
Learning to Respond with Deep Neural Networks for
Retrieval-Based Human-Computer Conversation System

Rui Yan
Baidu Inc.

No. 10, Xibeiwang East Road,
Beijing 100193, China

yanrui02@baidu.com

Yiping Song
Baidu Inc.

No. 10, Xibeiwang East Road,
Beijing 100193, China

songyiping01@baidu.com

Hua Wu
Baidu Inc.

No. 10, Xibeiwang East Road,
Beijing 100193, China

wu_hua@baidu.com

ABSTRACT
To establish an automatic conversation system between humans
and computers is regarded as one of the most hardcore problems
in computer science, which involves interdisciplinary techniques in
information retrieval, natural language processing, artificial intelli-
gence, etc. The challenges lie in how to respond so as to maintain
a relevant and continuous conversation with humans. Along with
the prosperity of Web 2.0, we are now able to collect extremely
massive conversational data, which are publicly available. It casts
a great opportunity to launch automatic conversation systems. Ow-
ing to the diversity of Web resources, a retrieval-based conversa-
tion system will be able to find at least some responses from the
massive repository for any user inputs. Given a human issued mes-
sage, i.e., query, our system would provide a reply after adequate
training and learning of how to respond. In this paper, we propose
a retrieval-based conversation system with the deep learning-to-
respond schema through a deep neural network framework driven
by web data. The proposed model is general and unified for dif-
ferent conversation scenarios in open domain. We incorporate the
impact of multiple data inputs, and formulate various features and
factors with optimization into the deep learning framework. In the
experiments, we investigate the effectiveness of the proposed deep
neural network structures with better combinations of all differen-
t evidence. We demonstrate significant performance improvement
against a series of standard and state-of-art baselines in terms of
p@1, MAP, nDCG, and MRR for conversational purposes.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval;
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; I.5.1 [Pattern Recognition]: Models—Deep learn-
ing
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Learning-to-respond; conversation system; contextual modeling;
deep neural networks
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1. INTRODUCTION
To have a virtual assistant and/or chat companion system in open

domains with adequate artificial intelligence has seemed illusive,
and might only exist in Sci-Fi movies for a long time. Recently, the
goal of creating an automatic human-computer conversation sys-
tem, as our personal assistant or chat companion, is no longer an
illusion far away. Due to easily accessible “big data” for conver-
sations on the Web, we might be able to learn how to respond and
what to respond given (almost) any inputs. It is likely to be a great
timing to build data-driven, open-domain conversation systems be-
tween humans and computers.

Building conversation systems, in fact, has attracted much atten-
tion over the past decades. In early years, researchers have inves-
tigated into task-oriented conversation systems [44, 33, 36], which
are basically for vertical domains. The conversational inputs are re-
stricted and predictable; hence it would be easier—compared with
open-domain systems—to design the logic, create the rules, prepare
the data and construct the candidate replies to handle the particular
task [23]. For instance, in a conversation system for flight booking
or bus route inquiring, the computer side only needs to capture the
origin, destination and flight/bus information, and then respond ac-
cordingly with templates [44]. One of the most obvious limitation
of task-specific service is that the conversation cannot exceed the
system topic scope. Illegible inputs will not be accepted, which is
regarded as a hard constraint. The underlying system design phi-
losophy is nearly impossible to generalize to the open domain.

It is only recently that researchers focus on non-task-oriented
(i.e., open-domain) conversation systems for their functional, so-
cial, and entertainment roles in real-world applications [2, 26, 9,
35, 17, 31, 6]. Creating an open-domain conversation system to
interact with humans is an interesting but notoriously challenging
problem. Since people are free to say anything to the system, it is
impossible to prepare the interaction logic and domain knowledge,
which can be, in contrast, specified in task-specific systems before
hand. Besides, the number of possible combinations of conversa-
tion status are literally infinite, so that conventional hand-crafted
rules and templates would fail beyond any doubt [34].

Along with the maturity of Web 2.0, there has been an explo-
sion in the number of people having public conversations on web-
sites such as Bulletin Board System (BBS) forums, social medi-
a (e.g., Facebook1, Twitter2) and community question answering
(cQA) platforms (e.g., Baidu Zhidao3, Yahoo! Answers4). These
resources provide a unique opportunity to build collections of nat-
urally occurring conversations that are orders of magnitude larger
1http://www.facebook.com
2http://www.twitter.com
3http://www.zhidao.baidu.com
4https://answers.yahoo.com
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than those previously available. They also propel the development
of retrieval-based techniques in the field of open-domain conversa-
tion research. The merit is that, owing to the diversity on the Web,
the system will be able to retrieve at least some responses for any
user input, and return a sensible response.

The big data era, however, seems like a double-edged sword.
On one side, it brings the great opportunity, as mentioned above,
to build practical human-computer conversation systems in open
domain. On the other side, there are also challenges. Given a user-
issued query, we ought to identify appropriate candidate replies
from a very large volume of data. Besides, the proposed model
should also be general and unified for different conversation sce-
narios. In a conversation system, usually there is additional infor-
mation to use such as “contexts” (a.k.a. previous utterance sen-
tences in a continuous conversation session). Therefore, capturing
and integrating as much information as possible in a proper way is
important for conversation systems.

In this paper, we propose a “deep learning-to-respond” frame-
work for open-domain conversation systems. We create a huge
conversational dataset from Web, and the crawled data are stored
as an atomic unit of natural conversations: an utterance, namely
a posting, and its reply. Each ⟨posting-reply⟩ can be regarded as a
single-turn conversation. For a given query, we first apply tradition-
al keyword-based retrieval methods and obtain a list of candidate
replies; each reply is associated with its antecedent posting. We
then enhance the current query by adding its contexts, i.e., one or
more previous utterances in the current conversation session. Thus,
we obtain a set of reformulated queries as well as the original query.
A deep neural network (DNN)-based ranker thereafter tells how
each candidate reply/post is related to a (reformulated) query, and
yields a ranking list for each (reformulated) query. We merge the
ranking lists corresponding to different reformulations. In this way,
we are able to organically incorporate into the conversation system
multi-dimension of ranking evidences including queries, contexts,
candidate postings and/or replies, which is a novel insight.

The proposed reformulation approach and merging strategy pro-
vide a new means of conversation modeling, especially multi-turn
conversations. By using previous utterances, we are aware of back-
ground information of the query, which might be informative. More-
over, different reformulations can capture different aspects of back-
ground information; their resulting ranked lists are further merged
by a novel formula, in which we consider the relatedness between
the reformulated queries (with context) and the original one.

The DNN ranker, serving as the core of “deep learning-to-rank”
schema, models the relation between two sentences (query versus
context/posting/reply). We use a bi-directional recurrent neural
network to propagate information across words; a convolutional
neural network layer further captures patterns of adjacent words.
Then a matching layer combines the information in each individual
sentence. Note that our DNN is a generic framework and applies to
Query-Reply, Query-Posting and Query-Context in a unified way.

We conduct extensive experiments in a variety of conversation
setups between humans and computers. In particular, we build
the system upon an extremely large conversation resource, i.e., al-
most 10 million pairs of human conversation resources. We run
experiments against several other rival algorithms to verify the ef-
fectiveness of the proposed DNN model. Our system outperforms
standard and state-of-the-art baselines regarding a variety of eval-
uation metrics in terms of p@1, MAP, nDCG and MRR metrics.
The result indicates that our conversation system is rather helpful
to facilitate conversations between human and computer.

To sum up, our contributions are mainly as follows:

• We propose a “deep learning-to-respond” schema for auto-

matic human-computer conversation systems with deep neu-
ral networks (DNNs). The deep learning model is general
and well unified to adapt for various conversation scenarios.

• We propose a novel concept to model context in a continu-
ous conversation session in multi-turns. The proposed query
reformulation can capture different aspects of background in-
formation. We design an insightful framework to merge the
ranking lists of candidates to all (reformulated) queries.

• We propose a new response ranking paradigm give each (re-
formulated) query, incorporating multi-dimension of ranking
evidences: Query-Reply, Query-Posting and Query-Context,
which is an adaption for conversational scenarios.

The rest of the paper is organized as follows. We start by review-
ing related work. In Section 3, we describe the task modeling and
proposed framework for conversation systems. In Sections 4 and
5, we introduce the detailed mechanisms of contextual query refor-
mulation and the deep learning-to-respond architecture. We devise
experimental setups and evaluations against a variety of baselines
and discuss results in Section 6. Finally we draw conclusions in
Section 7.

2. RELATED WORK

2.1 Conversation Systems
Early work on conversation systems is generally based on rules

or templates and is designed for specific domains [33, 36]. These
rule-based approaches requires no data or little data for training,
while instead require much manual effort to build the model, or
to handcraft rules, which is usually very costly. The conversation
structure and status tracking in vertical domains are more feasible
to learn and infer [44]. However, the coverage of such systems are
also far from satisfaction. Later, people begin to pay more attention
to automatic conversation systems in open domains [31, 6].

From specific domains to open domain, the need for a huge
amount of data is increasing substantially to build a conversation
system. As information retrieval techniques are developing fast,
researchers obtain promising achievements in (deep) question and
answering systems. In this way, an alternative approach is to build
a conversation system with a knowledge base consisting of a num-
ber of question-answer pairs. Leuski et al. build systems to s-
elect the most suitable response to the current message from the
question-answer pairs using a statistical language model in cross-
lingual information retrieval [12], but have a major bottleneck of
the creation of the knowledge base (i.e., question-answer pairs)
[13]. Researchers propose to augment the knowledge base with
question-answer pairs derived from plain texts [24, 3]. The num-
ber of resource pairs can be, to some extent, expanded, but are still
relatively small while the performance is not quite stable either.

Nowadays, with the prosperity of social media and other Web
2.0 resources, such as community question and answering (cQA)
or microblogging services, a very large amount of conversation da-
ta become available [35]. A series of information retrieval-based
methods are applied to short text conversation using microblog da-
ta [9, 14, 17, 16]. Higashinaka et al. also combine template gen-
eration with the search-based methods [6]. Ritter et al. have in-
vestigated the feasibility of conducting short text conversation by
using statistical machine translation (SMT) techniques, as well as
millions of naturally occurring conversation data in Twitter [26]. In
the approach, a response is generated from a model, not retrieved
from a repository, and thus it cannot be guaranteed to be a legiti-
mate natural language text.
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Unlike previous work, we conduct a novel study of retrieval-
based automatic conversation systems with a deep learning-to-
respond schema via deep learning paradigm. We formulate the
possible factors into a deep neural network architecture and further
investigate the potential of combining different ranking evidences
for the candidate responses. Deep learning structures are well for-
mulated to describe instinct semantic representations.

2.2 Deep Neural Networks
In recent years, deep neural networks (DNNs, also known as

deep learning) have made significant improvement in NLP [11].
DNNs are highly automated learning machines; they can extrac-
t underlying abstract features of data automatically by exploring
multiple layers of non-linear transformation [1].

In NLP models, a word typically acts as an atomic unit. Howev-
er, words are discrete by nature; it seems nonsensical to feed word
indexes to DNNs. A typical approach is to map a discrete word to
a dense, low-dimensional, real-valued vector, called an embedding
[19]. Each dimension in the vector captures some (anonymous)
aspect of underlying word meanings.

Prevailing DNNs for sentence-level modeling include convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs).
In CNNs, we have a fixed-size sliding window to capture local pat-
terns of successive words [10], whereas RNNs keep one or a few
hidden states, and collect information along the word sequence in
an iterative fashion [38, 37, 39]. Socher et al. leverage sentence
parse trees and build recursive networks [30]. Mou et al. [21, 20]
propose syntax-aware convolution based on parse trees. Howev-
er, conversational utterances are usually casual, and hence recur-
sive models are less applicable in conversation systems. We prefer
structure-insensitive models like CNNs and RNNs.

Beyond a single sentence, some studies are aimed to capture
the relationship between two sentences—known as sentence pair
modeling—with applications like paraphrase detection [5], discourse
unit recognition [45], textual entailment recognition [27], etc. A
sentence-pair DNN model is typically built upon underlying sentence-
level models (CNNs/RNNs). Then two sentences’ information is
combined by matching heuristics like concatenation, cosine mea-
sure, or inner-product [5, 28]. Hu et al. develop word-by-word
matching approaches [7], and obtain a similarity matrix between
two sentences. Very recently, Rocktäschel et al. propose context-
aware matching approaches [27], where the first sentence’s infor-
mation is available when modeling the second one. Such context-
awareness interweaves individual sentence modeling and sentence
matching, prohibiting pre-calculating the vector representation of
a sentence; hence these methods are considerably more computa-
tional intensive, especially with multiple query reformulations in
our scenario. For efficiency consideration, we leverage vector con-
catenation, which is simple yet effective.

Although the studies of sentence-pair modeling described above
are similar to our DNN to some extent, the proposed learning-to-
rank model is more than traditional ranking or matching. We have
multiple query reformulations with “contexts”. After computing
the similarity between the query and reply/post/context, our DNN
further merges the ranking results corresponding to different refor-
mulated queries.

3. TASK MODELING
In this section, we provide a big picture of the proposed learning-

to-respond schema for conversation systems. We illustrate the task
modeling for conversations, and establish the pipeline with sever-
al processing procedures including data collection, search and re-
trieval, contextual query reformulation, DNN-based ranking with

Table 1: An example of the original microblog posting and the
associated replies. Each posting might have more than one re-
ply, e.g., Reply1 and Reply2. To create our database of conver-
sation data, we separate different replies to a same post, and ob-
tain ⟨post-reply⟩ pairs. We store two Posting-Reply pairs in the
conversational dataset, i.e., ⟨Posting-Reply1 ⟩ and ⟨Posting-
Reply2 ⟩. User accounts are anonymized.

Posting: 近视了需要戴眼镜...
(I need a pair of glasses because of the myopia...)

Reply1: 我送你眼镜！
(I will offer the glasses for you!)

Reply2: 可以恢复的，别紧张 . . .
(You will be recovered. Don’t worry.)

Table 2: Part (I) indicates a real human (denoted by A) - com-
puter (denoted by B) conversation scenario, while Part (II) in-
dicates our proposed task modeling and formulations. A2 is the
current user-issued query. We have contexts and reformulated
queries as listed. ‘�’ is the literal concatenation action. Note
that the selected response Reply1 is associated with a Posting
in the conversational database shown in Table 1.

(I) (II)
Human-Computer Conversation Task Formulation
A1: 天哪一把年纪的人居然近视了 User query: q0 = A2

(OMG I got myopia at such an “old” age) Context information:
B1: 真的吗？ C={c1=A1,c2=B1}
(Really?) Reformulated queries:
A2:嗯哪。求个眼镜做礼物！ q1=A2�A1, q2=A2�B1

(Yeah. Wish a pair of glasses as a gift.) q3=A2 �A1 �B1, . . .
B2:我送你眼镜！ Top-1 ranked response:
(I will offer the glasses for you!) r⋆ = Reply1

scoring, and ranked list fusion. We briefly go over through the
pipeline and elaborate the details in the next section.

Data collection. With the prosperity of Web 2.0, people inter-
actively communicate with each other on the Web, which provides
a huge thesaurus for conversation data. We collect a large amount
of data samples from social media such as microblog websites, fo-
rums, cQA bases, etc. Users can publish a posting message visible
to the public, and then receive one or more replies or comments
in response to their posting. The communication can have a single
turn as well as multiple turns. We illustrate an example in Table 1.
Due to the heterogeneity of the sources, we treat each utterance, in
multi-turn conversations, with its subsequent one as a posting-reply
pair (i.e., our database is context-free). For a posting with multi-
ply replies, we separate them and construct different ⟨p, r⟩ pairs.
Table 1 shows the pre-processed samples in our dataset, applied to
a real human-computer conversation illustrated in Table 2. In the
sample shown in Table 1, the first message of a conversation is typi-
cally unique. There are many flexible forms to “respond” to a given
message, which is exactly the nature of real conversations: various
responses are all possibly appropriate, with different aspects of in-
formation to fulfill a conversation. We separate the posting and
replies as a group of ⟨posting-reply⟩ pairs. The data repository is
demonstrated to be a rich resource to facilitate human-computer
conversations.

Search and retrieval. In the scenario of conversations, the user
issues a query (q0 in Table 2), which may be a sentence or a few
terms. We apply a standard retrieval process via keyword search
using traditional tf.idf weighting schema [18] on the conversation
data-base (formatted as an inverted index prepared off-line) based
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on the light-weight search provided by Baidu5. Note that we treat
each pair of posting and reply as a short virtual document, which
is not a traditional process. In this way, the retrieved “virtual doc-
ument” comprises two parts: the candidate reply, namely r, along
with its antecedent posting, namely p.

Contextual query reformulation. A single query may not fully
convey user intentions in (multi-turn) conversations, as illustrated
in Table 2. Under such conditions, we usually have context infor-
mation to use. We propose a novel insight to model the conver-
sation task. In particular, we view previous utterances from both
sides as contexts, denoted as C={ci}. One or more utterances in C
can be used to enhance q0 so as to provide more information. We
call this a contextual query reformulation process. Moreover, the
context may comprise several sentences, and hence we have sever-
al strategies to reformulate the original query. Each reformulated
query is denoted as qi. More details will be given in Section 4.

DNN-based scoring, ranking, and ranked list fusion. We ap-
ply a deep neural network (DNN)-based model to rank optimiza-
tion. In particular, we design a bi-directional long short term mem-
ory (LSTM) neural network to capture sentence-level semantic-
s of a query q0, candidate reply and the associated posting, i.e.,
⟨p, r⟩, as well as context C. A matching layer combines multi-
dimensions of the sentence information, so that we know how can-
didate replies with associated postings are related to the query and
contexts. Analogous to the traditional Query-Document matching,
the relevance ranking can be measured via Query-Reply matching,
the additional Query-Posting matching, as well as Query-Context
matching. Intuitively, when a query and a posting look similar, they
might share the same response (Tables 1–2). For each (reformu-
lated) query, DNN ranks candidates replies with relevance scores
from Query-Query and Query-Posting. We further merge all can-
didate ranked lists of all contextual reformulations using weighted
fusion. The weight is controlled by the relevance between the orig-
inal query and the reformulated one with contextual information,
i.e., Query-Context. For continuous conversations, contexts can be
used to optimize the response selection for the given query.

Table 3 summarizes the input and output of the proposed system
with deep learning-to-respond schema. Given a query with context,
the proposed model would return a response—which has the high-
est overall (merged) ranking score F(.)—from the pre-constructed
repository. We use DNN to assess the relevance between candidate
replies, postings and reformulated queries with different combina-
tions of contexts. The DNN also merges the ranking scores corre-
sponding to different contextual query reformulations.

We apply hinge loss with negative sampling to train the network.
Gradients can be back-propagated all the way back from merging,
ranking, sentence pairing, to individual sentence modeling. There-
fore, all these heterogeneous ranking evidences are integrated to-
gether through the proposed Deep Learning-to-Respond schema.

4. CONTEXTUAL REFORMULATION
Generally, context information may be informative (but some-

times may be not) when modeling a query. It is non-trivial to ex-
plore different strategies to utilize context information for conver-
sations. In this section, we describe the proposed contextual query
reformulation approach.

The contextual query reformulation strategies are mainly inspired
by the following observations:

• Some context utterances are informative, while others are
not. As the example in Table 2 illustrates, the context ut-

5Baidu is the largest Chinese search engine provider. Some of the
services are available at http://www.baidu.com.

Table 3: Symbols and annotations for problem formulation.
q0 the current query
r, p candidate reply with the associated antecedent posting

C={ci} contexts (utterances before q0). ci is a utterance in C
Q={qi} reformulated query: q0 concatenates with some ci
f(.) matching metric for Query-Reply
g(.) matching metric for Query-Posting
h(.) matching metric for Query-Context

Conversation repository:
{
⟨p, r⟩

}
Input Query: q0

Context: C

Output Selected response:
r∗ = argmax

r
F
(
r|q0,C, {⟨p, r⟩}

)

terance “Really?” should not be considered as informative
as the context utterance “OMG I got myopia at such an ‘old’
age”. Therefore, we shall have different reformulations: we
can add the contexts as a whole, or we can add the contexts
one-by-one. The intuition is that context sentences are not
equally informative, and they shall be used differently.

• Given a context of N sentences, the number of possible ways
to concatenate the original query is theoretically 2N . As a
combinatory problem, the number of combinations will grow
exponentially as N grows up. Hence we need to impose con-
straints on the contextual query reformulation strategies. An
acceptable solution should be (at most) linear as N grows.
We ought to use a subset of reformulations, and combine
such strategies to approximate all possible reformulations.
The results are then merged by DNN with different weights,
analogous to Bayesian model average over different refor-
mulations.

• Under the scenario of a continuous conversation, we observe
that contexts, no matter from the human side or from the
computer side, play a similar role to the future conversation.
Therefore, we do not distinguish utterances from two sides
in the context. Nevertheless, how relevant is a context with
the current query is assessed by the Query-Context match-
ing function, and the degree of relevance matters when DNN
merges different ranked lists from reformulated queries.

Without loss of generosity, let us assume there are N sentences
in the context C, i.e., c1, · · · , cN ∈ C being previous utterances
in the current conversation session. We add one or more context
sentences to the query q0 and obtain a set of reformulated queries
(each is denoted as qi ∈ Q). To reduce the explosive number of all
possible 2N combinations, we restrict the contextual query refor-
mulation strategies in practice as follows:

• No Context: the simplest reformulation strategy is that no
context information will be added, i.e.,QNo Context = {q0}.

• Whole Context: we do not distinguish different context sen-
tences and hence incorporate the entire contexts as a whole,
i.e.,QWhole Context = {q0, q0 � C}.

• Add-One: we concatenate q0 with one context sentence, one
at a time, i.e.,QAdd-One = {q0, q0 � c1, . . . , q0 � cN}.

• Drop-Out: we concatenate q0 with the whole context while
leave-one-out each context sentence, one at a time, i.e.,QDrop-Out

= {q0, q0 � [C\c1], . . . , q0 � [C\cN ]}.
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• Combined: the combination of all strategies, i.e.,Q = QNo Context∪
QWhole Context

∪
QAdd-One

∪
QDrop-Out.

‘�’ refers to literal concatenation, where the order of context and
the query is preserved. “C\ci” indicates ci is filtered out from C.
The benefits for all the contextual query reformulation strategies
are that the cost is fixed (for QNo Context and QWhole Context) or linear
(for QAdd-One and QDrop-Out) along as N grows. The intuition for
Add-One and Drop-Out strategies is based on a finer-granularity:
to incorporate relevant context sentences only, or to exempt one
irrelevant context sentences. The last strategy combines all these
strategies to approximate all possibilities.

5. DEEP LEARNING TO RESPOND
In this section, we describe the deep model for query-reply rank-

ing and merging. Our model first determines the score of a can-
didate reply given the (reformulated) query, based on the candi-
date reply and its associated posting (Subsection 5.1). Then the
model merges the score by summing over all query reformulation-
s including the original query with a gating (product) mechanism
(Subsection 5.2). In this way, all heterogeneous ranking evidence
is combined organically in a differentiable manner.

5.1 Sentence Pair Modeling
As mentioned, our model first determines the relationship for

Query-Reply, Query-Posting, and Query-Context matchings. The
three scoring functions are defined as:

• f(q, r): This scoring function directly judges the relatedness
between a reply and the (reformulated) query. A larger score
achieved means more relevance of the candidate reply.

• g(q, p): If the associated posting of the reply is similar to
the query, its subsequent reply is likely to be an appropriate
response.

• h(q, q0): This scoring function tells how the reformulated
query is correlated with the original q0. A more relevant con-
text, i.e., a larger h(q, q0), should leads to a more confident
ranking result, and the scores from f(q, r) and g(q, p) will
be credited with more weights for the final Sum fusion.

The scoring function f(q, r) outputs a scalar in R (appropriate-
ness or inappropriateness) in for a particular candidate reply, while
the latter two functions serving as an adjustment or “gate”, which
are squashed by a logistic function into the (0, 1) range. Neverthe-
less, all the above functions are computed by the same deep neural
network architecture (except for the last activation function), but
their parameters are different so that the three scoring functions
can depict different meanings. In particular, the deep structure for
sentence pair modeling includes the following components.

5.1.1 Word Embeddings
Traditional models usually treat a word as a discrete token; thus,

the internal relation between similar words would be lost. Word
embeddings [19] are a standard apparatus in neural network-based
text processing. A word is mapped to a low dimensional, real-
valued vector. This process, known as vectorization, captures some
underlying meanings. Given enough data, usage, and context, word
embeddings can make highly accurate guesses about the meaning
of a particular word. Embeddings can equivalently be viewed that
a word is first represented as a one-hot vector and multiplied by a
look-up table [19].

In our model, we first vectorize all words using their embed-
dings, which serve as the foundation of our deep neural networks.

Word embeddings are initialized randomly, and then tuned during
training as part of model parameters.

5.1.2 Bi-Directional LSTM
We use a bi-directional long short term memory (Bi-LSTM) re-

current network to propagate information along the word sequence.
As reviewed in Section 2, a recurrent neural network (RNN)

keeps a hidden state vector, which changes according to the input
in each time step. As RNNs can iteratively aggregate information
along a sequence, they are naturally suitable for sentence modeling.

LSTM is an advanced type of RNN by further using memory
cells and gates to learn long term dependencies within a sequence
[32, 25]. LSTM models are defined as follows: given a sequence
of inputs, an LSTM associates each position with input, forget, and
output gates, denoted as it, ft, and ot respectively. The vector lt
is used to additively modify the memory contents. Given an input
sentence S = {x0, x1, . . . , xT }, where xt is the word embedding
at position t in the sentence. LSTM outputs a representation ht for
position t, given by

it
ft
ot
lt

 =


σ
σ
σ

tanh

W ·
[

ht−1

et

]

h̃t = ft · h̃t−1 + it · lt
hs
t = ot · h̃t

(1)

where h̃ is an auxiliary variable and can be viewed as the infor-
mation stored in memory cell. σ(·) = 1

1+e−· is a known as a
sigmoid/logistic function.

A single directional LSTM typically propagates information from
the first word to the last; hence the hidden state at a certain step is
dependent on its previous words only and blind of future word-
s. The variant Bi-LSTM [4] is proposed to utilize both previous
and future words by two separate RNNs, propagating forward and
backward, and generating two independent hidden state vectors
−→
ht and

←−
ht , respectively. The two state vectors are concatenat-

ed to represent the meaning of the t-th word in the sentence, i.e.,
ht =

[−→
ht ;
←−
ht

]
.

5.1.3 Convolution
We further apply a convolutional neural network (CNN) to ex-

tract local neighboring features of successive words—i.e., discrim-
inative word sequences can be detected—yielding a more compos-
ite representation of the sentences. The structure of CNN in this
work is similar to [10], shown in Figure 1. Unlike RNNs, CNNs
only impose local interactions between successive words within a
filter (size m).

Concretely, we build a CNN upon the output of Bi-LSTM. For
every window with the size of m in Bi-LSTM output vectors, i.e.,
(Ht)m = [ht, ht+1, · · · , ht+m−1], where t is a certain position,
the convolutional filter F = [F (0), . . . , F (m− 1)] will generate a
vector sequence using the convolution operation “∗” between the
two vectors. More formally, the convolution results in a vector
where each component is as follows:

oF = tanh
[m−1∑

i=0

h(t+ i) ∗ F (i)

]
(2)

In practice, we also add a scalar bias b to the result of convolu-
tion. In this way, we obtain the vector oF is a vector, each dimen-
sion corresponding to each word in the sentence.

Notice that the above equation describes a single “slice” of con-
volution. In fact, we may have multiple feature filters and thus
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Figure 1: The deep neural network architecture for matching sentence pairs.

multiple feature maps. Different filters do not share parameters (F
and b), so that they can capture different meanings.

5.1.4 Pooling, Concatenation, and Matching
On the basis of sentence representations using Bi-LSTM with

CNN, we can model the interactions between two sentences. We
apply pooling to aggregate information along the word sequence.
In particular, a max pooling layer chooses the maximum value in
each dimension in the feature maps after the convolution, indicating
how much the feature is most satisfied along the sequence.

We concatenate two individual sentences’ vector representations
(with possible additional features), which are then fed to an ensuing
network for further information mixing. Vector concatenation for
sentence matching is also applied in other studies like [45, 22],
which is effective yet of low complexity order, compared with other
word-by-word matching [7], or attention methods [27].

The joint vector is then passed through a 3-layer, fully-connected,
feed-forward neural network, also known as multi-layer perception
(MLP) [1], which allows rich interactions between a sentence pair
from one of the three components. The network enables to extract
features automatically, starting from lower-level representations to
higher-level ones.

Finally, a single neuron outputs the matching score of two sen-
tences. As mentioned, f(q, r) is in R; hence the final scoring neu-
ron is essentially a linear regression. For g(q, p), h(q, q0) ∈ (0, 1),
we apply a sigmoid/logistic function given by σ(·) = 1

1+e−· .

5.2 Merging
In the previous subsection, we have described how the model

captures the relation among sentence pairs. Now, we merge the
scores of a particular candidate r in terms of different contextu-
al query reformulations. As discussed in Section 5.1, if a posting
is more related to the (reformulated) query and the reformulated
query is more related to the original query, then f(q, r) would be
more reliable. Inspired by this observation, g(q, p) and h(q, q0)
as designed as two adjusting “gates”. In particular, scores from d-
ifferent query reformulations are summed, weighted by these two
gates. The overall ranking score of a candidate reply r and q0 is de-

fined as follows. The equation and spirit also appear similar to the
integration of a sum-product process, which combines the sum
operations and product operations:

F(q0, r) =
|Q|∑
i=0

(
h(q0, qi)

∑
p

(
f(qi, r) · g(qi, p)

))
(3)

Here we propose to sum over all postings associated with the
reply. Different data repository will have different settings: a can-
didate reply is possible to associate with more than one postings.
In our data settings, each reply is associated with only one posting.
However, Equation (3) is general and extensible.

Ranking problems can apply pairwise ranking loss such as hinge
loss or cross-entropy loss. Here we apply hinge loss to train our
DNN network. Given a triple F(q0, r+) in the training set, we ran-
domly sample a negative instance r−. The objective is to maximize
the scores of positive samples while minimizing that of the nega-
tive samples. Concretely, we would like F(q0, r+) to be as least
F(q0, r−) plus a margin ∆. Thus, the training objective is to

minimize
Ω

∑
q0,r+

max
{
0,∆+ F(q0, r+)−F(q0, r−)

}
+λ∥Ω∥22

(4)
where we add an ℓ2 penalty with coefficient λ for all the parameters
Ω = {θ; η;ϕ} which are weight and bias values optimized by the
network from multi-dimensions of ranking evidences, i.e., Query-
Reply, Query-Posting and Query-Context, correspondingly.

5.3 Training
As our model is (almost) everywhere differentiable, the parame-

ters of the networks are optimized with stochastic gradient descen-
t using the back prorogation algorithm to compute the gradients.
The gradients can be propagated all the way back through merging,
gating, matching, and individual sentence modeling. In this way,
heterogeneous information (ranking evidences) can be incorporat-
ed organically with our model under the unified deep architecture.
Accordingly to the objective function to optimizeO(.) in Equation
(4), it is sufficient to learn the model by computing the gradients
with respect to the model parameters θ, η and ϕ; that is, our goals
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Table 4: Data statistics. Postings and replies are all unique.
Source #Posting #Reply #Vocabulary

Zhidao 8,915,694 3,705,302 1,499,691
Douban 10,618,981 2,963,226 483,846
Tieba 4,189,160 3,730,248 1,046,130
Weibo 186,963 393,654 119,163
Misc. 3,056 1,548 4,297
Total 9,023,854 7,293,978 2,857,378

are to compute ∂O
∂θ

, ∂O
∂η

and ∂O
∂ϕ

for Query-Reply, Query-Posting
and Query-Context.

6. EXPERIMENTS AND EVALUATION
In this section, we evaluate our model for conversation task a-

gainst a series of baselines based on a huge conversation resource.
The objectives of our experiments are to 1) evaluate the effective-
ness of our proposed deep learning-to-respond schema, and 2) eval-
uate contextual reformulation strategies and components of multi-
dimension of ranking evidences for the conversational task.

6.1 Dataset
As mentioned, we collected massive conversation resources from

various forums, microblog websites, and cQA platforms including
Baidu Zhidao6, Douban forum7, Baidu Tieba8, Sina Weibo9, etc.
We conducted data filtering and cleaning procedures by removing
extremely short replies and those of low linguistic quality such as
meaningless babblings according to the evaluation framework put
forward in [40, 42], so as to maintain a meaningful, high-quality
conversation record. In total, the database contains ∼10 million
⟨posting, reply⟩ pairs. Some statistics are summarized in Table 4.

We constructed the dataset of 1,606,583 samples to train the deep
neural networks, 357,018 for validation, and 11,097 for testing. It
is important that the dataset for learning does not overlap with the
database for retrieval, so that we strictly comply with the machine
learning regime. For each training and validation sample, we ran-
domly chose a reply as a negative sample. Validation was based
on the accuracy of positive/negative classification. For the test set,
we hired workers on a crowdsourcing platform to judge the appro-
priateness of 30 candidate replies retrieved for each query. Each
sample was judged by 7 annotators via majority voting based on
the appropriateness for the response given the query and contexts
(if any): “1” denotes an appropriate response and “0” indicates an
inappropriate one.

6.2 Experimental Setups

6.2.1 Hyperparameters
In our proposed model, we used 128-dimensional word embed-

dings, and they were initialized randomly and learned during train-
ing. As our dataset is in Chinese, we performed standard Chinese
word segmentation. We maintained a vocabulary of 177,044 phras-
es by choosing those with more than 2 occurrences.

The bi-directional LSTM has 128 hidden units for each dimen-
sion; CNN is 256 dimensional with a window size of 3. We used
stochastic gradient descent (with a mini-batch size of 100) for opti-
mization, gradient computed by standard back-propagation. Initial
6http://www.zhidao.baidu.com
7http://www.douban.com
8http://www.tieba.baidu.com
9http://www.weibo.com

learning rate was set to 0.8, and a multiplicative learning rate decay
was applied. The above parameters were chosen empirically. We
used the validation set for early stopping.

6.2.2 Evaluation Metrics
Given the ranking lists (annotated by crowdsourced workers) for

test queries, we evaluated the performance in terms of the follow-
ing metrics: precision@1 (p@1), mean average precision (MAP)
[31, 43], and normalized discounted cumulative gain (nDCG) [8,
41]. Since the system outputs the best selected reply, p@1 is the
precision at the 1st position, and should be the most natural way to
indicate the fraction of suitable responses among the top-1 reply re-
trieved. Besides, we also provided the top-k ranking list for the test
queries using nDCG and MAP, which test the potential for a system
to provide more than one appropriate responses as candidates. We
aimed at selecting as many appropriate responses as possible into
the top-k list and rewarding methods that return suitable replies on
the top.

Formally, the metrics are computed as follows.

nDCG@i =
1

|T |
∑
q∈T

1

Z

k∑
i=1

2ri − 1

log(1 + i)

where T indicates the testing query set, k denotes the top-k posi-
tion in the ranking list, and Z is a normalization factor obtained
from a perfect ranking. ri is the relevance score for the i-th candi-
date reply in the ranking list (i.e., 1: appropriate, 0: inappropriate).

MAP is computed by

MAP =
1

|T |
∑
q∈T

1

Nq

k∑
i=1

Pi × ri

Here Nq is the number of appropriate responses selected, and Pi

is the precision at i-th position for the query.
Since we use real conversations for testing, we also have the hu-

man response taken from the human-human conversation session
as one of candidate replies ordered in the ranked list. Hence we in-
clude the Mean Reciprocal Rank (MRR) evaluation computed as:

MRR =
1

|T |
∑
q∈T

1

rank(q)

where rank(q) is the position of the original response in the can-
didate ranking list. Unlike MAP and nDCG, which examine the
ranks of all appropriate responses, MRR focuses on evaluating the
capability of retrieval systems to find (perhaps) the best response.
MRR is useful but does not test the full capability because there can
be more than one appropriate responses to fulfill a conversation.

6.2.3 Algorithms for Comparison
To illustrate the performance of our approach, we include several

alternative algorithms as baselines for comparison. The baselines
can be divided into two categories, i.e., 1) generation-based meth-
ods and 2) retrieval-based methods for conversation systems from
very recent studies. Since our proposed approach is technically a
retrieval-based method, we mainly focus on the second category.
For fairness we conducted the same pre-processing procedures and
data cleaning for all algorithms.

Generation-based Conversation. For this group of algorithms,
the conversation system will generate a response from a given in-
put, i.e., a query from the user under the conversational scenario.
• Statistical Machine Translation (SMT): SMT is a machine trans-

lation paradigm which translates one sentence in the source lan-
guage to a sentence in the target language. If we treat queries and
replies as separate languages, we can train a translation model to
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Table 5: Retrieval performance against baselines with our proposed adaption of contextual reformulation. ‘⋆’ indicates that we
accept the improvement hypothesis of DL2R over the best baseline by Wilcoxon test at a significance level of 0.01. Performance of
both generative methods and retrieval methods. For generative methods, they generate one response given each query. Hence the
p@1 in fact refers to accuracy. Other metrics are not applicable.

Model p@1 MAP nDCG@5 nDCG@10 nDCG@20 MRR
SMT (Ritter et al., [26]) 0.363

LSTM-RNN (Sutskever et al., [32]) 0.441
NRM (Shang et al., [29]) 0.465

Random Match 0.266 0.246 0.247 0.289 0.353 0.083
Okapi BM25 0.272 0.253 0.337 0.302 0.368 0.169

DeepMatch (Lu and Li, [17]) 0.457 0.317 0.419 0.454 0.508 0.275
LSTM-RNN (Palangi et al., [25]) 0.338 0.283 0.330 0.371 0.431 0.228

ARC (Hu et al., [7]) 0.394 0.294 0.397 0.421 0.477 0.232
DeepMatch w/ context adaption 0.603 0.378 0.555 0.584 0.628 0.349
LSTM-RNN w/ context adaption 0.362 0.296 0.354 0.395 0.453 0.237

ARC w/ context adaption 0.400 0.309 0.383 0.422 0.480 0.319
Deep Learning-to-Respond (DL2R) 0.731⋆ 0.416⋆ 0.663⋆ 0.682⋆ 0.717⋆ 0.333

Table 6: Performance evaluations of different contextual query reformulation strategies.
p@1 MAP nDCG@5 nDCG@10 nDCG@20 MRR

No Context 0.522 0.340 0.476 0.509 0.559 0.296
Whole Context 0.698 0.404 0.635 0.657 0.696 0.327

Add-One 0.716 0.411 0.650 0.670 0.706 0.322
Drop-Out 0.720 0.413 0.656 0.675 0.711 0.328
Combined 0.731 0.416 0.663 0.682 0.717 0.333

Table 7: Performance evaluations of different components with multi-dimension of ranking evidences.
p@1 MAP nDCG@5 nDCG@10 nDCG@20 MRR

Query-Reply w/o Query-Context 0.522 0.340 0.476 0.509 0.559 0.296
Query-Posting w/o Query-Context 0.510 0.302 0.404 0.425 0.489 0.285

Query-Reply w/ Query-Context 0.596 0.366 0.528 0.561 0.603 0.327
Query-Posting w/ Query-Context 0.563 0.362 0.483 0.516 0.568 0.316

Full Combination 0.731 0.416 0.663 0.682 0.717 0.333

“translate” queries into replies. We implemented the phrase-based
translation idea for conversation proposed in [26].
• LSTM-RNN: LSTM-RNN is basically a Recurrent Neural Net-

work (RNN) using the Long Short Term Memory (LSTM) archi-
tecture. The RNN with LSTM units consists of memory cells in
order to store information for extended periods of time. We use
LSTM-RNN for both generation and retrieval baselines. For gen-
eration, we first use an LSTM-RNN to encode the input sequence
(query) to a vector space, and then use another LSTM-RNN to de-
code the vector into the output sequence (reply) [32]; for retrievals,
we adopt the LSTM-RNN to construct sentence representations and
use cosine similarity to output the matching score [25].
• Neural Responding Machine. We implement the neural re-

sponding machine (NRM) proposed in [29], which is an RNN-
based generation approach with a global-local attention schema.

Retrieval-based Conversation. The approaches within this group
of baselines are based on retrieval systems, which return the best
matched candidate reply out of the conversational repository given
a particular query. Since our approach is retrieval-based, we select
strong retrieval-based methods to make a thorough comparison.
• Random Match. The method randomly selects replies from

the retrieved list for each query. Be aware it is not true random

because it only randomizes the order of the retrieved results. The
true random match is too weak to be included as a decent baseline.
• Okapi BM25. We include the standard retrieval technique to

rank candidate replies. For each query, we retrieve the most rele-
vant reply using BM25 model [18] from the corpus.
• DeepMatch. The DeepMatch method considers multiple gran-

ularity from the perspective of topics, obtained via LDA [17].
• ARC. The ARC approach is a CNN based method with convo-

lutionary layers which construct sentence representations and pro-
duce the final matching scores via a MLP layer [7].
• Deep Learning-to-Respond (DL2R). We propose the DL2R

system based on three novel insights: 1) the integration of multi-
dimension of ranking evidences, 2) context-based query reformu-
lations with ranked lists fusion, and 3) deep learning framework
for the conversational task. There is actually a series of variants
of DL2R model with different components and different context
utilization strategies. We will first report the performance compar-
isons between DL2R against baselines and then show the details of
components and strategies in Section 6.4.

6.3 Overall Performance
We compare the performance of all methods including baselines

and our proposed DL2R model measured in terms of p@1, MAP,
nDCG and MRR. In Table 5 we list the overall results against al-

62



l baseline methods. Our proposed method DL2R shows clearly
better performance than the baseline methods. On average, DL2R
achieves an average +38.63% improvement (averaged on all met-
rics) compared with the strongest baseline group with context adap-
tion (in Table 5). We then discuss the comparisons in details.

We illustrate the result from generative methods. Given one us-
er query, the generative methods generally provide one generation
as the response to output. Hence we do not compare MAP or nD-
CG@1 for this algorithm group. Note that the original response is
not likely to be generated; thus it is infeasible to calculate the M-
RR. In general, the generative algorithms have relatively high p@1
scores, while LSTM-RNN and NRM perform better than the SMT
method. The reasons can be ascribed to two aspects: firstly, SMT
is not instinctively tailored for conversation systems and secondly,
deep neural networks for LSTM-RNN and NRM will be more like-
ly to learn a better representation for the queries and then return
a better decoded generation as response. The generated responses
are in general quite ambiguous or broad to answer a wide range of
queries, but not specific enough. Such responses might be relevan-
t but not appropriate enough to make a meaningful conversation,
which have been raised as a problem in [15, 29].

We can see great improvement for DL2R against original retrieval-
based baselines. Random Match is a lower bound for all base-
lines. As we mentioned, it randomizes the order of the retrieved
results. Hence the result is comparable to that of BM25 but s-
lightly worse. Okapi BM25 represents the standard (and simple)
retrieval system. The performance for BM25 is not as good as the
other deep learning-based retrieval systems, which is not surpris-
ing. Deep learning systems are proved to have strong capabilities
to learn the abstractive representation [1, 10, 30], while BM25 only
utilizes the shallow representation of term-level retrieval. The deep
learning algorithm groups clearly overwhelm shallow learning al-
gorithms, yet it is interesting to see that DL2R still outperforms the
other deep learning baselines in Table 5. The benefits might be due
to the context information we have managed to use, while the other
deep learning baselines are matching metrics for single turns only.
For a more fair comparison, we adapt the original baselines into our
proposed contextual reformulation framework to incorporate con-
text information.

In Table 5, we can see with the usage of contextual reformula-
tion, the performances for DeepMatch, ARC, and LSTM-RNN all
get boosted, which greatly indicates the effectiveness of our pro-
posed contextual query reformulation for conversation systems. It
is a useful way to incorporate context information for conversa-
tional scenarios. Our proposed DL2R has obvious improvement
against the modified baseline systems. The most probable credits
come from the retrieval formulation: we frame the virtual docu-
ment as a posting and reply, and we integrate multi-dimensions of
ranking evidences to facilitate a better ranking list. The contextu-
al DeepMatch method very slightly outperforms DL2R on MRR
evaluation. As mentioned before, MRR is useful when trying the
find the best response. Since conversations are open with more than
one appropriate responses, MAP and nDCG scores indicate the full
capacity of the retrieval systems.

Till now, we have validated that deep learning structures, contex-
tual reformulations and integrations of multi-dimensions of ranking
evidences are effective. Next we will come to a closer look at these
strategies and components for further analysis and discussions.

6.4 Analysis and Discussions
We examine the relative contributions of different strategies and

individual components of our proposed model. Other than the pro-
posed deep neural network-based learning framework, we have t-

wo other contributions: 1) contextual query reformulation to utilize
context information, and 2) integration of multi-dimension of rank-
ing evidences. We now analyze the strategies and components.

6.4.1 Reformulation Strategies
As mentioned in Section 4, we have different ways to use con-

textual information via contextual query reformulation strategies:
No Context, Whole Context, Add-One, Drop-Out and Combined.
The Whole Context strategy incorporates context information in a
coarse granularity, while the Add-One and Drop-Out strategies are
in a finer-granularity. We illustrate the different performance with
different strategies using the DL2R framework in Table 6.

We can see that the improvement from No Context to Whole
Context is rather obvious, indicating that context information is
quite beneficial to find better responses under the conversational
scenarios. We also have an interesting observation that Add-One
and Drop-Out strategies are better than the Whole Context strate-
gy. Whole Context strategy is a coarse-grained method which uses
context information without distinguishing irrelevant contexts from
relevant ones. The results indicate a proper way to use context in-
formation is important. Drop-Out strategy is slightly better than
the Add-One strategy, which confirms the exemption of irrelevant
context information is necessary, and in most cases, there are more
relevant context sentences than irrelevant ones. The combination of
all strategies performs best since it balances both the coarse-grained
and fine-grained context modeling. We combine the best approxi-
mations for all possible utilizations of contexts, avoiding explosive
number of combinations.

6.4.2 Components Analysis
Since we have three major components from the multi-dimensions

of ranking evidences, i.e., Query-Reply, Query-Posting and Query-
Context, we examine the contributions of such components. Note
that we can retrieve responses from the virtual document consisting
of a posting-reply pair, from the reply side and/or the posting side.
But we cannot directly retrieve the response using Query-Context.
It is pointless to run solely on the Query-Context part.

The first group is to run only based on Query-Reply and Query-
Posting. Neither of the two components incorporates Query-Context
information. Without context information, the proposed framework
might handle single-turn conversation well enough, while general-
ly multi-turn conversation is beyond the capability of the system.
With the incorporation of the contextual information, the perfor-
mance of both components get boosted. It is not surprising that the
combination of all three components yield to the best results: each
component characterizes the appropriateness of the response from
a different aspect, and all aspects should be integrated for scoring.

7. CONCLUSIONS
In this paper, we propose to establish an automatic conversation

system between humans and computers. Given a human-issued
message as the query, our proposed system will return the corre-
sponding responses based on a deep learning-to-respond schema.
There are 3 major contributions in this work: 1) we propose a con-
textual query reformulation framework with ranking fusions for the
conversation task; 2) we integrate multi-dimension of ranking evi-
dences, i.e., queries, postings, replies and contexts; 3) we establish
the deep neural network architecture featured with above strategies
and components. We launch the conversation system based on a
massive repository (∼10 million posting-reply pairs) and run ex-
periments to validate the proposed paradigm.

We examine the effect of our proposed DL2R model with several
baselines on a series of evaluation metrics. Our method consistent-
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ly and significantly outperforms the alternative baselines in terms
of p@1, MAP, nDCG, and MRR. Furthermore, we have investigat-
ed further experiments for component contributions and strategy
analysis. In general, context information is demonstrated to be use-
ful for conversations, especially multi-turn conversations and all di-
mensions of ranking evidences are helpful. This work opens to sev-
eral interesting directions for future work with regard to automat-
ic conversation between humans and computers. For instance, we
can incorporate more additional features and more conversation-
oriented formulations, such as dialogue acts, conversational logics,
and discourse structures, etc.
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