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Abstract

Synthesizing high-quality images from text descriptions

is a challenging problem in computer vision and has many

practical applications. Samples generated by existing text-

to-image approaches can roughly reflect the meaning of the

given descriptions, but they fail to contain necessary details

and vivid object parts. In this paper, we propose Stacked

Generative Adversarial Networks (StackGAN) to generate

256⇥256 photo-realistic images conditioned on text de-

scriptions. We decompose the hard problem into more man-

ageable sub-problems through a sketch-refinement process.

The Stage-I GAN sketches the primitive shape and colors

of the object based on the given text description, yield-

ing Stage-I low-resolution images. The Stage-II GAN takes

Stage-I results and text descriptions as inputs, and gener-

ates high-resolution images with photo-realistic details. It

is able to rectify defects in Stage-I results and add com-

pelling details with the refinement process. To improve the

diversity of the synthesized images and stabilize the training

of the conditional-GAN, we introduce a novel Conditioning

Augmentation technique that encourages smoothness in the

latent conditioning manifold. Extensive experiments and

comparisons with state-of-the-arts on benchmark datasets

demonstrate that the proposed method achieves significant

improvements on generating photo-realistic images condi-

tioned on text descriptions.

1. Introduction

Generating photo-realistic images from text is an im-

portant problem and has tremendous applications, includ-

ing photo-editing, computer-aided design, etc. Recently,

Generative Adversarial Networks (GAN) [8, 5, 23] have

shown promising results in synthesizing real-world im-

ages. Conditioned on given text descriptions, conditional-
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Figure 1. Comparison of the proposed StackGAN and a vanilla

one-stage GAN for generating 256×256 images. (a) Given text

descriptions, Stage-I of StackGAN sketches rough shapes and ba-

sic colors of objects, yielding low-resolution images. (b) Stage-II

of StackGAN takes Stage-I results and text descriptions as inputs,

and generates high-resolution images with photo-realistic details.

(c) Results by a vanilla 256×256 GAN which simply adds more

upsampling layers to state-of-the-art GAN-INT-CLS [26]. It is un-

able to generate any plausible images of 256×256 resolution.

GANs [26, 24] are able to generate images that are highly

related to the text meanings.

However, it is very difficult to train GAN to generate

high-resolution photo-realistic images from text descrip-

tions. Simply adding more upsampling layers in state-of-

the-art GAN models for generating high-resolution (e.g.,

256⇥256) images generally results in training instability
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and produces nonsensical outputs (see Figure 1(c)). The

main difficulty for generating high-resolution images by

GANs is that supports of natural image distribution and im-

plied model distribution may not overlap in high dimen-

sional pixel space [31, 1]. This problem is more severe

as the image resolution increases. Reed et al. only suc-

ceeded in generating plausible 64⇥64 images conditioned

on text descriptions [26], which usually lack details and

vivid object parts, e.g., beaks and eyes of birds. More-

over, they were unable to synthesize higher resolution (e.g.,

128⇥128) images without providing additional annotations

of objects [24].

In analogy to how human painters draw, we decompose

the problem of text to photo-realistic image synthesis into

two more tractable sub-problems with Stacked Generative

Adversarial Networks (StackGAN). Low-resolution images

are first generated by our Stage-I GAN (see Figure 1(a)). On

the top of our Stage-I GAN, we stack Stage-II GAN to gen-

erate realistic high-resolution (e.g., 256⇥256) images con-

ditioned on Stage-I results and text descriptions (see Fig-

ure 1(b)). By conditioning on the Stage-I result and the

text again, Stage-II GAN learns to capture the text infor-

mation that is omitted by Stage-I GAN and draws more de-

tails for the object. The support of model distribution gener-

ated from a roughly aligned low-resolution image has better

probability of intersecting with the support of image distri-

bution. This is the underlying reason why Stage-II GAN is

able to generate better high-resolution images.

In addition, for the text-to-image generation task, the

limited number of training text-image pairs often results in

sparsity in the text conditioning manifold and such spar-

sity makes it difficult to train GAN. Thus, we propose a

novel Conditioning Augmentation technique to encourage

smoothness in the latent conditioning manifold. It allows

small random perturbations in the conditioning manifold

and increases the diversity of synthesized images.

The contribution of the proposed method is threefold:

(1) We propose a novel Stacked Generative Adversar-

ial Networks for synthesizing photo-realistic images from

text descriptions. It decomposes the difficult problem

of generating high-resolution images into more manage-

able subproblems and significantly improve the state of

the art. The StackGAN for the first time generates im-

ages of 256⇥256 resolution with photo-realistic details

from text descriptions. (2) A new Conditioning Augmen-

tation technique is proposed to stabilize the conditional

GAN training and also improves the diversity of the gen-

erated samples. (3) Extensive qualitative and quantitative

experiments demonstrate the effectiveness of the overall

model design as well as the effects of individual compo-

nents, which provide useful information for designing fu-

ture conditional GAN models. Our code is available at

https://github.com/hanzhanggit/StackGAN.

2. Related Work

Generative image modeling is a fundamental problem in

computer vision. There has been remarkable progress in

this direction with the emergence of deep learning tech-

niques. Variational Autoencoders (VAE) [13, 28] for-

mulated the problem with probabilistic graphical models

whose goal was to maximize the lower bound of data like-

lihood. Autoregressive models (e.g., PixelRNN) [33] that

utilized neural networks to model the conditional distri-

bution of the pixel space have also generated appealing

synthetic images. Recently, Generative Adversarial Net-

works (GAN) [8] have shown promising performance for

generating sharper images. But training instability makes

it hard for GAN models to generate high-resolution (e.g.,

256⇥256) images. Several techniques [23, 29, 18, 1, 3]

have been proposed to stabilize the training process and

generate compelling results. An energy-based GAN [38]

has also been proposed for more stable training behavior.

Built upon these generative models, conditional image

generation has also been studied. Most methods utilized

simple conditioning variables such as attributes or class la-

bels [37, 34, 4, 22]. There is also work conditioned on im-

ages to generate images, including photo editing [2, 39], do-

main transfer [32, 12] and super-resolution [31, 15]. How-

ever, super-resolution methods [31, 15] can only add limited

details to low-resolution images and can not correct large

defects as our proposed StackGAN does. Recently, several

methods have been developed to generate images from un-

structured text. Mansimov et al. [17] built an AlignDRAW

model by learning to estimate alignment between text and

the generating canvas. Reed et al. [27] used conditional Pix-

elCNN to generate images using the text descriptions and

object location constraints. Nguyen et al. [20] used an ap-

proximate Langevin sampling approach to generate images

conditioned on text. However, their sampling approach re-

quires an inefficient iterative optimization process. With

conditional GAN, Reed et al. [26] successfully generated

plausible 64⇥64 images for birds and flowers based on text

descriptions. Their follow-up work [24] was able to gener-

ate 128⇥128 images by utilizing additional annotations on

object part locations.

Besides using a single GAN for generating images, there

is also work [36, 5, 10] that utilized a series of GANs for im-

age generation. Wang et al. [36] factorized the indoor scene

generation process into structure generation and style gen-

eration with the proposed S2-GAN. In contrast, the second

stage of our StackGAN aims to complete object details and

correct defects of Stage-I results based on text descriptions.

Denton et al. [5] built a series of GANs within a Lapla-

cian pyramid framework. At each level of the pyramid, a

residual image was generated conditioned on the image of

the previous stage and then added back to the input image

to produce the input for the next stage. Concurrent to our
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work, Huang et al. [10] also showed that they can generate

better images by stacking several GANs to reconstruct the

multi-level representations of a pre-trained discriminative

model. However, they only succeeded in generating 32⇥32

images, while our method utilizes a simpler architecture to

generate 256⇥256 images with photo-realistic details and

sixty-four times more pixels.

3. Stacked Generative Adversarial Networks

To generate high-resolution images with photo-realistic

details, we propose a simple yet effective Stacked Genera-

tive Adversarial Networks. It decomposes the text-to-image

generative process into two stages (see Figure 2).

- Stage-I GAN: it sketches the primitive shape and ba-

sic colors of the object conditioned on the given text

description, and draws the background layout from a

random noise vector, yielding a low-resolution image.

- Stage-II GAN: it corrects defects in the low-resolution

image from Stage-I and completes details of the object

by reading the text description again, producing a high-

resolution photo-realistic image.

3.1. Preliminaries

Generative Adversarial Networks (GAN) [8] are com-

posed of two models that are alternatively trained to com-

pete with each other. The generator G is optimized to re-

produce the true data distribution pdata by generating im-

ages that are difficult for the discriminator D to differentiate

from real images. Meanwhile, D is optimized to distinguish

real images and synthetic images generated by G. Overall,

the training procedure is similar to a two-player min-max

game with the following objective function,

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)] +

Ez∼pz
[log(1−D(G(z)))],

(1)

where x is a real image from the true data distribution pdata,

and z is a noise vector sampled from distribution pz (e.g.,

uniform or Gaussian distribution).

Conditional GAN [7, 19] is an extension of GAN where

both the generator and discriminator receive additional con-

ditioning variables c, yielding G(z, c) and D(x, c). This

formulation allows G to generate images conditioned on

variables c.

3.2. Conditioning Augmentation

As shown in Figure 2, the text description t is first en-

coded by an encoder, yielding a text embedding 't. In

previous works [26, 24], the text embedding is nonlinearly

transformed to generate conditioning latent variables as the

input of the generator. However, latent space for the text

embedding is usually high dimensional (> 100 dimen-

sions). With limited amount of data, it usually causes dis-

continuity in the latent data manifold, which is not desirable

for learning the generator. To mitigate this problem, we

introduce a Conditioning Augmentation technique to pro-

duce additional conditioning variables ĉ. In contrast to the

fixed conditioning text variable c in [26, 24], we randomly

sample the latent variables ĉ from an independent Gaussian

distribution N (µ('t),Σ('t)), where the mean µ('t) and

diagonal covariance matrix Σ('t) are functions of the text

embedding 't. The proposed Conditioning Augmentation

yields more training pairs given a small number of image-

text pairs, and thus encourages robustness to small pertur-

bations along the conditioning manifold. To further enforce

the smoothness over the conditioning manifold and avoid

overfitting [6, 14], we add the following regularization term

to the objective of the generator during training,

DKL(N (µ('t),Σ('t)) || N (0, I)), (2)

which is the Kullback-Leibler divergence (KL divergence)

between the standard Gaussian distribution and the condi-

tioning Gaussian distribution. The randomness introduced

in the Conditioning Augmentation is beneficial for model-

ing text to image translation as the same sentence usually

corresponds to objects with various poses and appearances.

3.3. Stage-I GAN

Instead of directly generating a high-resolution image

conditioned on the text description, we simplify the task to

first generate a low-resolution image with our Stage-I GAN,

which focuses on drawing only rough shape and correct col-

ors for the object.

Let 't be the text embedding of the given description,

which is generated by a pre-trained encoder [25] in this pa-

per. The Gaussian conditioning variables ĉ0 for text embed-

ding are sampled from N (µ0('t),Σ0('t)) to capture the

meaning of 't with variations. Conditioned on ĉ0 and ran-

dom variable z, Stage-I GAN trains the discriminator D0

and the generator G0 by alternatively maximizing LD0
in

Eq. (3) and minimizing LG0
in Eq. (4),

LD0
= E(I0,t)∼pdata

[logD0(I0, 't)] +

Ez∼pz,t∼pdata
[log(1−D0(G0(z, ĉ0), 't))],

(3)

LG0
= Ez∼pz,t∼pdata

[log(1−D0(G0(z, ĉ0), 't))] +

λDKL(N (µ0('t),Σ0('t)) || N (0, I)),
(4)

where the real image I0 and the text description t are from

the true data distribution pdata. z is a noise vector randomly

sampled from a given distribution pz (Gaussian distribution

in this paper). λ is a regularization parameter that balances

the two terms in Eq. (4). We set λ = 1 for all our ex-

periments. Using the reparameterization trick introduced

in [13], both µ0('t) and Σ0('t) are learned jointly with the

rest of the network.

Model Architecture. For the generator G0, to obtain

text conditioning variable ĉ0, the text embedding 't is first
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Figure 2. The architecture of the proposed StackGAN. The Stage-I generator draws a low-resolution image by sketching rough shape and

basic colors of the object from the given text and painting the background from a random noise vector. Conditioned on Stage-I results, the

Stage-II generator corrects defects and adds compelling details into Stage-I results, yielding a more realistic high-resolution image.

fed into a fully connected layer to generate µ0 and σ0 (σ0

are the values in the diagonal of Σ0) for the Gaussian distri-

bution N (µ0('t),Σ0('t)). ĉ0 are then sampled from the

Gaussian distribution. Our Ng dimensional conditioning

vector ĉ0 is computed by ĉ0 = µ0 + σ0 # ✏ (where # is

the element-wise multiplication, ✏ ⇠ N (0, I)). Then, ĉ0 is

concatenated with a Nz dimensional noise vector to gener-

ate a W0 ⇥H0 image by a series of up-sampling blocks.

For the discriminator D0, the text embedding 't is first

compressed to Nd dimensions using a fully-connected layer

and then spatially replicated to form a Md ⇥ Md ⇥ Nd

tensor. Meanwhile, the image is fed through a series of

down-sampling blocks until it has Md ⇥Md spatial dimen-

sion. Then, the image filter map is concatenated along the

channel dimension with the text tensor. The resulting ten-

sor is further fed to a 1⇥1 convolutional layer to jointly

learn features across the image and the text. Finally, a fully-

connected layer with one node is used to produce the deci-

sion score.

3.4. Stage-II GAN

Low-resolution images generated by Stage-I GAN usu-

ally lack vivid object parts and might contain shape distor-

tions. Some details in the text might also be omitted in the

first stage, which is vital for generating photo-realistic im-

ages. Our Stage-II GAN is built upon Stage-I GAN results

to generate high-resolution images. It is conditioned on

low-resolution images and also the text embedding again to

correct defects in Stage-I results. The Stage-II GAN com-

pletes previously ignored text information to generate more

photo-realistic details.

Conditioning on the low-resolution result s0 =
G0(z, ĉ0) and Gaussian latent variables ĉ, the discriminator

D and generator G in Stage-II GAN are trained by alter-

natively maximizing LD in Eq. (5) and minimizing LG in

Eq. (6),

LD = E(I,t)∼pdata
[logD(I, 't)] +

Es0∼pG0
,t∼pdata

[log(1−D(G(s0, ĉ), 't))],
(5)

LG = Es0∼pG0
,t∼pdata

[log(1−D(G(s0, ĉ), 't))] +

λDKL(N (µ('t),Σ('t)) || N (0, I)),
(6)

Different from the original GAN formulation, the random

noise z is not used in this stage with the assumption that

the randomness has already been preserved by s0. Gaus-

sian conditioning variables ĉ used in this stage and ĉ0 used

in Stage-I GAN share the same pre-trained text encoder,

generating the same text embedding 't. However, Stage-

I and Stage-II Conditioning Augmentation have different

fully connected layers for generating different means and

standard deviations. In this way, Stage-II GAN learns to

capture useful information in the text embedding that is

omitted by Stage-I GAN.

Model Architecture. We design Stage-II generator as

an encoder-decoder network with residual blocks [9]. Sim-

ilar to the previous stage, the text embedding 't is used

to generate the Ng dimensional text conditioning vector ĉ,
which is spatially replicated to form a Mg⇥Mg⇥Ng tensor.

Meanwhile, the Stage-I result s0 generated by Stage-I GAN

is fed into several down-sampling blocks (i.e., encoder) un-

til it has a spatial size of Mg ⇥ Mg . The image features

and the text features are concatenated along the channel di-

mension. The encoded image features coupled with text

features are fed into several residual blocks, which are de-

signed to learn multi-modal representations across image

and text features. Finally, a series of up-sampling layers
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(i.e., decoder) are used to generate a W⇥H high-resolution

image. Such a generator is able to help rectify defects in the

input image while add more details to generate the realistic

high-resolution image.

For the discriminator, its structure is similar to that of

Stage-I discriminator with only extra down-sampling blocks

since the image size is larger in this stage. To explicitly en-

force GAN to learn better alignment between the image and

the conditioning text, rather than using the vanilla discrimi-

nator, we adopt the matching-aware discriminator proposed

by Reed et al. [26] for both stages. During training, the

discriminator takes real images and their corresponding text

descriptions as positive sample pairs, whereas negative sam-

ple pairs consist of two groups. The first is real images with

mismatched text embeddings, while the second is synthetic

images with their corresponding text embeddings.

3.5. Implementation details

The up-sampling blocks consist of the nearest-neighbor

upsampling followed by a 3⇥3 stride 1 convolution. Batch

normalization [11] and ReLU activation are applied after

every convolution except the last one. The residual blocks

consist of 3⇥3 stride 1 convolutions, Batch normalization

and ReLU. Two residual blocks are used in 128⇥128 Stack-

GAN models while four are used in 256⇥256 models. The

down-sampling blocks consist of 4⇥4 stride 2 convolutions,

Batch normalization and LeakyReLU, except that the first

one does not have Batch normalization.

By default, Ng = 128, Nz = 100, Mg = 16, Md = 4,

Nd = 128, W0 = H0 = 64 and W = H = 256. For train-

ing, we first iteratively train D0 and G0 of Stage-I GAN

for 600 epochs by fixing Stage-II GAN. Then we iteratively

train D and G of Stage-II GAN for another 600 epochs by

fixing Stage-I GAN. All networks are trained using ADAM

solver with batch size 64 and an initial learning rate of

0.0002. The learning rate is decayed to 1/2 of its previous

value every 100 epochs.

4. Experiments

To validate our method, we conduct extensive quantita-

tive and qualitative evaluations. Two state-of-the-art meth-

ods on text-to-image synthesis, GAN-INT-CLS [26] and

GAWWN [24], are compared. Results by the two compared

methods are generated using the code released by their au-

thors. In addition, we design several baseline models to

investigate the overall design and important components of

our proposed StackGAN. For the first baseline, we directly

train Stage-I GAN for generating 64⇥64 and 256⇥256 im-

ages to investigate whether the proposed stacked structure

and Conditioning Augmentation are beneficial. Then we

modify our StackGAN to generate 128⇥128 and 256⇥256

images to investigate whether larger images by our method

result in higher image quality. We also investigate whether

inputting text at both stages of StackGAN is useful.

4.1. Datasets and evaluation metrics

CUB [35] contains 200 bird species with 11,788 images.

Since 80% of birds in this dataset have object-image size

ratios of less than 0.5 [35], as a pre-processing step, we

crop all images to ensure that bounding boxes of birds have

greater-than-0.75 object-image size ratios. Oxford-102 [21]

contains 8,189 images of flowers from 102 different cat-

egories. To show the generalization capability of our ap-

proach, a more challenging dataset, MS COCO [16] is also

utilized for evaluation. Different from CUB and Oxford-

102, the MS COCO dataset contains images with multiple

objects and various backgrounds. It has a training set with

80k images and a validation set with 40k images. Each

image in COCO has 5 descriptions, while 10 descriptions

are provided by [25] for every image in CUB and Oxford-

102 datasets. Following the experimental setup in [26],

we directly use the training and validation sets provided

by COCO, meanwhile we split CUB and Oxford-102 into

class-disjoint training and test sets.

Evaluation metrics. It is difficult to evaluate the per-

formance of generative models (e.g., GAN). We choose a

recently proposed numerical assessment approach “incep-

tion score” [29] for quantitative evaluation,

I = exp(ExDKL(p(y|x) || p(y))), (7)

where x denotes one generated sample, and y is the label

predicted by the Inception model [30]. The intuition behind

this metric is that good models should generate diverse but

meaningful images. Therefore, the KL divergence between

the marginal distribution p(y) and the conditional distribu-

tion p(y|x) should be large. In our experiments, we directly

use the pre-trained Inception model for COCO dataset. For

fine-grained datasets, CUB and Oxford-102, we fine-tune

an Inception model for each of them. As suggested in [29],

we evaluate this metric on a large number of samples (i.e.,

30k randomly selected samples) for each model.

Although the inception score has shown to well correlate

with human perception on visual quality of samples [29], it

cannot reflect whether the generated images are well con-

ditioned on the given text descriptions. Therefore, we also

conduct human evaluation. We randomly select 50 text de-

scriptions for each class of CUB and Oxford-102 test sets.

For COCO dataset, 4k text descriptions are randomly se-

lected from its validation set. For each sentence, 5 im-

ages are generated by each model. Given the same text de-

scriptions, 10 users (not including any of the authors) are

asked to rank the results by different methods. The average

ranks by human users are calculated to evaluate all com-

pared methods.

4.2. Quantitative and qualitative results

We compare our results with the state-of-the-art text-to-

image methods [24, 26] on CUB, Oxford-102 and COCO
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Figure 3. Example results by our StackGAN, GAWWN [24], and GAN-INT-CLS [26] conditioned on text descriptions from CUB test set.

256x256 

StackGAN 

Text 

description 

64x64 

GAN-INT-CLS 

This flower has 

a lot of small 

purple petals in 

a dome-like 

configuration 

This flower is 

pink, white, 

and yellow in 

color, and has 

petals that are 

striped  

This flower is 

white and 

yellow in color, 

with petals that 

are wavy and 

smooth 

This flower has 

petals that are 

dark pink with 

white edges 

and pink 

stamen  

Eggs fruit 

candy nuts 

and meat 

served on 

white dish 

A street sign 

on a stoplight 

pole in the 

middle of a 

day 

A group of 

people on skis 

stand in the 

snow 

A picture of a 

very clean 

living room 

Figure 4. Example results by our StackGAN and GAN-INT-CLS [26] conditioned on text descriptions from Oxford-102 test set (leftmost

four columns) and COCO validation set (rightmost four columns).

Metric Dataset GAN-INT-CLS GAWWN Our StackGAN

Inception

score

CUB 2.88 ± .04 3.62 ± .07 3.70 ± .04

Oxford 2.66 ± .03 / 3.20 ± .01

COCO 7.88 ± .07 / 8.45 ± .03

Human

rank

CUB 2.81 ± .03 1.99 ± .04 1.37 ± .02

Oxford 1.87 ± .03 / 1.13 ± .03

COCO 1.89 ± .04 / 1.11 ± .03

Table 1. Inception scores and average human ranks of our Stack-

GAN, GAWWN [24], and GAN-INT-CLS [26] on CUB, Oxford-

102, and MS-COCO datasets.

datasets. The inception scores and average human ranks

for our proposed StackGAN and compared methods are re-

ported in Table 1. Representative examples are compared in

Figure 3 and Figure 4.

Our StackGAN achieves the best inception score and av-

erage human rank on all three datasets. Compared with

GAN-INT-CLS [26], StackGAN achieves 28.47% improve-

ment in terms of inception score on CUB dataset (from 2.88

to 3.70), and 20.30% improvement on Oxford-102 (from

2.66 to 3.20). The better average human rank of our Stack-

GAN also indicates our proposed method is able to generate

more realistic samples conditioned on text descriptions.

As shown in Figure 3, the 64⇥64 samples generated by

GAN-INT-CLS [26] can only reflect the general shape and

color of the birds. Their results lack vivid parts (e.g., beak

and legs) and convincing details in most cases, which make

them neither realistic enough nor have sufficiently high res-

olution. By using additional conditioning variables on loca-
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Stage-I 

images 

Stage-II 

images 

Text 

description 

This bird is 

blue with white 

and has a very 

short beak 

This bird has 

wings that are 

brown and has 

a yellow belly 

This bird is 

white, black, 

and brown in 

color, with a 

brown beak 

A white bird 

with a black 

crown and 

yellow beak 

This is a small, 

black bird with 

a white breast 

and white on 

the wingbars. 

The bird has 

small beak, 

with reddish 

brown crown 

and gray belly 

This bird is 

white black and 

yellow in color, 

with a short 

black beak 

Figure 5. Samples generated by our StackGAN from unseen texts in CUB test set. Each column lists the text description, images generated

from the text by Stage-I and Stage-II of StackGAN.

Five nearest neighbors from training sets 
Images 

generated from 

text in test sets

Figure 6. For generated images (column 1), retrieving their nearest

training images (columns 2-6) by utilizing Stage-II discriminator

D to extract visual features. The L2 distances between features

are calculated for nearest-neighbor retrieval.

tion constraints, GAWWN [24] obtains a better inception

score on CUB dataset, which is still slightly lower than

ours. It generates higher resolution images with more de-

tails than GAN-INT-CLS, as shown in Figure 3. However,

as mentioned by its authors, GAWWN fails to generate any

plausible images when it is only conditioned on text de-

scriptions [24]. In comparison, our StackGAN can gener-

ate 256⇥256 photo-realistic images from only text descrip-

tions.

Figure 5 illustrates some examples of the Stage-I and

Stage-II images generated by our StackGAN. As shown

in the first row of Figure 5, in most cases, Stage-I GAN

is able to draw rough shapes and colors of objects given

text descriptions. However, Stage-I images are usually

blurry with various defects and missing details, especially

for foreground objects. As shown in the second row, Stage-

II GAN generates 4⇥ higher resolution images with more

convincing details to better reflect corresponding text de-

scriptions. For cases where Stage-I GAN has generated

plausible shapes and colors, Stage-II GAN completes the

details. For instance, in the 1st column of Figure 5, with a

satisfactory Stage-I result, Stage-II GAN focuses on draw-

ing the short beak and white color described in the text as

well as details for the tail and legs. In all other examples,

different degrees of details are added to Stage-II images. In

many other cases, Stage-II GAN is able to correct the de-

fects of Stage-I results by processing the text description

again. For example, while the Stage-I image in the 5th col-

umn has a blue crown rather than the reddish brown crown

described in the text, the defect is corrected by Stage-II

GAN. In some extreme cases (e.g., the 7th column of Fig-

ure 5), even when Stage-I GAN fails to draw a plausible

shape, Stage-II GAN is able to generate reasonable objects.

We also observe that StackGAN has the ability to transfer

background from Stage-I images and fine-tune them to be

more realistic with higher resolution at Stage-II.

Importantly, the StackGAN does not achieve good re-

sults by simply memorizing training samples but by cap-

turing the complex underlying language-image relations.

We extract visual features from our generated images and

all training images by the Stage-II discriminator D of our

StackGAN. For each generated image, its nearest neighbors

from the training set can be retrieved. By visually inspect-

ing the retrieved images (see Figure 6), we can conclude

that the generated images have some similar characteristics

with the training samples but are essentially different.

4.3. Component analysis

In this subsection, we analyze different components of

StackGAN on CUB dataset with our baseline models. The

inception scores for those baselines are reported in Table 2.

The design of StackGAN. As shown in the first four

rows of Table 2, if Stage-I GAN is directly used to generate

images, the inception scores decrease significantly. Such

performance drop can be well illustrated by results in Fig-

ure 7. As shown in the first row of Figure 7, Stage-I GAN

fails to generate any plausible 256⇥256 samples without
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A small bird with a black head and 

wings and features grey wings 

256x256 

Stage-I GAN 

without CA 

256x256 

Stage-I GAN 

with CA 

256x256 

StackGAN 

with CA, 

Text twice 

This bird is completely red with black 

wings and pointy beak 

Figure 7. Conditioning Augmentation (CA) helps stabilize the

training of conditional GAN and improves the diversity of the gen-

erated samples. (Row 1) without CA, Stage-I GAN fails to gen-

erate plausible 256×256 samples. Although different noise vector

z is used for each column, the generated samples collapse to be

the same for each input text description. (Row 2-3) with CA but

fixing the noise vectors z, methods are still able to generate birds

with different poses and viewpoints.

Method CA Text twice Inception score

64×64 Stage-I GAN no / 2.66 ± .03

yes / 2.95 ± .02

256×256 Stage-I GAN
no / 2.48 ± .00

yes / 3.02 ± .01

128×128 StackGAN

yes no 3.13 ± .03

no yes 3.20 ± .03

yes yes 3.35 ± .02

256×256 StackGAN

yes no 3.45 ± .02

no yes 3.31 ± .03

yes yes 3.70 ± .04

Table 2. Inception scores calculated with 30,000 samples gener-

ated by different baseline models of our StackGAN.

using Conditioning Augmentation (CA). Although Stage-I

GAN with CA is able to generate more diverse 256⇥256

samples, those samples are not as realistic as samples gen-

erated by StackGAN. It demonstrates the necessity of the

proposed stacked structure. In addition, by decreasing the

output resolution from 256⇥256 to 128⇥128, the inception

score decreases from 3.70 to 3.35. Note that all images are

scaled to 299 ⇥ 299 before calculating the inception score.

Thus, if our StackGAN just increases the image size without

adding more information, the inception score would remain

the same for samples of different resolutions. Therefore, the

decrease in inception score by 128⇥128 StackGAN demon-

strates that our 256⇥256 StackGAN does add more details

into the larger images. For the 256⇥256 StackGAN, if the

text is only input to Stage-I (denoted as “no Text twice”), the

inception score decreases from 3.70 to 3.45. It indicates that

processing text descriptions again at Stage-II helps refine

Stage-I results. The same conclusion can be drawn from

the results of 128⇥128 StackGAN models.

Conditioning Augmentation. We also investigate the

efficacy of the proposed Conditioning Augmentation (CA).

By removing it from StackGAN 256⇥256 (denoted as “no

CA” in Table 2), the inception score decreases from 3.70 to

3.31. Figure 7 also shows that 256⇥256 Stage-I GAN (and

StackGAN) with CA can generate birds with different poses

The bird is completely red → The bird is completely yellow 

This bird is completely red with black wings and pointy beak →  

this small blue bird has a short pointy beak and brown on its wings 

Figure 8. (Left to right) Images generated by interpolating two sen-

tence embeddings. Gradual appearance changes from the first sen-

tence’s meaning to that of the second sentence can be observed.

The noise vector z is fixed to be zeros for each row.

and viewpoints from the same text embedding. In contrast,

without using CA, samples generated by 256⇥256 Stage-

I GAN collapse to nonsensical images due to the unstable

training dynamics of GANs. Consequently, the proposed

Conditioning Augmentation helps stabilize the conditional

GAN training and improves the diversity of the generated

samples because of its ability to encourage robustness to

small perturbations along the latent manifold.

Sentence embedding interpolation. To further demon-

strate that our StackGAN learns a smooth latent data man-

ifold, we use it to generate images from linearly interpo-

lated sentence embeddings, as shown in Figure 8. We fix the

noise vector z, so the generated image is inferred from the

given text description only. Images in the first row are gen-

erated by simple sentences made up by us. Those sentences

contain only simple color descriptions. The results show

that the generated images from interpolated embeddings

can accurately reflect color changes and generate plausible

bird shapes. The second row illustrates samples generated

from more complex sentences, which contain more details

on bird appearances. The generated images change their

primary color from red to blue, and change the wing color

from black to brown.

5. Conclusions

In this paper, we propose Stacked Generative Adversar-

ial Networks (StackGAN) with Conditioning Augmenta-

tion for synthesizing photo-realistic images. The proposed

method decomposes the text-to-image synthesis to a novel

sketch-refinement process. Stage-I GAN sketches the ob-

ject following basic color and shape constraints from given

text descriptions. Stage-II GAN corrects the defects in

Stage-I results and adds more details, yielding higher reso-

lution images with better image quality. Extensive quantita-

tive and qualitative results demonstrate the effectiveness of

our proposed method. Compared to existing text-to-image

generative models, our method generates higher resolution

images (e.g., 256⇥256) with more photo-realistic details

and diversity.
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