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Abstract

This paper describes our solution for the video recogni-
tion task of the Google Cloud & YouTube-8M Video Under-
standing Challenge that ranked the 3rd place. Because the
challenge provides pre-extracted visual and audio features
instead of the raw videos, we mainly investigate various
temporal modeling approaches to aggregate the frame-level
features for multi-label video recognition. Our system con-
tains three major components: two-stream sequence model,
fast-forward sequence model and temporal residual neural
networks. Experiment results on the challenging Youtube-
8M dataset demonstrate that our proposed temporal model-
ing approaches can significantly improve existing temporal
modeling approaches in the large-scale video recognition
tasks. To be noted, our fast-forward LSTM with a depth of 7
layers achieves 82.75% in term of GAP@20 on the Kaggle
Public test set.

1. Introduction
Video understanding is a challenging task which has

received significant research attention in computer vision
and machine learning. The ubiquitous video capture de-
vices have created videos far surpassing what we can watch.
Therefore, it has been a pressing need to develop automatic
video understanding algorithms for various applications.

To recognize actions and events in videos, existing
approaches based on deep convolutional neural networks
(CNNs) [11, 15, 6, 20] and/or recurrent networks [9, 18,
10, 3] have achieved state-of-the-art results. However, due
to the lack of publicly available datasets, existing video
recognition approaches are restricted to small-scale data,
while large-scale video understanding remains an under-
addressed problem. To remedy this issue, Google re-
leases a new web crawled large-scale video dataset, named
as YouTube-8M, which contains over 7 million YouTube
videos with a vocabulary of 4716 classes. A video may have
multiple tag classes and the average number of tag classes
per video is 1.8. Prior to this, Gan et. al [5, 7] also inves-
tigated to learn video recognition models using Web videos

and images.
Another appealing point of the Youtube-8M dataset is

that this competition only provides the pre-extracted visual
and audio features from every second of video instead of
raw videos. We can neither train different CNNs architec-
tures nor learn as optical flow features from the raw videos.
Therefore, we focus on temporal modeling approaches to
aggregate the frame-level features that yield robust and
discriminative video representation for further multi-label
recognition. Particularly, we propose three novel temporal
modeling approaches, namely two-stream sequence model,
fast-forward sequence model and temporal residual neural
networks. Experiment results verity the effectiveness of
the three models over the traditional temporal modeling ap-
proaches. We also find that these three temporal modeling
approaches are complementary with each others and lead to
the state-of-the-arts performances after ensemble.

The remaining sections are organized as follows. Section
2 presents our temporal modeling approach to learn robust
and discriminative video feature representation for recogni-
tion. Section 3 reports empirical results, followed by dis-
cussion and conclusion in Section 4.

2. Approach

In this section, we describe our three families of temporal
approaches respectively.

2.1. Two-stream Sequence Models

Our two stream sequence models build upon the bidi-
rectional LSTM [10] and GRU [3], since they have shown
strong temporal modeling abilities for video recognition.
The challenge here is how to incorporate the visual and au-
dio information contained in the videos. In order to best
take the advantage of multi-modal clues, we propose several
sequence architectures to fuse these two modality features.

The original two-stream CNN [15] framework trains
CNNs with RGB and optical flow features separately, and
then relies on a late score fusion strategy to leverage the
complementary nature of the two modalities. Recently, Ma
et. al [14] has proposed a temporal segment RNN network

1

ar
X

iv
:1

70
7.

04
55

5v
1 

 [
cs

.C
V

] 
 1

4 
Ju

l 2
01

7



Attention

...

FC 8192

FC 4096

Sigmoid

Bi-directional
Sequence Model

RGB Audio 
...

...

Concatenate ...

...

...

...

Attention

Concatenate ...

Concatenate

Figure 1. The architecture of our proposed two-stream LSTM model.

by first concatenating the two modality features and then
fed them into one LSTM to achieve video recognition.

Different from them, we propose to train two bidirec-
tional LSTMs or GRUs models (i.e. one for RGB features,
and the other for audio features). Attention layers are in-
serted after the sequence models and attended feature vec-
tors from two modalities are then concatenated. Finally, the
concatenated feature vector is fed into two fully-connected
layer and a sigmoid layer sequentially for multi-label clas-
sification. We outline the framework in Figure 1. Exper-
iments results verity the effectiveness of the our proposed
two-stream sequence model approaches over other alterna-
tive two-stream fusion approaches.

2.2. Fast-forward Sequence Models

Recently, we have witnessed the success of deep CNNs
on large-scale image classification [16, 19, 8]. Typically,
models with deeper convolution layers outperform shallow
ones. However, this success has not been transferred to the
sequence models that used in video recognition tasks. The
best sequence models reported in literature are still shallow
models. The phenomenon is caused by two reasons. First,

it is impossible to explore deeper sequence models in the
pre-existing small-scale video recognition dataset [17, 12],
which only contain around 10 thousands videos. Second,
the optimization of deeper sequence model is much more
challenging than training deeper CNNs because the exis-
tence of many more nonlinear activations and the recurrent
computation results in smaller and instable gradient.

The new Youtube8M dataset sheds light on opportunities
to explore sequence models with deep architectures. Since
large-scale video recognition is a very difficult and chal-
lenging problem, we believe that deeper sequence models
with more complex architecture is necessary for capturing
the temporal relationship between frames. In the competi-
tion, we focus on enhancing the complexity of the sequence
model by increasing the model depth. However, we observe
that naively increasing the depth of the LSTM and GRU still
entails to overfitting and optimization difficulties, and thus
always have negative results for the video recognition. This
phenomenon is consistent with the results reported by the
original Youtube8M technique report [1].

To address these challenges, we explore a novel deep
LSTM/GRU architecture by adding the fast-forward con-
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Figure 2. The architecture of our proposed fast-forward sequence models.

nections [22] to sequence models, which plays an essen-
tial role in building a sequence model with 7 bidirectional
LSTMs. We outline the framework in the figure 2. We
first concatenate the RGB and audio features of each frame
together and then fed them into the fast-forward sequence
model. The fast-forward connections are added between
two feed-forward computation blocks of adjacent recurrent
layers. Each fast-forward connection takes the outputs of
previous fast-forward and recurrent layer as input, and use
a fully-connected layer to embed them. The fast-forward
connect provides a fast path for information to propagate,
so we call the path fast-forward connections. We will in-
troduce more detail of our proposed fast-forward sequence
model and implementation details in a following technique
report.

2.3. Temporal Residual Neural Networks

Although the power of recurrent models (LSTMs and
GRUs) have been widely acknowledged, recent sequential
convolution architectures [13, 14] show strong potentials
for various temporal modeling tasks. Li et. al [13] pro-
posed a temporal ResCNN based neural speaker recogni-
tion system for speaker identification and verification. Ma

et. al [14] proposed a temporal-inception architecture for
video recognition, and achieved state-of-the-art results on
UCF101 and HMDB51 datasets.

In the competition, we investigate the usage of tempo-
ral convolution neural networks for temporal modeling on
video recognition. In contrast with [14] that performs con-
volutions on frame-level features to learn global video-level
representations, we combine convolution and recurrent neu-
ral networks to take the advantages of both models. The
temporal convolution neural networks are utilized to trans-
form the original frame-level features into a more discrimi-
native feature sequence, and LSTMs are used for final clas-
sification.

The architecture of the proposed Temporal CNN is illus-
trated in Figure 3. RGB and audio features in each frame are
concatenated and zero-valued features are padded to make
fixed length data. The size of the resulted input data is
4000 × 1152 × 300, where 4000, 1152, and 300 indicates
mini-batch size, channel number, and length of frames, rep-
sectively. We then propagate the batch data into a Tempo-
ral Resnet, which is a stack of 9 Temporal Resnet Blocks
(TRB), and each TRB consists of two temporal convolu-
tional layers (followed by batch norm and activation) and a
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Figure 3. The architecture of our proposed temporal residual CNNs.

shortcut connection. We use 1024 3 × 1 filters for all the
temporal convolution layers. The output of the temporal
CNN is then fed into a bidirectional LSTM with attention.

3. Experiment
In this section, we present the dataset, experiment setting

and our experimental results.

3.1. Dataset

We conduct experiment on the challenging Youtube-
8M dataset [1]. This dataset contains around 7 million
Youtube videos. Each video is annotated with one or mul-
tiple tags. In the competition, visual and audio features are
pre-extracted and provided with the dataset for each second
of the video. Visual features are obtained by the Google In-
ception CNN pre-trained on the ImageNet [4], followed by
the PCA-compression into a 1024 dimensional vector. The
audio features are extracted from a pre-trained VGG [16]
network. In the official split, the dataset is divided into three
parts: 70% for training, 20% for validation, and 10% for
testing. In practice, we only maintain 60K videos from the
official validation set to cross validate the parameters. Other
videos in the validation set are included into the training
set. We observe that this strategy can slightly improve the
classification performances. Results are evaluated using the
Global Average Precision (GAP) metric at top 20 as used in
the Youtube-8M Kaggle competition.

Table 1. Comparison results on Youtube8M test set.
Method GAP@20

Video-level 0.80824
VLAD 0.80423

Temporal CNN 0.80889
Two-stream LSTM 0.82172
Two-stream GRU 0.82366

Fast-forward LSTM 0.81885
Fast-forward GRU 0.81970

Fast-forward LSTM (depth7) 0.82750
Ensemble 0.84542

3.2. Experiment Results

Table 1 reports the performance of individual models on
the Youtube8M test set. For the video-level approach, we
use the average pooling to aggregate the frame-level feature
vector. For VLAD encoding based approaches, we use 256
cluster centers followed by signed square root and L2 nor-
malizations as suggested in [2, 21]. We then fed these rep-
resentations into a MLP classifier to obtain the final video
classification scores.

From Table 1, we have three key observations. (1) Our
proposed two-stream sequence models and fast forward se-
quence models achieve significantly better results compared
to previous video pooling approaches. (2) The fast-forward
LSTM model with depth 7 can boost the shallow sequence
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model around 0.5% in term of GAP. (3) Different temporal
modeling approaches are complementary to each other. Our
final submission ensembles 57 models with different hidden
cells and depths.

4. Conclusions
In this work, we have proposed three temporal mod-

eling approaches to address the challenging large-scale
video recognition task. Experiment results verify that
our approaches achieve significantly better results than
the traditional temporal pooling approaches. The en-
semble of our individual models has been shown to im-
prove the performance further, enabling our method to
rank the third place out of 650 teams in the challenge
competition. Our PaddlePaddle video toolbox is available
for download from https://github.com/baidu/
Youtube-8M and includes implementations of three tem-
poral modeling approaches.
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