) variable pair influence mea-
surement. We aim to quantify the correlation between document
pairs based on semantic association derived from contents, while
also we intend to augment the pairwise relationship between docu-
ments from the interactions of users on social level. Social contexts
contain rich information about the document pairs. We also analyze
the dependency of variables on each other based on the same au-
thorship. Finally, we use the estimated influence propagation on the
documents to smooth the original language model, and then apply
to a series of related research tasks. The framework is illustrated in
Figure 1, and the details are explained later.

3.1 Proposed Model
Factor graph assumes observation data are cohesive on both fea-

tures and relationships between each other [11]. It has been suc-
cessfully applied in many applications, such as social influence
analysis [28, 27], social relationship mininig [7, 33], and linked
data disambiguation [12, 32]. In this work, we formulate the so-
cial features and associated networks into the factor graph model,
which is shown in Figure 1. Given the document pairs, let Ed be
the pairwise links between two posting documents, and Eu be the
user social ties. The input of the factor model is the whole doc-
ument collection and the socialized augmentation contexts, and a
target document d0 to smooth. Both pairs are digested into the at-
tribute factors, which are observable. There is also a set of hidden
variables Y = {yi}ni=1, representing the influence inferred from the
observed pairs and coordination among the hidden variables.

We define two feature functions in the proposed factor model:
attribute factor and dependency factor.
• Attribute Factor. The influence from a posting document to

another could be estimated by some attributes (represented as x),
which refer to features that are inherent to the documents and their
authors. In general, we define a series of features for the document
pairs and user pairs. These features include the textual based con-
tents such as text quality, similarity and popularity, as well as the
social ties such as user relationships, interactions, authoritativeness
and so on. Details of the defined features are given in the nex-
t section. We use the feature function f(yi, xi) to represent the
posterior probability of label yi given xi contained in the pairwise
information among the heterogenous nodes.

We define this type of potential function as a linear exponential
function and to estimate the significance of each feature, we intro-

Figure 1: Graphical representation of the socialized augmenta-
tion factor graph. The left part shows the heterogeneous graph,
consisting of the document collection and users with social ties.
The right part indicates the decomposable factor graph. The
top layer shows the user pairs, which could be instantiated into
several user pairs identified by different document pairs on the
middle layer. The lower layer indicates the influence to estimate
between document pairs. There are factor functions within the
same layer (g(.)) and factor functions across layers (f(.)). In
the final step, The language models are smoothed based on the
influence estimated on the lower layer. Some links between doc-
uments and users are omitted to keep concise.

duce a vector of weight variable α for each feature c, and formally
we could define the attribute factors as the local entropy as follows:

fi(yi, xi) =
1

Zα
exp{

∑
c

αcfi,c(yi, xi,c)} (1)

where xi,c is the c-th attribute to calculate the influence. fc(.) is
the function to calculate the result from the c-th feature and αc is
the corresponding weight. Zα is a normalization factor.
• Dependency Factor. As proposed, we introduce factors that

are capable of handling multiple hidden variables on the variable
layer, to characterize the dependencies among the posting docu-
ments generated by the same user. The dependency factor is to
propagate the social influence among all posting documents from
the same user. The heuristics is that if document d0 is influenced by
document di. It is highly possible to be influenced by the document
dk from the same user, which is actually a belief propagation.

To capture this intuition, we define the potential function to mod-
el the correlation of a candidate variable yi with another candidate
variable yk in the factor graph. The function is defined as:

g(yi, yk) =
1

Zik,β
exp{βkgk(yi, yk)} (2)

where g(.) is a function indicating whether two variables are corre-
lated or not. Note that if g(yi, yk)=0, there will be no dependency
between the two variables. In other words, the two variables are
not correlated. Actually we can group the document set into clus-
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ters and each cluster is associated with one user, and we use Yi to
denote the cluster where yi is in. Hence, for ∀yk ∈ Yi, yi has
dependency on yk. We further revise Equation (2) as:

gi(yi, Yi) =
∏

yk∈Yi

g(yi, yk) =
1

Zβ
exp{

∑
yk∈Yi

βkgk(yi, yk)}

(3)
Again, Zβ is the normalization factor.
In this way, the influence estimation could be viewed as a se-

quence labeling process [38], i.e., the judgment on a certain pair is
affected by the “similar” pairs (i.e., the documents written by the
same user in this work), which is exactly the intuition for language
model smoothing [21].
• Objective Function. In general, the attribute factors capture

the potential influence from document/user pairs and the dependen-
cy factor captures correlations between variables. In Equation (1)
we define the features fc(.) for all attributes, where αc is the corre-
sponding weight. In Equation (3), we define the correlation where
βk indicates the weights. Let Y and X be the sets of candidate vari-
ables and attribute variables respectively, we define a conditional
probability encoded within the factor graph model by multiplying
all potential functions and can be written as

Pθ(Y |X) =
∏
i

fi(yi, xi)gi(yi, Yi) (4)

Hence, by integrating the defined factor functions, and also fol-
lowing the labeling assumption [10], we can define the following
log-likelihood over all the undetermined labels of all instances, i.e.,
Y ={yi}ni=1, where the objective function summing up likelihood:

O(θ) = logPθ(Y |X)

=
∑
i

∑
c

αcfi,c(yi, xi,c) +
∑

yk∈Yi

βkgk(yi, yk)− logZ

(5)
Z = ZαZβ is the normalization factor, which sums up the con-

ditional likelihood of Pθ over all instances. θ is the collection of
parameters indicating weights, i.e., θ = {α} ∪ {β}.

Calculating the marginal distribution for each factor (in deriving
the log-gradient of the objective function) requires a loopy sum-
product inference algorithm. With the learned parameters, we may
estimate an undetermined influence between document pairs in the
test set by inferring the influence propagated and then smooth lan-
guage models accordingly. The inference algorithm is introduced
in section 3.3.

3.2 Function Definitions
Many features have been designed for document correlation and

social associations among users in previous literature. In this pa-
per, we investigate 8 features or factors. Besides, some features that
are widely used in traditional text analysis, we also utilize several
features extracted from users’ social interactions, for instance, fol-
lowing behaviors, social status, and other statistics. We start from
the feature definition first.

3.2.1 Attributes
We use the potential functions in the factor graph model to learn

the potential influence for a document di to shade on d0. Referring
to Equation (1), we define the attribute functions as follows:

Text Similarity. It is intuitive that the textual similarity between
two documents play an important role in language model smooth-
ing [34, 18, 30]. Similar documents should be smoothed with high-

er weights since it is more consistent with their existing models.
We use the cosine similarity between two unigram models:

fsim =
d0 · di
||d0||||di||

(6)

Text Quality. We also measure the text quality of documen-
t di. It is not a good idea to smooth the target language model
using a piece of text with low quality. Hereby we use the Out-Of-
Vocabulary (OOV) ratio to measure the textual quality. The lower
OOV ratio, the higher quality would be. Against the vocabulary
from the official news corpora [42], OOV in microblogs often refers
to a set of misspellings, informal terminologies, and irregular sym-
bols.

foov = 1− |{w|w ∈ (di ∩ OOV)}|
|di|

(7)

Technically, the measurement of text quality is not a pairwise
function strictly between d0 and di, but the criteria is indeed a prac-
tical indicator to decide whether or not to propagate the influence
from di to d0. We also include similar criteria for user pairs.

Posting Popularity. It is intuitive that a popular posting docu-
ment is more likely to influence on many other posting documents.
We use the aggregated numbers of social interaction (i.e., replies
and retweets) as the approximation of popularity for di.

Social Status. Since micro-blogging service requires no recip-
rocal linkage among users, it is natural to assume that the social
status is asymmetric between two users. A followee is more likely
to influence the followers. This feature is represented by nominal
values, e.g., ‘1’ - the user of d0 follows the user who writes di; ‘-1’
- the user of d0 is followed by the user who writes di; ‘0’ - the two
users have no direct follow behaviors.

User Similarity. We presume that people within the same social
circle will have a larger probability to influence each other. Stil-
l, due to the asymmetry, we measure the Jaccard distance of the
common followees of two users as their similarity. We use func-
tion F(u) to denote the social circle set for the user u. The F(.) of
“followee” can be replaced by “followers” or extended to “friends”.

fusim =
|F(author(d0)) ∩ F(author(di))|
|F(author(d0)) ∪ F(author(di))|

(8)

Interaction Strength. We also include the strength of interac-
tions between the user pairs. It is possible that if two users have
frequent social interactions, they are likely to share the writing
preference on the term usage. Due to the asymmetrical social re-
lationship, we only count the times for author(d0) to repost from
author(di) to measure how likely for the user to be influenced.

User Impacts. On social networks, some users are intrinsically
have much larger influence on the others, e.g., sports stars, polit-
ical celebrities, etc. Their words are usually copied, quoted and
spreaded. There are many different ways to evaluate the user im-
pacts, while we use the classic PageRank [23] scores to denote user
impacts. The linkage based PageRank algorithm is quite suited to
the scenario of user impact measurement. With a large number of
in-links, the user is almost guaranteed to have high social impacts.

3.2.2 Dependency
As for the dependency function between candidate variables, re-

ferring to Equation (3), we define the function g(.) for two candi-
date variables associated by the same user authorship in Yi, and let
the corresponding variables be yi and yk, respectively. The depen-
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dency function aims at encoding the influence propagation between
posting documents from the same user, defined as follows.

gk(yi, yk) = I{author(di) = author(dk)} × fsim(di, dk)

= I{author(di) = author(dk)} ×
di · dk
||di||||dk||

(9)
The boolean indicator I(.) is 1 when author(di)=author(dk)

and 0 otherwise. We assume that two candidate variables will have
higher correlation if they represent documents written by the same
user. The correlation should also be affected by text similarity.

3.3 Model Inference
There are two scenarios for parameter estimation. If we do not

have any labels of influence values among the candidate random
variables, we can only propose to optimize the factor graph model
via a two-step iterative procedure. At first, all of the model param-
eters (i.e., θ) are randomly initialized. Given the parameters, we
infer the marginal probabilities of candidate variables. Then, given
the marginal probabilities, we are able to evaluate experimental per-
formance (Section 4.3) with respect to a set of held-out validation
data, and search for better model parameters until convergence.

Unfortunately, this inference algorithm is way too indirect, de-
pending on external evaluation metrics. Besides, it takes a longer
time to converge. It is impossible to manually label influence val-
ues, but we do have partial labels available due to the special phe-
nomenon of repostings on Twitter and Weibo! For each retweeted
pairs, they have exactly the same contents and hence we label the
influence as 1. With the partially labeled variables, we can now
estimate the parameter configuration θ = {α, β} to maximize the
log-likelihood objective function O(θ) = logPθ(Y |X) approxi-
mately with gradient based methods, e.g., stochastic gradient de-
scent [2].

θ∗ = argmax θ O(θ) (10)

Algorithm 1: Learning algorithm on the factor graph
Input: a factor graph G, and the learning rate η.
Output: Estimated parameters θ = {α, β}.
Initialize all elements in θ ← 1
begin

repeat
Compute potential function values S according to
Equations (1)-(9)
Run inference method using current θ to get Pθ(Y |X)
for {α, β} ∈ θ do

Compute gradient of ∂O(θ)
∂θ

using S according to
Equation (13).

∂O(θ)
∂θ

= EPθ(Y |Y L)S − EPθ(Y )S

Update parameter θ with the learning rate η:

θ = θ + η · ∂O(θ)
∂θ

until Convergence;

Based on Equations (5), the probability distribution P (Y |X) can
be written in a more brief format as follows:

P (Y |X) =
1

Z
exp{θ

∑
i

s(yi)} =
1

Z
exp{θ · S} (11)

where s(yi) = (fi(yi, xi), gi(yi, Yi)) and S =
∑

i s(yi).
In this way, the objective function could be written as

O(θ) = logP (Y L|X) = log
∑

Y |Y L

1

Z
exp{θS}

= log
∑

Y |Y L

exp{θS} − log
∑
Y

exp{θS}
(12)

where Y L denotes the known labels and Y |Y L is a labeling config-
uration of Y inferred from Y L. In order to maximize the objective
function, we adopt the gradient decent method. We calculate the
gradient for each parameter θ.

∂O(θ)
∂θ

=
∂(log

∑
Y |Y L exp{θS} − log

∑
Y exp{θS})

∂θ

=

∑
Y |Y L exp θS · S∑

Y |Y L exp θS
−

∑
Y exp θS · S∑

Y exp θS

= EPθ(Y |Y L)S − EPθ(Y )S

(13)

EPθ(Y |Y L)S and EPθ(Y )S are two expectations of S. The value
of S can be obtained naturally using approximated inference algo-
rithms, such as Loopy Belief Propagation (LBP) algorithm [39],
Gibbs Sampling [4] or Contrastive Divergence [3]. One challenge
here is that the graphical structure in the model can be arbitrary and
may contain cycles, which makes it intractable to directly calculate
the marginal distribution. We chose Loopy Belief Propagation due
to its ease of implementation and effectiveness. It should be noted
that the proposed ranked-margin algorithm can be exploited not just
for graphical models, but also for other learning models as long as
the gradient of the expected difference can be calculated. The gen-
eral idea is to use two steps, one step for calculating EPθ(Y |Y L)S
and the other step for calculating EPθ(Y )S, to estimate the gradient
of a parameter θ w.r.t. the objective function.

With the marginal probabilities, the gradient can be obtained by
summing over all undetermined labels. It is worth noting that we
need to perform the LBP process twice in each iteration, one time
for estimating the marginal distribution of unknown variables yi =
?, and the other time for marginal distribution over all variables.
Finally with the gradient, we update each parameter with a learning
rate η. The learning algorithm is summarized in Algorithm 1. After
learning the optimal parameters θ, we need to apply the inference
algorithm again to compute the marginal probability to infer the
unknown labels by finding a label configuration which maximizes
the probability P (Y |X). Finally, each node in the factor graph is
assigned with label that maximizes the marginal probability.

Y ∗ = argmaxY |Y L P (Y |X) (14)

3.4 Distributed Learning
As a social network may contain millions of users and hundreds

of millions of posting documents generated by users, it is benefi-
cial to learn the factor graph from the full social network data using
multiple machines rather than a single one. To address this chal-
lenge, we deploy the learning task on a distributed system under
the map-reduce programming model [6]. Within every individu-
al framework, our target is to smooth the document d0 based on
the subset of influential variables (e.g., group of variables as Yi),
which makes the graph easy to divide: it is natural to extend the
individual-centric method to a distributed environment.

Map-Reduce is a programming model for distributed processing
of large data sets. In the map stage, each machine (called a process
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Figure 2: Distributed experimental environment setups. The
whole graph is distributed to several computing nodes and the
shaded nodes indicate inactive document pairs on that node.

node) receives a subset of data as input and produces a set of inter-
mediate values. In the reduce stage, each process node merges all
intermediate values associated with the same target documents and
outputs the final computation results. Users specify a map function
that generates a set of intermediate values, and a reduce function
that merges all intermediate values.

In the process of distributed learning, the whole graph is first di-
vided into several subgraphs that are assigned to slave nodes. Then
LBP is performed on each slave to compute the marginal probabili-
ties and the parameter gradient. There is a master node collects and
sums up all gradients from subgraphs, and updates parameters by
gradient descent method. For details, please refer to [29, 28].

3.5 Language Model Smoothing
Given the estimated influence from all other posting documents,

we now propose a term-level language model smoothing approach
based on influence propagation. Each word propagates the evi-
dence of its occurrence to other documents based on the estimat-
ed influence. To capture the proximity heuristics used in language
model smoothing [21, 19, 30, 34], we assign “close-by” words with
higher propagated counts than those ones which are “far away”
from each other. In other words, most propagated counts come
from “nearby” terms, while higher influence indicates closer prox-
imity [37, 35, 43]. Theoretically, all positions can have a full vo-
cabulary with different term distributions: each word has a certain
non-zero probability to occur in each of the posting document, as if
all words had appeared with a variety of discounted counts, while
in practical scenarios, we still choose to filter noisy terms with ex-
tremely low counts.

In general, we smooth a specific posting document using the
background information from the document collection. Consider
the traditional way of concatenating the document language mod-
el P (w) and the background PB(w) in a weighted linear combi-
nation, i.e., P ′(w)=(1 − λ)P (w)+λPB(w). The tradeoff is bal-
anced by the damping factor λ. Compared with this arbitrary and
equal weighting for all documents, our socialized language model
smoothing based on propagated influence is in a finer-granularity.

The idea for term projection is that if a word w occurs at an in-

fluential posting document, we would like to assume that the highly
influenced document will also have the words occurred, with a dis-
counted count. The larger the influence estimated, the larger the
propagated term counts there will be. Note that each propagated
count has a value less than 1.

Let d0 = {w1, w2, . . . , w|d0|} where |d0| is the length of the
document. We use c(w, d0) to denote the original term count with-
in document d before smoothing. If w does not occur in d0, c(w, d0)
will be 0, which is a zero count problem. We have calculated the
values of Y ={yi}ni=1 from the last section, indicating the influence
from the di to the document d0 to smooth. The function actually
serves as a discounting factor for terms measured in pairwise. We
use c′(w, d0) to denote the total propagated count of term w from
its occurrences in all other documents, i.e.,

c′(w, d0) = (1− λ)c(w, d0) + λ
∑
yi∈Y

yi · c(w, di) (15)

Even if c(w, d0) is 0, c′(w, d0) may be greater than 0.
Based on term propagation, we have a term frequency vector
{c′(w1, d0), . . . , c

′(wv, d0)} for the virtual document d+0 extend-
ed from document d0. We can see that term information with cal-
culated influence has been stored in this vector. Thus the language
model of this new smoothed virtual document can be estimated as

P (w|d+0 ) =
c′(w, d+0 )∑

w′∈V c′(w′, d+0 )
(16)

where V is the vocabulary set and
∑

w′∈V c′(w′, d+0 ) is the length
of the virtual document after smoothing.

4. EXPERIMENTS AND EVALUATION

4.1 Datasets and Experimental Setups
Utilizing the data crawled from the online social networks through

the following linkage, we construct 2 datasets of microblogs and
the corresponding users, which form the heterogeneous network.
The crawler monitored Twitter data from 3/25/2011 to 5/30/2011,
and Weibo data from 9/29/2012 to 11/30/2012. We use roughly
one month as the training set and the rest as testing set. The details
of the data are listed in Table 1 and #Repost denotes the number
of reposting (namely “retweeting” in Twitter or “转发” in Weibo)
which we used as labels in our training.

Table 1: Statistics of the social network datasets.
#User #Document. #Link #Repost Lang

Twitter 9,449,542 364,287,744 596,777,491 55,526,494 EN
Weibo 3,923,021 216,302,309 258,543,931 101,024,128 CN

Pre-processing. Basically, the social network factor graph can
be established from all posting documents and all users, however,
the data is noisy. We first pre-filter the pointless babbles [1] by ap-
plying the the linguistic quality judgements (e.g., OOV ratio) [24],
and then remove inactive users that have less than one follower or
followee and remove the users without any linkage to the remain-
ing posting documents. We remove stopwords and URLs, perform
stemming and segmentation (for Chinese texts), and build the graph
after filtering, and run LBP to obtain the marginal probabilities. We
establish the language model smoothed by the estimated influence.
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Hashtag Clusters Numbers Notes
1. apple 42,528 Tech: apple products
2. nfl 40,340 Sport: American football
3. travel 38,345 General interst
4. mlb 38,261 Sport: baseball
5. fashion 30,053 General interest
1. 中国好声音 72,184 TV show: voice of China
2. 舌尖上的中国 71,169 Food: Chinese foods
3. 微博 63,154 Tech: Microblog service
4. 爱情公寓 57,783 TV drama: culture
5. 小米 49,428 Tech: smart phone

Table 2: Clusters of hashtag topics explored in our study.

4.2 Algorithms for Comparison
To illustrate the performance of our approach, we implemen-

t several alternative algorithms as baselines to compare with our
method. The baselines include naive smoothing, smoothing by se-
mantics, and positional smoothing from very recent studies. For
fairness we conduct the same pre-processing procedures for all al-
gorithms.

The first baseline is based on the traditional language model:
LM is the language model without smoothing at all. We include
the plain smoothing of Additive (also known as Add-δ) smoothing
and Absolute Discouting which decreases the probability of seen
words by subtracting a constant [22]. We also implement sever-
al classic strategies smoothed from the whole collection as back-
ground information: Jelinek-Mercer applies a linear interpolation,
and Dirichlet employs a prior on collection influence [40, 14].

Beyond these simple heuristics, we also examine a series of se-
mantic based language model smoothing. The most representative
two semantic smoothing methods are the Cluster-Based Document
Model (CBDM) proposed in [18], and the Document Expansion
Language Model (DELM) in [30]. Both methods use semantically
similar documents as a smoothing corpus for a particular documen-
t: CBDM clusters documents beforehand and smooths a document
with the cluster where it belongs to, while DELM finds nearest
neighbors dynamically for the document as the smoothing cluster.
However, both methods are only based on document-level semantic
similarity. We also include Positional Language Model (PLM) pro-
posed in [19], which is the state-of-art positional proximity based
language smoothing. PLM mainly utilizes positional information
without semantic information. We implemented the best report-
ed PLM configuration. We compare our proposed social language
model smoothing (SLMS) against these baselines.

4.3 Evaluation Metric
It is generally difficult to examine the effect of language model

directly. For most of the language model smoothing research, the
performance is measured based on extrinsic evaluations (e.g., re-
trieval) [34, 30, 19]. We include two extrinsic evaluations in this
study, i.e., standard posting document retrieval and recommenda-
tion, but first we aim to evaluate the information contained in the
language itself. Hence we use language perplexity to evaluate the
smoothed language model.

4.3.1 Intrinsic Evaluation
Our first set of experiments involved intrinsic evaluation of the

“perplexity” approach based on a clustering scenario. The experi-

mental procedure is as follows: we manually selected 10 topics (5
for each dataset) based on popularity (measured in the number of
postings) and to obtain broad coverage of different types: sports,
technology, cultures, and general interests. These topics are shown
in Table 1. We group the posting documents with the same hashtag
‘#’ into clusters, and then we remove the hashtags and compute its
perplexity with respect to the current topic, defined as

pow
[
2,− 1

N

∑
wi∈V

logP (wi)

]
Perplexity is actually an entropy based evaluation. In this sense,
the lower perplexity within the same topic cluster, the better per-
formance in purity the topic cluster would have.

4.3.2 Extrinsic Evaluation
In addition to the intrinsic perplexity-based measurements on

hashtag clusters, we also evaluate the effectiveness of our smoothed
language models on the tasks of microblog search, and information
recommendation. Here are a few more details about our experi-
mental setups. For the retrieval task, to avoid the laborious work
of building a test collection by hand, we focus our evaluation ef-
forts on documents that contained at least one hashtag. Given the
10 topics mentioned above, we process all documents with hash-
tags as follows: first, the ground truth labels (i.e., the hashtags) are
removed from the documents. We then use the hashtag terms as
queries to search for relevant posting documents. The ones orig-
inally with the hashtag are regarded as relevant while others not.
Note that, the retrieval performance under this experimental setting
is to some extent a lower bound, since some of the retrieved docu-
ments could be false negative: they do not contain the hashtag but
they are indeed relevant.

For the microblog recommendation task, we apply the recom-
mendation framework described in [36] using the same experimen-
tal setups. For a specific user, we recommend posting documents
based on their previous posting documents and their social behav-
iors using the graph co-ranking algorithm [36]. The language mod-
els for the documents are established after smoothing, and the rec-
ommendation list predicts which documents will be reposted in the
test data. Again, to save the efforts by human evaluators, we use
the automatic evaluation of microblog recommendation. The per-
formance is evaluated by comparing with the ground truth, which
indicates whether the posting has been retweeted or not. Also the
automatic evaluation sketched above does not assess the full po-
tential of the recommendation system. For instance, it is possible
for the algorithm to recommend documents of interest to users but
without recommendation, the documents are outside of their scope.

For both the retrieval and the recommendation task, we return the
results as a ranking list given a search query or a designated user,
and the ranking list is check by examining the relevant documents
or the reposted documents. We measured ranking performance us-
ing the normalized Discounted Cumulative Gain (nDCG) [9].

nDCG(k) =
1

N∆

∑
|∆|

1

Z∆

k∑
i=1

2ri − 1

log(1 + i)

where N∆ denotes the total numbers of queries or users (∆=q for
queries and ∆=u for users), k indicates the top-k positions in a
ranked list, and Z∆ is a normalization factor obtained from a per-
fect ranking for a particular query/user. ri is the judge score (i.e.,
1: relevant/reposted, 0: irrelevant/unretweeted) for the i-th posting
document in the ranking list for the query/user.
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Topic EN-1 EN-2 EN-3 EN-4 EN-5 CN-1 CN-2 CN-3 CN-4 CN-5

LM 15851 11356 10676 7584 8257 22306 17441 10204 16887 9237
Additive 15195 10035 10342 7198 7924 19139 16221 10108 16342 9003
Absolute 15323 10123 10379 7230 8093 19403 16932 9984 16681 9111

Jelinek-Mercer 14115 10011 10185 9818 8003 20025 16201 10049 16001 8728
Dirichlet 13892 9516 10138 7124 7345 19712 16361 9119 15886 8550

PLM 13730 9925 10426 6913 7512 19965 15230 9865 14219 8981
CBDM 12931 9845 9311 6893 7510 19129 15194 9323 15113 7906
DELM 11853 9820 9513 7133 7348 18809 14165 9510 13985 7621
SLMS 10788⋆ 9539⋆ 8408⋆ 5817⋆ 7109⋆ 18169⋆ 15375⋆ 9194⋆ 13212⋆ 6919⋆

Table 3: Perplexity of language models under different hashtag topic clusters. ‘⋆’ indicates that we accept the improvement hypoth-
esis of SLMS over the best rival baseline by Wilcoxon test at a significance level of 0.01.

We also evaluate the system in terms of Mean Average Precision
(MAP) [20] under a similar judge assumption as above:

MAP =
1

N∆

∑
|∆|

1

Z∆

k∑
i=1

Pi × ri

Here N∆ is the number of documents associated with the query
or user, Z∆ is the number of relevant documents retrieved or rec-
ommended, and Pi is the precision at i-th position for the query/user.

4.4 Overall Performance
We compare the performance of all methods of language model

smoothing in the two datasets, measured in the intrinsic evaluation
of perplexity, as well as the extrinsic evaluation of retrieval and rec-
ommendation. Table 3-5 list the overall results against all baseline
methods. Our proposed method SLMS shows clearly better per-
formance than the baseline methods. On average, SLMS achieves
an average +23.8% improvement compared with other methods in
terms of nDCG and MAP, and an average -18.6% improvement in
terms of language perplexity in hashtag topic clustering. The ad-
vantage of our proposed method mainly comes from the two dimen-
sions of textual influence and social influence propagated through
the documents on social networks. We use a myriad of attribute
factors and dependencies to control the influence propagation on
the factor graph to make a more reliable estimation.

Language model without any smoothing performs worst as ex-
pected, and once again demonstrates the severe weakness of data
sparsity on social networks - the Achilles Heel! Simple intuition
based methods such as additive smoothing does not help a lot, since
it only arbitrarily modifies the given term counts straightforward to
avoid zero occurrence, which is proved to be insufficient. Abso-
lute smoothing has a comparable performance as additive, due to
the similar idea to reduce term counts naively. Jelinek-Mercer and
Dirichlet methods are more useful since they include the informa-
tion from the whole collection as background language models, but
they fail to distinguish documents from documents and use all of
them equally into smoothing. PLM offers a strengthened language
model smoothing strategy within each posting document based on
positions, and smooth the terms outside of the posting document
formulating the background collection into a Dirichlet prior. The
performance of CBDM and DELM indicates a prominent improve-
ment, and proves that semantic attributes included into the smooth-
ing process really make a difference. Both of the smoothing meth-
ods cluster documents, and use the clustered documents as a bet-
ter background. However, none of these methods has made use of
the social factors during the language model smoothing, while our

nDCG@5 nDCG@25 nDCG@50 MAP

LM 0.271 0.298 0.319 0.328
Additive 0.295 0.320 0.331 0.385
Absolute 0.283 0.328 0.378 0.367

Jelinek-Mercer 0.331 0.376 0.361 0.503
Dirichlet 0.365 0.387 0.408 0.555

PLM 0.392 0.413 0.399 0.532
CBDM 0.388 0.397 0.426 0.546
DELM 0.404 0.438 0.489 0.566
SLMS 0.463⋆ 0.492⋆ 0.503⋆ 0.600⋆

Table 4: Retrieval performance against baselines. ‘⋆’ indicates
that we accept the improvement hypothesis of SLMS over the
best baseline by Wilcoxon test at a significance level of 0.01.

nDCG@5 nDCG@25 nDCG@50 MAP

LM 0.506 0.534 0.570 0.603
Additive 0.521 0.572 0.583 0.632
Absolute 0.525 0.581 0.585 0.635

Jelinek-Mercer 0.543 0.583 0.591 0.646
Dirichlet 0.562 0.609 0.621 0.639

PLM 0.558 0.602 0.619 0.653
CBDM 0.538 0.616 0.647 0.651
DELM 0.557 0.645 0.669 0.660
SLMS 0.617⋆ 0.662⋆ 0.689⋆ 0.673⋆

Table 5: Recommendation performance. ‘⋆’ indicates that we
accept the improvement hypothesis of SLMS over the best rival
baseline by Wilcoxon test at a significance level of 0.01.

method suggests social attributes, such as interactions and relation-
ships, do have an impact on texts through influence propagation.

Having demonstrated the effectiveness of our proposed methods,
we carry the next move to investigate more analysis on parameter
settings, factor contributions, convergence and distributed learning
analysis, which lead to some interesting observations.

4.5 Analysis and Discussions

4.5.1 Parameter Settings
In the experiments, as we crawled data from two consecutive

months, we learn parameters θ={α, β} on the data from the first
month, using the labels by the reposting behavior, and examine
the performance on the testing data from the next month. There
is another free parameter λ in Equation (15) to balance the origi-
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Figure 3: Performance comparison measured in perplexity, nDCG@25, and MAP in hashtag topic clustering, retrieval and recom-
mendation tasks for feature analysis. “+factor(s)” means the performance of individual factor (group) in isolation.

Figure 4: Performance comparison measured in perplexity, nDCG@25, and MAP in hashtag topic clustering, retrieval and recom-
mendation tasks. “-factor(s)” means the performance of individual factor (group) when dropped out from the all-feature model.

nal language model and the smoothing language model. As we opt
for more or less generic parameter value as we do not want to tune
our method too much to suit the specific datasets at hand, we ex-
periment with value ranging from 0 to 0.9, with a step size of 0.1.
By examining the performance of perplexity, we find λ ∈[0.3, 0.4]
yields the best results for the two datasets, hence we set λ=0.35.

4.5.2 Factor Contributions
We further analyze the contribution or all factors. We conduct

to a detailed experiment on all separate factors and visualize the
result in Figure 3-4. In the factor graph for socialized language
model smoothing, we consider 8 different attributes and factors: (i)
text similarity, (ii) text quality, (iii) posting popularity, (iv) social
status, (v) user similarity, (vi) social interactions, (vii) user impacts
and (viii) variable dependency. Besides, we combine factors (i)-
(iii) as text related ones and (iv)-(vii) as social related ones. We
also list the performance of SLMS which employs all components
here for comparison. Here we examine the contribution of the d-
ifferent factors defined in our model. To be specific, we show the
performance of all the factors in isolation and then leave-one-out
from the full combination of all features, one at a time.

From Figure 3 and 4, we see that all of the individual factors
have positive contributions to our evaluation tasks. The first re-
sult in Figure 3 is performed using the correspond component only
and the second group of results in Figure 4 is performed using the
full factor combination exempting the corresponding component,
using a leave-one-out manner. For the individual factor analysis,
we could see that on average text similarity still contributes most
in isolation and its absence leads to unfavorable decrease. As to
the social related features, interaction is the most important social

factor for measuring the propagated influence, and gets a clear drop
on the performance when left out from full factor combination. It
is natural to see through the reposting behavior, the language mod-
el for a particular user is influenced by others. We also examine
the three aspects of feature groups, i.e., text related factors, social
related factors and variable dependencies. Text related factors are
proved to be more useful while the social group yields better per-
formance when integrate the factors together. Dependency factor
seems to be the least powerful predictor. It is understandable that
dependency factor is not deterministic but just to balance the label
values. In general, the combination of all factors will be beneficial
to improve the performance, as directly compared in Figure 3 and
4, which indicates that our method works well by combining the
different factor functions and each factor in our method contributes
to the overall improvements.

4.5.3 Convergence Property
We conduct an experiment to see the effect of the number of

the loopy belief propagation iterations. Figure 5 (a) illustrates the
convergence analysis results of the learning algorithm. We see on
both test cases, the LBP-based learning algorithm can converges
in less than 10 iterations. After only 6-7 learning iterations, the
performance in terms of perplexity on both test cases becomes sta-
ble. This suggests that learning algorithm is very efficient and has
a good convergence property.

4.5.4 Distributed Scalability
The distributed learning environment can typically achieve a sig-

nificant reduction of the CPU time on the large-scale social net-
works. On the moderate scaled network after filtering and pre-
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(a). Convergence performance. (b). Distributed computing speedups.

Figure 5: Experimental analysis illustrations.

processing, the speedup of the distributed influence learning is about
3-4 times. However, under the scenario of real world applications
without human supervised filtering or pre-processing, the distribut-
ed learning framework can generally scale up with a speedup of
10-15 times or more [28].

In particular, we further conduct a scalability experiment with
our distributed learning environment. We evaluate the speedup of
the distributed learning algorithm on the 5 computer nodes using
the two datasets. It can be seen from Figure 5 (b) that when the size
of the data set is sufficiently large, the distributed learning shows
a good parallel efficiency (speedup>3). In the figure, the dashed
line denotes the perfect speedup ideally. The result confirms that
the benefits to apply the distributed algorithm on the divisible sub-
graphs and that the distributed learning like many distributed learn-
ing algorithms is good on large-scale data sets.

5. RELATED WORK
Language models have been paid high attention to during re-

cent years [25]. Many different ways of language modeling have
been proposed to solve different research tasks. Better estimation
of query language models [14, 15] and more accurate estimation of
document language models [18, 30] have long been proved to be
of great significance in information retrieval and text mining, etc.
Language models are typically implemented based on traditional
retrieval models, such as text weighting and normalization [40], but
with more elegant mathematical and statistical foundations [26].

There is one problem for language models. Given limited data
sampling, a language model estimation sometimes encounters with
the zero count problem: the maximum likelihood estimator would
give unseen terms a zero probability, which is not reliable. Lan-
guage model smoothing is proposed to address this problem, and
has been demonstrated to affect performance significantly [40, 14].

Many approaches have been proposed and tested. There are sev-
eral ways of to smooth the original language model. The informa-
tion of background corpus has been incorporated using linear com-
bination [25, 40]. In contrast to the simple strategy which smoothes
all documents with the same background, recently corpus contents
have been exploited for more accurate smoothing. The basic idea
is to smooth a document language model with the documents simi-
lar to the document under consideration through clustering [34, 18,
30]. Position information has also been used to enrich language
model smoothing [41, 19] and the combination of both strategies
of position and semantics [34]. In their work, the key idea is to
define a language model for each position within a document, and
score it based on the language models on all positions: hence the
effect of positional adjacency is revealed. Beyond the semantic
and/or position related smoothing intuitions, structural based lan-

guage model smoothing is an alternative direction to investigate. A
graph based language model smoothing method has been proposed
utilizing structural adjacency only between neighboring nodes [21,
8].

There is a study in [17] which smoothes document language
models of tweets for topic tracking in online text streams. Basi-
cally, it applies general smoothing strategies (e.g., Jelinek-Mercer,
Dirichlet, Absolute Discounting, etc.) on the specific tracking task,
while we have proposed a unified factor graph model based frame-
work which incorporates a series of social factors as well as the
text information on language model smoothing, which is a novel
insight. To the best of our knowledge, we are the pilot study which
maps the social influence onto the textual dimension and hence to
estimate the influence between posting documents. Language mod-
el is smoothed by the influence propagated on the factor graph.

6. CONCLUSIONS
Online social networks are massive, useful and of great poten-

tials, but have a severe bottleneck of textual data sparsity. To tackle
such an Achilles Heel of social networks, we present an influence
propagation based language model smoothing method to solve the
zero count phenomenon for online social networks. The social in-
fluence is estimated based on a factor graph model, by utilizing a
series of attributes and dependency factors from both textual and
social dimensions. In this way, we propagate the term occurrence
along the networks with a discounted counts according to the esti-
mated pairwise influence between documents, and finally smooth
the sparse language model accordingly.

We examine the effect of our proposed language model smooth-
ing method on a series of intrinsic and extrinsic evaluation metrics
based on the Twitter dataset (in English) and Weibo dataset (in Chi-
nese). Our proposed method consistently and significantly outper-
forms the alternative baselines (with -18.6% improvement in terms
of perplexity and +23.8% improvement in nDCG and MAP). Fur-
thermore, we have investigated factor contributions as well as a se-
ries of experimental analysis for convergence and distributed learn-
ing. In general, all features facilitate the smoothing performance,
while text similarity and social interaction are proved to have a
stronger contribution. In the future, we will include more flexible
social factors and make our model adaptive to diversified online
social networks, e.g., structures with reciprocal linkage (e.g., Face-
book) or documents without reposting behaviors (e.g., Foursquare).
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