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Abstract

Neural machine translation (NMT) conducts end-to-end
translation with a source language encoder and a target lan-
guage decoder, making promising translation performance.
However, as a newly emerged approach, the method has some
limitations. An NMT system usually has to apply a vocabu-
lary of certain size to avoid the time-consuming training and
decoding, thus it causes a serious out-of-vocabulary problem.
Furthermore, the decoder lacks a mechanism to guarantee all
the source words to be translated and usually favors short
translations, resulting in fluent but inadequate translations. In
order to solve the above problems, we incorporate statisti-
cal machine translation (SMT) features, such as a translation
model and an n-gram language model, with the NMT model
under the log-linear framework. Our experiments show that
the proposed method significantly improves the translation
quality of the state-of-the-art NMT system on Chinese-to-
English translation tasks. Our method produces a gain of up
to 2.33 BLEU score on NIST open test sets.

Introduction

Neural networks have recently been applied to machine
translation and begun to show promising results. Sutskever,
Vinyals, and Le (2014) and Bahdanau, Cho, and Ben-
gio (2014) directly built neural networks to perform end-to-
end translation, named neural machine translation (NMT).
Typically, an NMT system contains two components, an en-
coder that converts a source sentence into a vector, and a
decoder that generates target translation based on the vector.

The strength of NMT lies in that the semantic and struc-
tural information can be learned by taking global context
into consideration. However, as a newly emerged approach,
the NMT method has some limitations that may jeopardize
its ability to generate better translation.

1. To reduce model complexity, an NMT system usually
uses the top-N frequent words in the training corpus
and regards other words as unseen ones, which causes
a serious out-of-vocabulary (OOV) problem. When OOV
words occur in the sentences to be translated, the transla-
tion quality would be badly hurt.
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2. The NMT decoder lacks a mechanism to guarantee that
all the source words are translated and usually favors
short translations. This sometimes results in an inadequate
translation that does not convey the complete meaning of
source sentence.

3. NMT models cannot make use of large amount of target
monolingual corpus. Therefore, it is difficult for an NMT
system to benefit from target language model trained on
target monolingual corpus, which is proven to be use-
ful for improving translation quality in statistical machine
translation (SMT).
Luong et al. (2015) used a dictionary to translate the

OOV words in a post-processing step. Gulcehre et al. (2015)
proposed two ways to integrate a recurrent neural network
(RNN) based language model into the NMT model. How-
ever, these methods only focus on one of the above NMT
problems.

Intuitively, these problems could be alleviated with some
of the SMT components, such as the translation table, the
n-gram language model. Nevertheless, the current NMT
framework suffers from a fact that it is difficult to add ef-
fective features into the model to further improve translation
quality.

In this paper, we propose to improve NMT by integrat-
ing SMT features with the NMT model under the log-linear
framework. We incorporate 3 SMT features, including the
translation model, the word reward feature and the n-gram
language model. The translation model is trained on word-
aligned bilingual corpus with the conventional phrase-based
SMT approach (Koehn, Och, and Marcu 2003), and em-
ployed to score word pairs and alleviate the OOV problem.
The word reward feature controls the length of the transla-
tion. And the n-gram language model aims to enhance the
local fluency which is trained on target monolingual sen-
tences.

Compared to previous methods, our method has the fol-
lowing advantages:

1. The log-linear framework makes an NMT system be eas-
ily extended. It can be integrated with effective features
used in conventional SMT models.

2. We integrate a word translation table into the log-linear
framework with the translation probabilities estimated
from the word-aligned bilingual corpus which is trained
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Figure 1: Illustration of the RNN Encoder-Decoder. Note that there is a UNK symbol on the target side because of the OOV
problem.

on IBM models (Brown et al. 1993). The translation ta-
ble can not only be used to recover the translation of such
words that are taken as unknown words in the NMT sys-
tem, but also provides another way to measure the corre-
lation between source and target words. The translation
table is integrated into the decoding procedure rather than
used in a post-process step (Luong et al. 2015).

3. To alleviate the inadequate translation problem in NMT,
we use a word reward feature to make the decoder favor
long translation, rather than using a coverage vector that
guarantees all source words are translated.

4. We add an n-gram language model to the log-linear
framework, so as to make full use of the large-scale mono-
lingual corpus to further improve translation quality. The
language model score along with other features is used to
select candidates during decoding. While in the shallow
fusion, Gulcehre et al. (2015) used the language model to
rescore top-N candidates generated by the NMT decoder.

Our approach is different from the conventional meth-
ods which integrated neural networks into SMT systems
(Devlin et al. 2014; Auli et al. 2013; Cho et al. 2014;
Li, Liu, and Sun 2013; Zhai et al. 2013). The main difference
is that the conventional methods are conducted within an
SMT framework. Our system is an NMT system, enhanced
by effective SMT features.

We carried out experiments with an open-source NMT
system GroundHog 1 (Bahdanau, Cho, and Bengio 2014).

1https://github.com/lisa-groundhog/GroundHog

The system builds two RNNs to perform end-to-end trans-
lation: one as an encoder and the other as a decoder. We
trained the system with a large amount corpus (contain-
ing about 200 million sentence pairs) collected from the
web. Experiments on Chinese-to-English translation tasks
demonstrate that the proposed method achieves significant
improvements over the state-of-the-art NMT system.

Background

This section briefly reviews the RNN encoder-decoder, a re-
cently proposed NMT approach based on recurrent neural
network, and the log-linear models, the dominant framework
for SMT in the last decade.

RNN Encoder-Decoder

Figure 1 shows the translation procedure of the RNN
encoder-decoder (Bahdanau, Cho, and Bengio 2014) for
Chinese-to-English translation. Given a source sentence f̃ =
f1, f2, ..., fI , the encoder first encodes f̃ into a sequence
of vectors, then the decoder generates the target translation
ẽ = e1, e2, ..., eJ based on the vectors and the target words
previously generated.

The encoder is a bidirectional RNN (Schuster and Paliwal
1997) with a hidden layer. At the encoding step, the encoder
firstly projects the input sentence f̃ into word vectors �x =
(x1, x2, ..., xI), xi ∈ R

Kx , where Kx is the vocabulary size
of the source language. Then the network updates the hidden
state hi

enc at each step by

hi
enc = genc(xi, h

i−1
enc ) (1)
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where, genc is an activation function, e.g. the tanh function.

hi
enc = [

−−→
hi
enc

�,
←−−
hi
enc

�]� is the concatenation of the forward
and backward hidden states calculated based on the source
sentence.

At the decoding step, the probability of the output se-
quence is computed as:

p(�y) =

J∏

j=1

p(yj |{yj−1, yj−2, ..., y1}, �x) (2)

=
J∏

j=1

gdec(s
j
dec, yj−1, cj) (3)

where, sjdec is the hidden state at step j, which is com-
puted by,

sjdec = g′dec(s
j−1
dec , yj−1, cj) (4)

gdec and g′dec are non-linear activation functions. The con-
text vector cj is computed as a weighted sum of the hidden
states of the encoder:

cj =

Tx∑

i=1

αjih
i
enc (5)

where, the weight αji can be considered as an association
measure that how well a target word yj is translated from a
source word xi. Bahdanau, Cho, and Bengio (2014) used
a feed-forward neural network to parametrize an alignment
model to estimate α. This is an important difference from the
basic RNN encoder-decoder proposed by Cho et al. (2014),
which encodes the source sentence into a single vector with
fixed length, thus unable to reflect the strength of the rela-
tionship between source and target words.

Following Cho et al. (2014), Bahdanau, Cho, and Ben-
gio (2014) also used two types of hidden units, reset gates
and update gates. The reset gates allow the networks to ig-
nore the information of some previous hidden states, which
may be noisy for the current state. The update gates control
the degree of the information being transfered to the current
state from the previous states. The role of the two kinds of
gates is analogous to the long-short-term-memory (LSTM)
(Sutskever, Vinyals, and Le 2014), but much simpler.

The RNN encoder-decoder is trained on bilingual corpora
and performs an end-to-end translation. However, under the
current architecture, it is difficult to improve the translation
quality by integrating additional translation knowledge.

Log-linear Models

The widely used log-linear framework in SMT was intro-
duced by Och and Ney (2002).

p(ẽ|f̃) = exp(
∑m

i=1 λiHi(f̃ , ẽ))∑
ẽ′ exp(

∑m
i=1 λiHi(f̃ , ẽ′))

(6)

where, Hi(f̃ , ẽ) is a feature function and λi is the weight.
The strength of the log-linear model is that features can be

easily added into it. A standard phrase-based SMT (Koehn,
Och, and Marcu 2003) typically contains 8 features: the bi-
directional translation probabilities p(f |e) and p(e|f), the

x1 x2 ... xI

cj

sj

yj... yj−n+1 ... yj−1

n-gram languge model

word translation
probabilities

RNN word prediction

αji
αjip(yj |xi)

Figure 2: Illustration of the Log-linear NMT. To predict
the target word yj , we introduce SMT features, such as the
word translation probabilities, the n-gram language model,
together with the probabilities estimated by RNNs.

bi-directional lexical weights plex(f |e) and plex(e|f), the
language model, the reordering model, the word penalty, and
the phrase penalty. These features have been proven effec-
tive to improve translation quality.

Recently, some researchers integrated neural networks as
a component into SMT systems, to improve language mod-
eling (Devlin et al. 2014), translation modeling (Auli et al.
2013; Cho et al. 2014), and phrase reordering (Li, Liu, and
Sun 2013; Zhai et al. 2013).

The important difference between our method and the pre-
vious methods is that we instead integrate SMT features with
the NMT model via the log-linear framework, making the
NMT model extendable.

Log-linear NMT

We believe that integrating SMT features might help im-
prove translation quality for the NMT systems. We use Fig-
ure 2 to illustrate our idea. At each step to predict a tar-
get word yj , in addition to the probabilities estimated by
RNN, we add a word translation table and an n-gram lan-
guage model. The translation table, estimating from word-
aligned bilingual corpus, can improve lexical translation and
translate the low-frequency words which are taken as un-
known words. The language model can make full use of tar-
get monolingual corpus to improve local fluency. We use a
log-linear framework to integrate these effective features.

Feature Definition

Our method includes the following feature functions:
1. The RNN encoder-decoder feature. This feature is the

conditional probability estimated by the NMT model that
predicts a target word based on the source sentence and
previously produced target words.

Hrnn =

J∑

j=1

log(g(yj−1, sj , cj)) (7)

2. The bi-directional word translation probabilities. At each
step of decoding, we estimate the lexical translation prob-
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abilities between target candidates and the corresponding
source words.

Htp1 =

J∑

j=1

I∑

i=1

αjilog(p(yj |xi)) (8)

Htp2 =

J∑

j=1

I∑

i=1

αjilog(p(xi|yj)) (9)

where, αji is the weighted soft alignments between the
target word yj and associated source words, estimated
by the RNN encode-decoder (Section RNN Encoder-
Decoder). p(y|x) and p(x|y) is the word translation prob-
abilities estimated from word-aligned bilingual corpus,
where the word alignment is trained with GIZA++ (Och
and Ney 2004) and the “grow-diag-final” (Koehn, Och,
and Marcu 2003) method.
The word translation probabilities are computed as fol-
lows:

p(x|y) = N(x, y)∑
x′ N(x′, y)

(10)

p(y|x) = N(y, x)∑
y′ N(y′, x)

(11)

where N(x, y) is the co-occurrence of the corresponding
words x and y.

3. The standard n-gram language model.

Hlm =

J∑

j=1

log(p(yj |yj−1, ..., yj−n+1)) (12)

The language model is trained on target monolingual cor-
pus. Thus this feature allows us to make use of a large-
scale monolingual corpus of target language.

4. The word reward feature.

Hwp =

J∑

j=1

1 (13)

The feature is the number of words in the target sentence,
which could control an appropriate length of translation.

Compared with the original RNN model, we add
three additional features for each state generated by the
RNN decoder during decoding. The translation can be
generated from the final state with the highest total score.

Handling the OOV Problem

As mentioned, the NMT encoder-decoder usually faces a se-
rious OOV problem. The post-processing method (Luong
et al. 2015) did not benefit from the contextual information
during decoding. We instead use a word translation table,
automatically extracted from word-aligned bilingual corpus,
to translate the OOV words during decoding.

See Figure 3 for illustration. In order to produce the cor-
rect translation for the OOV word, we firstly find its cor-
responding source word. According to the alignment prob-
abilities estimated by the RNN model, the “UNK” symbol

�
��
relei

��
hengliu

and tears UNK

α13 = 0.1 α23 = 0.2 α33 = 0.7

hengliu cross flow 0.6
hengliu over 0.2

· · ·
translation table

Figure 3: Illustration for recovering unknown word using
translation table. αij is the alignment probabilities estimated
by the RNN encoder-decoder.

refers to the source word “hengliu”. Then we obtain trans-
lation candidates from the word translation table. The final
translation is determined by the proposed log-linear model,
considering rich contextual information on both the source
and target sides during decoding.

Decoding

The RNN decoder utilizes a beam search algorithm (Bah-
danau, Cho, and Bengio 2014) to produce translation that
maximizes the conditional translation probability,

ŷ = argmax
ỹ

p(ỹ|x̃) (14)

Given a source sentence, the decoder predicts and outputs
target sentences word by word. The decoding starts from an
initial state. At each time step, the decoder selects top-N
states (N is the beam size) and expands them until the end-
of-sentence (EOS) symbol is produced. The final translation
is generated by tracing back from the final state with the
highest score.

We modified the decoder of GroundHog to perform trans-
lation under the log-linear framework. At each decoding
state, the GroundHog only use the score estimated by RNN
(Equation. 7) to select top-N candidates from the target vo-
cabulary. In our decoder, we additionally calculate the word
translation probabilities, the language model score and the
current sentence length at each state. For each word in tar-
get vocabulary, we calculate a total score with Equation 6.
Then we use the score to generate better candidate list since
more features are used than the original NMT model. The
weights of the log-linear models are tuned using the stan-
dard minimum-error-rate-training (MERT) (Och 2003) al-
gorithm. To speed up the decoder, we use a priority queue
to choose the best candidate to be extended (Hu et al. 2015)
rather than extending all candidates at each state.

Experiments

We carried out experiments on Chinese-to-English transla-
tion. The training corpora are automatically crawled from
the web, containing about 2.2 billion Chinese words and 2.3
billion English words. So far as we know, this is the largest
amount of corpus that is used to train an NMT system.

154



System DEV TEST

GroundHog 36.72 30.61
+TM+WR 37.59 31.57

+LM 38.15 32.94
PBSMT 33.82 29.57

Table 1: BLEU scores on development and test sets.
TM=translation model, WR=word reward, LM=language
model, PBSMT=phrase based SMT.

We used NIST MT06 as the development set and tested
our system on NIST MT08. The evaluation metric is case-
insensitive BLEU-4 (Papineni et al., 2002). The feature
weights of the translation system are tuned with the stan-
dard minimum-error-rate-training (MERT) (Och 2003) to
maximize the systems’ BLEU score on the development set.

We use the open-source NMT system, GroundHog (Bah-
danau, Cho, and Bengio 2014), with default settings as our
baseline system. We set beam size to 10 for decoding. As
a comparison, we also report the performance of a phrase-
based SMT (PBSMT) system, which is a re-implementation
of the state-of-the-art phrase-based system, Moses (Koehn
et al. 2007). Our SMT system is much more efficient both on
training and decoding on our large bilingual corpus, and the
translation quality is comparable with Moses. For the SMT
system, we set the stack-limit to 200 and the translation-
option-limit to 20.

Training

To train the GroundHog system, we limit the vocabulary
to 30K most frequent words for both the source and tar-
get languages. Other words are replaced by a special sym-
bol “UNK”. The encoder consists of a forward RNN and
a backward RNN, and each has 1000 hidden units. The
decoder has 1000 hidden units. The word embeddings are
620-dimensional. A mini-batch stochastic gradient descent
(SGD) together with Adadelta (Zeiler 2012) are used to
train the networks. Each mini-batch of SGD contains 50
sentence pairs. Adadelta is used to adapt the learning rate
of parameters (ε = 10−6 and ρ = 0.95). We ran both the
training and decoding on a single machine with one GPU
card (NVIDIA Tesla K10). The system is trained with about
1,570,000 updates for the RNN encoder.

For the PBSMT system, we obtained word alignment via
the GIZA++ (Och and Ney 2004) and the “grow-diag-final”
(Koehn, Och, and Marcu 2003) method. We trained a 5-gram
language model (Stolcke 2002) with KN-discount on the
target side of the bilingual corpus. The word translation ta-
ble and the language model are then used as features being
integrated with the GroundHog system.

Results

Table 1 lists the results on NIST test sets. We observed that
the proposed method significantly improves the translation
quality of the conventional NMT system. Moreover, our sys-
tem outperforms the phrase-based SMT system on the same
large training corpus.

Specifically, we can draw the following conclusions from
Table 1:

1. By adding the word translation table and the word re-
ward features, our method obtained significant improve-
ments over the baseline (the results are shown in the row
“+TM+WR”). There are three main reasons for the im-
provements. Firstly, the translation probabilities help the
NMT system to perform better lexical translation. Sec-
ondly, the translation table is used to recover transla-
tions of unknown words. Thirdly, the word reward feature
makes the decoder favors long translation. The average
lengths of the outputs on the test set of our system and
GroundHog are 23.5 and 21.4, respectively. This indicates
that our method alleviates the inadequate translation prob-
lem. Further analyses and discussions will be described in
the next Section.

2. Our method allows the NMT system to incorporate ad-
ditional language models. We added a 5-gram language
model trained on the target side of the bilingual corpus
to the GroundHog system (the results are shown in the
row “+LM”). It is observed that our method obtained fur-
ther improvements on the test set, as the n-gram language
model captures local target contextual information and
improve the fluency.

Compared with the GroundHog system, our system
(GroundHog+TM+WR+LM) achieves an absolute improve-
ment of 2.33 points in BLEU score, which is statistically
significant at p = 0.01 level (Riezler and Maxwell 2005).

Analysis and Discussion

In order to further study the performance of the proposed
method, we compared the outputs of the systems.

Improving Lexical Translation

Taking the first sentence in Table 2 as an example, the
GroundHog system omits the translation of “传输(chuanshu)
transmission”. In fact, the target words are in the vocabulary
but not selected by the RNN model.

By integrating a translation table, our method produces
the correct translation for the source words omited by the
GroundHog. This can be attributed to the fact that the trans-
lation table consists of word pairs with translation prob-
abilities estimated from the word-aligned training corpus,
providing another way to measure the relationship between
source and target words. In this example, the translation ta-
ble contains the word pairs “chuanshu, transmission” with
high probabilities.

To further improve the quality of lexical translation, we
employ a conventional n-gram (n=5) language model to im-
prove the local fluency. For example, there is another en-
try “chuanshu, transfer” for the Chinese word “chuanshu”
in the translation table. The n-gram language model could
help the decoder predict the correct translation, because
plm(transmission|series of high speed) is greater
than plm(transfer|series of high speed).
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Source 没错，如同R400笔记本电脑一样，接连一个可高速传传传输输输的无线扩充槽。

PBSMT
Yes, like the R400 laptop, an expansion slot of a series of high speed
wireless transmission.

GroundHog Yes , like the R400 laptop , a series of high speed wireless expansion slot .

Our Method
Yes , like the R400 laptop , a series of high speed transmission of the
wireless expansion slot .

Source 所有的人都被传染，热泪横横横流流流。

PBSMT All of the people have been infected, cross flow of tears.
GroundHog All the people are infected , and tears UNK .
Our Method All the people are infected, and tears cross flow.

Table 2: Translation examples. Chinese words in bold are correctly translated by our system.

System
OOV Percentage
DEV TEST

PBSMT 1.6% 1.8%
GroundHog 4.4% 4.6%
Our Method 0.8% 0.9%

Table 3: Statistics of the percentages of the OOV words for
the PBSMT, GroundHog and our method.

Translating the OOV Words

Table 3 shows the statistics of the OOV words for PBSMT,
GroundHog and our systems on NIST06 and NIST08 test
sets. It is observed that all the systems confront the OOV
problem because the source words do not occur in the train-
ing corpus or the word pairs are not learned due to the word
alignment error. However, the problem is much more serious
for the GroundHog system since it limits the vocabulary size
to reduce the model complexity.

The OOV words harm the translation quality. As shown in
the second example in Table 2, the source word “ł(hengliu)”
is not translated by GroundHog. After integrating the trans-
lation table within the log-linear framework, this word was
correctly translated into “cross flow”.

As demonstrated in Table 3, our method reduces about
82% of the OOV words for the NMT system. Moreover,
the number of OOV words in our system is half of that
in the PBSMT system. As we know, PBSMT system ex-
tracts word/phrase translations from word-aligned bilingual
corpus. However, constrained by the inaccurate word align-
ment, not all words in the bilingual corpus are covered in the
phrase table, causing OOV problems in the PBSMT system.
Ideally, the RNN encoder-decoder is capable of translating
all the words as long as they are encoded in the vocabulary.
As the vocabulary used in the RNN encoder-decoder is lim-
ited for practical reasons, adding word translation table into
RNN encoder-decoder combines the strength of both RNN
and PBSMT, leading to a further reduction of OOV ratio.

Table 4 shows the effect of translating OOV words with
the translation table. The row “Our Method” shares the same
settings with Section Experiment. In these settings, the trans-
lation table is not only used to score word pairs, but also

System DEV TEST

Our Method 38.15 32.94
-OOV 37.90 32.57

Table 4: Effect of translating OOV words. Our Method =
GroundHog+TM+WR+LM, -OOV means the translation ta-
ble is not used to recover OOV words.
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Figure 4: BLEU scores with respect to the beam sizes.

used to translate OOV words. The row “-OOV” means that
the translation table is only used to score word pairs in the
vocabulary of the RNN encoder-decoder, but not generate
new translation candidates for the OOV words. It is observed
that by translating OOV words, we obtained an absolute im-
provement of 0.37 points in BLEU scores on NIST08.

Improving Candidate List

Figure 4 shows the performance with respect to the beam
size in the decoder. We vary beam size at test time while
keeping the feature weights after MERT. We can see that the
the BLEU score of GroundHog is not improved as the beam
size increases after 3. On the other hand, the performance of
the proposed method is improved with the increase of beam
size. The reason is that, our method uses more features than
GroundHog to generate candidate lists. With the beam size
increasing, more better candidates are selected from the tar-
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get vocabulary by the decoder.

Conclusion and Future Work

In this paper, we improve NMT by integrating additional
SMT components (e.g. the translation table, the language
model) under the log-linear framework, which makes the
NMT approach be easily extended. The translation table
is trained on word-aligned bilingual corpus via the stan-
dard phrase-based SMT method, and the language model
is trained on monolingual target sentences. The proposed
method alleviates major limitations of the current NMT ar-
chitecture. The translation table recovers the omitted transla-
tions of source words and the OOV words, and the language
model increases local fluency by making full use of mono-
lingual corpus. Experiments on Chinese-to-English trans-
lation tasks show that our system achieves significant im-
provements over the baseline on large amount of the training
corpus crawled from the web.

As a new approach, NMT still has more room for im-
provement. Current RNN encoder-decoder is actually a
word-based translation system. In the future, we plan to im-
prove NMT with phrase pairs, which are good at capturing
local word reordering, idiom translation, etc.
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