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Abstract

A key challenge in fine-grained recognition is how to find
and represent discriminative local regions. Recent attention
models are capable of learning discriminative region local-
izers only from category labels with reinforcement learning.
However, not utilizing any explicit part information, they are
not able to accurately find multiple distinctive regions. In this
work, we introduce an attribute-guided attention localization
scheme where the local region localizers are learned under
the guidance of part attribute descriptions. By designing a
novel reward strategy, we are able to learn to locate regions
that are spatially and semantically distinctive with reinforce-
ment learning algorithm. The attribute labeling requirement
of the scheme is more amenable than the accurate part loca-
tion annotation required by traditional part-based fine-grained
recognition methods. Experimental results on the CUB-200-
2011 dataset (Wah et al. 2011) demonstrate the superiority
of the proposed scheme on both fine-grained recognition and
attribute recognition.

Introduction

Humans heavily rely on subtle local visual cues to distin-
guish fine-grained object categories. For example in Fig-
ure (a), human experts differentiate a summer tanager and
a scarlet tanager by the color of wing and tail. In order to
build human-level fine-grained recognition AI systems, it is
also essential to locate discriminative object parts and learn
local visual representation for these parts.

State-of-the-art fine-grained recognition methods (Zhang
et al. 2014; Liu, Shen, and Hengel 2015; Wang et al. 2014;
Krause et al. 2015b; 2015a; Gao et al. 2015; Zhang et al.
2016a) either rely on manually labeled parts to train part de-
tectors in a fully supervised manner, or employ reinforce-
ment learning or spatial-transformer-based attention mod-
els (Sermanet, Frome, and Real 2015; Liu et al. 2016b;
Zhao et al. 2016) to locate object parts with object category
annotations in a weakly supervised manner. However, both
types of methods have major practical limitations. Fully su-
pervised methods need time-consuming, error-probing man-
ual object part labeling process, while object labels alone
as a supervision signal is generally too weak to reliably
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locate multiple discriminative object parts. For example in
Figure (b), the method (Liu et al. 2016b) fails to locate the
tail as attention regions.

Humans have a remarkable ability to learn to locate ob-
ject parts from multiple sources of information. Aside from
strongly labeled object part location and weakly labeled ob-
ject categories, part descriptions, such as “red wing”, also
plays an important part in the development of object parts
locating ability. In their early ages, children learn to rec-
ognize parts and locate object parts by reading or listening
to part descriptions. Part descriptions do not require time-
consuming manually part location labeling, and it is much
stronger than object category labels. We call it part attribute.

Inspired by this capability, we propose a part attribute-
guided attention localization scheme for fine-grained recog-
nition. Using part attributes as a weak supervision training
signal, reinforcement learning is able to learn part-specific
optimal localization strategies given the same image as en-
vironment state. Based on this intuition, it is reasonable to
expect that distinctive part localizers could be learned as
strategies of looking for and describing the appearances of
different parts. In the proposed scheme, multiple fully con-
volutional attention localization networks are trained. Each
network predicts the attribute values of a part. We design a
novel reward strategy for learning part localizers and part
attribute predictors.

Part attribute-guided attention localization networks can
more accurately locate object parts (Figure (c)). More im-
portantly, using the part locations and appearance features
from part-attribute guided attention localization networks
leads to considerable performance improvement on fine-
grained recognition, as demonstrated on the CUB-200-2011
dataset (Wah et al. 2011). Moreover, part attribute can be ac-
quired in large scale via either human labeling or data min-
ing techniques. It has been successfully employed for image
recognition (Parikh and Grauman 2011; Akata et al. 2013;
Hwang and Sigal 2014), image retrieval (Huang et al. 2015),
face localization (Liu et al. 2015) and image generation (Yan
et al. 2015).

Attention model (Mnih et al. 2014; Ba, Mnih, and
Kavukcuoglu 2015) has been widely used in image cap-
tion (Xu and Saenko 2015; Xu et al. 2015), image recog-
nition (Zhang et al. 2016b; Seo et al. 2016), action recog-
nition (Wang et al. 2016), person re-identification (Liu et
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al. 2016a) and image parsing (Fan et al. 2016). To our best
knowledge, no one has utilized part attribute to guide the
learning of visual attention in fine-grained recognition.

Attribute-Guided Attention Localization

The architecture of the proposed scheme is shown in Fig-
ure 2. Attribute descriptions are only used for learning part
localizers during training. They are not used in the testing
stage.

In the training stage, a fully-convolutional attention lo-
calization network (Liu et al. 2016b) is learned for each
part. In contrast with (Liu et al. 2016b), the task of the
fully-convolutional attention localization network is to learn
where to look for better part attribute prediction rather than
predicting the category of the entire object.

For testing, we extract features from both part regions lo-
cated by the network and the entire image and concatenate
them as a joint representation. The joint representation is
utilized to predict the image category.

Problem Formulation

Given N training images {x1, x2, . . . , xN}, and their object
labels {l1, l2, . . . , lN}. Our goal is to train a model for clas-
sifying each image xi as its ground-truth label li.

Fine-grained objects have P parts. Localizing by describ-
ing problem finds a policy to locate the parts and to classify
images based on these part locations and their features. The
objective can be formulated as:

L0 =
∑
i

L(G(xi,F1(xi), . . . ,FP (xi)), li), (1)

where Fp(·) is a function that finds the location of part p and
crops its image region. The crop size of each part is manually
defined. G(·) is a deep convolutional neural network classi-
fier that outputs the probability of each category given the
whole image and the cropped image regions for all the parts.
L(.) is cross-entropy loss function measuring the quality of
the classification.

Precisely predicting part locations using only the image
labels is very challenging. In localizing by describing, we
localize object parts with the help of visual attribute de-
scriptions. The visual attribute is a set of binary annotations
whose value correlates with an aspect of the object appear-
ance. A local attribute is generally related to the appearance
of an object part. The attribute description of the p-th part is
denoted as {Y p

1 , Y
p
2 , . . . , Y

p
N}. Each part description Y p

i is
a binary vector: [ypi,1, y

p
i,2, . . . , y

p
i,Kp

], where each element
ypi,k indicates whether an attribute exists in the i-th image,
and Kp is the number of attributes for the p-th part. We aim
to learn better part localizers Fp using part attribute anno-
tation. An auxiliary part attribute classification loss is pro-
posed to facilitate the learning of part localizers

Lp =
∑
i

L′(Tp(Fp(xi)), Y
p
i ), (2)

where Tp(.) = [Tp,1(.), . . . , Tp,Kp
(.)] is a multi-label at-

tribute prediction function of the p-th part, and each Tp,k(.)

indicates the predicted probability of the k-th attribute of
part p. L′(.) is a multi-label cross-entropy loss

L′(Xi, Y
p
i ) = −

∑
k

[ypi,k log Tp,k(Fp(xi))

+(1− ypi,k) log(1− Tp,k(Fp(xi)))]. (3)

The assumption is that the part localizers that help pre-
dict part attributes are also beneficial to the prediction of the
whole object. We use Eq. (3) as an auxiliary loss to learn
localizer Fp(·) that optimizes Eq.(1).

Training of Localizers

Given images and attribute descriptions, we jointly learn a
part localizer and a multi-label predictor for each part such
that the predictor uses the selected local region for attribute
prediction.

Since the localization operation is non-differential, we
employ reinforcement learning algorithm (Williams 1992)
to learn the part localizers and multi-label predictors. For
reinforcement learning algorithm, the policy function is the
part localizer function Fp(·); the state is the cropped local
image patch Fp(xi) and the whole image xi; the reward
function measures the quality of the part attribute.

The objective function of the reinforcement learning al-
gorithm for part p is

Jp(Fp, Tp) =
∑
i

[
EFp(Rp,i)− λL′(Tp(Fp(xi)), Y

p
i )

]
,

(4)
where the reward

EFp(Rp,i) =

∫
sp,i

pFp(sp,i|xi)r(sp,i)d(sp,i) (5)

is the expected reward of the selected region for the p-
th part of the i-th image. sp,i indicates a selected region,
pFj

(sp,i|xi) is the probability that the localizer select the
region sp,i. r(sp,i) is a reward function to evaluate the con-
tribution of the selected region sp,i to attribute prediction.

Previous methods (Sermanet, Frome, and Real 2015;
Liu et al. 2016b) choose the reward function r(sp,i) to be 1
only when the image is correctly classified. However, since
our algorithm predicts multiple attribute values for a part,
it is too strict to enforce all the attributes are correctly pre-
dicted. Therefore, we consider an alternative reward strat-
egy. A selected region has reward 1 if both of the following
criteria are satisfied: 1) it achieves lower attribute classifi-
cation loss than most other regions in the same image, i.e.,
its prediction loss ranks top-η lowest among the M sampled
regions of the image. 2) it achieves lower attribute classifi-
cation loss than most other regions in the same mini-batch,
i.e., its prediction loss is lower than half of the average loss
of all the regions in the mini-batch.

Following (Liu et al. 2016b), we learn fully convolutional
attention localization networks as part localizers. Since both
parts of the objective function Eq. (4) are differentiable, RE-
INFORCE algorithm (Williams 1992) is applied to compute
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(a)

(b)
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Figure 1: (a) Two types of birds with part-attribute descriptions. Human experts differentiate a summer tanager and a scarlet
tanager by the color of wing and tail. (b) (Liu et al. 2016b) fails to locate the tail part. (c) Part-attribute-guided attention
localization networks can locate object parts more accurately. The red, green, purple and blue bounding boxes localize head,
breast, wing and tail, respectively (best viewed in color).

has pattern plain … 

has color red …

has color red …

shaped …

Figure 2: An overview architecture of the proposed scheme. The correspondence of color and part is the same as Fig. 1. The
upper part shows training stage, and the lower part shows the testing stage. In the training stage, multiple part localizers are
trained under the guidance of attribute descriptions. In the testing stage, features extracted from the selected part regions and
the entire image are combined into a joint representation for category prediction.

the policy gradient to optimize the objective function:

∂Fp
EFp

(Rp,i) (6)

=

∫
sp,i

pFp
(sp,i|xi)∂Fp

log[pFp
(sp,i|xj)r(sp,i)]d(sp,i)

≈ 1

M

M∑
m=1

∂Fp
log[pFp

(smp,i|xi)r(s
m
p,i)]

where smi,j ∼ pFi(·|xj) is the local image regions sampled
according to localizer policy pFi

(smi,j |xj). M local regions
of the same image are sampled in a mini-batch. We list the
learning algorithm in Algorithm 1.

Training of Classifiers

After the local region localizers are trained, we re-trained
the attribute prediction models using up-scaled local regions.
When re-trained, the attribute predictors takes up-scaled lo-
cal regions from the part localizers to predict the attributes.

To combine global and local information, we extract fea-
tures from all the part regions and the entire image and con-
catenate them to form a joint representation. The joint rep-
resentation is used to predict image category. In details, we
first train classifiers with each individual part region to cap-
ture the appearance details of local parts for fine-grained
recognition. A classifier utilizing the entire image is also
trained for global information. We then concatenate features
extracted from all the parts and the entire image as a joint
representation, and we use a linear layer to combine the fea-
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Algorithm 1 Localizing by describing algorithm:
Input: training images {x1, x2, . . . , xN}, attribute descrip-

tions of each part {Y p
1 , Y

p
2 , . . . , Y

p
N}.

Output: part localization function F , multi-label attribute
prediction function T .

1: for each part p do
2: Initialize Fp and Tp.
3: repeat
4: Randomly sample H images.
5: for each image xi do
6: Sample smp,i ∼ pFp

(·|xi)
7: end for
8: for each local region smp,i do

9: Calculate lmp,i = L′(Tp(smp,i), Y
p
i ).

10: end for
11: Calculate L̂ =

∑
lmp,i.

12: for each image xi do
13: Sort lmp,i in ascending order.
14: for each local region smp,i do
15: if lmp,i is in the top-η position of the sorted list,

and lmp,i < 0.5L̂ then

16: Set reward r(smp,i) = 1.
17: else
18: Set reward r(smp,i) = 0.
19: end if
20: end for
21: end for
22: Calculate the gradient of Fp according to (6).
23: Calculate the gradient of Tp.
24: Update the parameters of Fp and Tp.
25: until converge
26: end for

tures.

Prediction

The prediction process is illustrated in the lower part of
Fig. 2. We localize and crop each part using its localizer
Fp(xi), and each part region is resized to high resolution
for feature extraction. Features from all part regions as well
as the entire image are concatenated as a joint representa-
tion. A linear classification layer is utilized to make the final
category prediction.

We also attempt to use attribute prediction results to help
fine-grained object recognition, or model the geometric rela-
tionship of the parts using recurrent convolutional operation.
However, we find neither of the approaches achieve notable
improvements in our experiments. Detailed experimental re-
sults and setup can be found in the experimental section.

Experiments

We conduct experiments on the CUB-200-2011 datasets
(Wah et al. 2011). The dataset contains 11, 788 images of
200 bird categories, where 5, 994 images are for training,
and the rest 5, 794 images are for testing. In addition to the
category label, 15 part locations, 312 binary attributes and a

tight bounding box of the bird is provided for each image.
Examples of images and attributes in this dataset are shown
in Figure (a).

Implementation Details

We evaluate the proposed scheme in two scenarios: “with
BB” where the object bounding box is utilized during
training and testing, and “without BB” where the object
bounding-box is not utilized.

We choose 4 parts, i.e. “head”, “wing”, “breast”, and
“tail”, to train local region localizers. The cropping size of
these parts are half of the original image. Among all the 312
attributes, if a part name appears in an attribute, then the
attribute is considered describing this part. The number of
attributes describing the four parts are 29, 24, 19, and 40,
respectively.

We utilize ResNet-50 (He et al. 2016) as the visual rep-
resentation for part localization and feature extraction. In
the training stage, we utilize the ROI-pooled feature maps
(in the “with BB” setting, crop the image region within the
bounding box) to learn multi-label attribute predictions for
each part. The output of the “res5c” layer of ResNet-50 is
employed as the input of the fully convolutional attention lo-
calization networks. The attribute predictors use ROI-pooled
feature maps (Girshick 2015) of the fully convolutional at-
tention localizers.

We train the models using Stochastic Gradient Descent
(SGD) with momentum of 0.9, epoch number of 150, weight
decay of 0.001, and a mini-batch size of 28 on four K40
GPUs. One epoch means all training samples are passed
through once. An additional dropout layer with an ratio of
0.5 is added after “res5c”, and the size of “fc15” is changed
from 1000 to 200.

The parameters before “res5c” are initialized by the
model (He et al. 2016) pretrained on the ImageNet dataset
(Deng et al. 2009), and parameters of fc15 are randomly ini-
tialized. The initial learning rate is set at 0.0001 and reduced
twice with a ratio of 0.1 after 50 and 100 epoches. The learn-
ing rate of the last layer (“fc15”) is 10 times larger than other
layers.

Our data augmentation is similar to (Szegedy et al. 2014),
but we have more types of data augmentation. A training
image is first rotated with a random angle between −30◦
and 30◦. A cropping is then applied on the rotated image.
The size of the cropped patch is chosen randomly between
25% and 100% of the whole image, and its aspect ratio is
chosen randomly between 3/4 and 4/3. AlexNet-style color
augmentation (Krizhevsky, Sutskever, and Hinton 2012) is
also applied followed by random flip. We finally resize the
transformed cropped patch to a 448×448 image as the input
of the convolutional neural network.

Part Localization Results

We report our part localization results in Table 1. Percent
Correct Parts (PCP) is used as the evaluation metric. A part
is determined to be correctly localized if the difference of
its predicted location and the ground-truth location is within
1.5 times the ground-truth annotations standard deviation.
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Method head breast wing tail ave
(Shih et al. 2015) 67.6 77.8 81.3 59.2 71.4
(Liu and Belhumeur 2013) 58.5 67.0 71.6 40.2 59.3
(Liu, Li, and Belhumeur 2014) 72.0 70.5 74.4 46.2 65.8
Ours (without BB) 60.6 79.5 77.5 47.1 66.2
Ours (with BB) 69.3 81.5 80.3 62.5 73.4

Table 1: Part localization results (measured by PCP) on the CUB-200-2011 dataset.

We compare with previous state-of-the-art part localiza-
tion methods (Shih et al. 2015; Liu and Belhumeur 2013;
Liu, Li, and Belhumeur 2014). The strongly supervised
method (Shih et al. 2015), which utilizes the precise loca-
tion of the parts during training, achieves the highest average
PCP (71.4) in the “without BB” scenario. Our scheme that
does not use any part or object locations achieves the second
highest average PCP (66.2) and performs the best for local-
izing “breast”. The parts are localized much more precisely
(66.2 → 73.4) when ground-truth bird bounding boxes is
used.

Figure 3 provides visualizations of our part localization
results. Ground-truth part locations are shown as hollow cir-
cles, predicted part locations are shown as solid circles and
the selected part regions are shown as thumbnails.

It should be noted that different from (Shih et al. 2015),
our scheme does not directly minimize the part localization
error but learns part localizers for attribute prediction. Thus,
a selected region that is far from manually annotation might
better predict some part attributes. For example, our pre-
dicted “head” positions are usually in the center of the bird
head such that the cropped local region does not lose any
information, while the manually annotated “head” positions
normally appear on the “forehead”.

Attribute Prediction Results

The attribute prediction results measured by average Area
Under the Curve of ROC (AUC) are reported in Table 2. We
use AUC instead of accuracy because the data of attributes
are highly imbalanced: most attributes are only activated in
a very small number of images, but some attributes appear
very frequently. For each part, we calculate the AUC of all
its attributes, and report the average AUC of them as the
AUC of the part.

Directly utilizing the full image as input achieves 76.8,
78.7, 73.1, and 70.4 average AUC for parts “head”, “breast”,
“wing” and “tail”, respectively. The overall average AUC of
the four parts is 74.3. Using the localized local regions re-
sults in slight performance drop (74.3 → 73.7) on overall
average AUC. The prediction using both the full image and
the local attention regions improves the overall average AUC
result to 76.6. Bounding boxes of birds are not used for at-
tribute prediction.

Fine-grained Recognition Results

For “without BB” scenario, the baseline ResNet-50 using the
whole image achieves 81.7% recognition accuracy. Adding
features of two parts (“head” and “breast”) improves the re-
sult to 84.7% and combing features of four parts improves

Method head breast wing tail total
Full image 76.8 78.7 73.1 70.4 74.3
Attention 77.8 78.3 71.9 68.8 73.7
Image + Attention 80.3 80.7 75.5 72.1 76.6

Table 2: Attribute prediction results (measured by average
AUC) on the CUB-200-2011 dataset.

the result to 85.1%. For “with BB” scenario, the baseline
achieves 82.3% accuracy. Combing features of two parts im-
proves the result to 84.9%, and combing all the features im-
proves the accuracy to 85.3%. Using features of GoogLeNet
(Ioffe and Szegedy 2015) and VGGNet (Simonyan and Zis-
serman 2014) achieves 85.1% and 84.0%, respectively.

We carry out further experiments to explore using the at-
tributes for better recognition. In the “full image + attribute
value” experiment, we concatenate 112 binary attribute la-
bels with the original visual feature of the whole image to
predict the bird category. In the “full image + attribute fea-
ture” experiment, we concatenate the visual features of the
5 part attribute prediction models: one is the original full
image model, and the other four models are fine-tuned for
predicting the attributes of the four parts.

As Table 3 shows, directly combining attribute values
does not improve recognition accuracy compared with the
baseline. Combing attribute features leads to marginal im-
provements (81.7% → 82.5% and 82.3% → 82.9%), be-
cause we find the attribute predictions are usually noisy
due to the inherent difficulty of predicting some local at-
tributes. By combining features from the full image model,
four part-based models and the attribute prediction models,
we achieve the 85.4% and 85.5% for the ”without BB” and
“with BB” scenarios, respectively. We also explore jointly
training the part localizers using a recurrent convolutional
neural network model as geometric regularization of part
locations (Tompson et al. 2014), but we find the accuracy
improvement is negligible (85.1% → 85.2% without BB).
After examining the data, we find birds poses are too diverse
to learn an effective geometric model from limited amount
of data.

We compare with previous state-of-the-art methods on
this dataset and summarize the recognition results in Table
3. (Zhang et al. 2014) train part-based R-CNN model to de-
tect the head and body of the bird. The method relies on
part location annotation during training. Our scheme outper-
forms (Zhang et al. 2014) and other part-based models (Si-
mon and Rodner 2015; Zhang et al. 2015) by a large margin
without requiring strongly supervised part location annota-
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Figure 3: Visualizations of part localization results. Ground-truth part locations are shown as hollow circles; predicted part
locations are shown as solid circles; selected part regions are shown as thumbnails. Different parts are shown in different colors.
No ground-truth bird bounding boxes or part locations are used during training or testing time in the proposed method.

Method Acc without BB(%) Acc with BB(%)
(Lin, RoyChowdhury, and Maji 2015) 84.1 85.1
(Krause et al. 2015a) 82.0 82.8
(Zhang et al. 2014) 73.9 76.4
(Liu et al. 2016b) 82.0 84.3
(Jaderberg et al. 2015) 84.1 -
(Zhang et al. 2015) 75.0 -
(Simon and Rodner 2015) 81.0 -
Full Image 81.7 82.3
Full Image + 2×parts 84.7 84.9
Full Image + 4×parts 85.1 85.3
Full Image + attribute value 81.7 82.2
Full Image + attribute feature 82.5 82.9
Full Image + 4×parts + attribute feature 85.4 85.5

Table 3: Recognition results on the CUB-200-2011 dataset with different settings.

tion. (Lin, RoyChowdhury, and Maji 2015) construct high
dimensional bilinear feature vectors, and achieve 84.1% and
85.1% accuracy for the ”without BB” and “with BB” scenar-
ios, respectively. (Krause et al. 2015a) learn and combine
multiple latent parts in a weakly supervised manner, and
achieve 82.0% and 82.8% accuracy for the ”without BB”
and “with BB” scenarios, respectively. (Liu et al. 2016b) uti-
lize the fully convolutional attention localization networks
to select two local parts for model combination. The accu-
racy is 82.0% without bounding box and 84.3% with bound-
ing box, while our accuracy is 84.7% without bounding box
and 84.9% with bounding box by combing features from
two local parts (“head” and “breast”). Localizing distinctive
parts leads to better recognition accuracy. Similarly, (Jader-
berg et al. 2015) combine features of four local parts and
achieve an accuracy of 84.1% without using bounding box.
Our scheme using the same number of parts outperforms it
by 1% (84.1% → 85.1%).

Reward Strategy Visualization

The rewards during reinforcement learning algorithm are
visualized in Figure 4. From left to right, we show the
heatmaps of 1st, 40-th, 80-th, 120-th, 160-th, and 200-th it-
erations for multi-label attribute prediction loss, rewards and
the output probability of the localizer. As can be seen, after
an initial divergence on localizer probability map, the out-

put of the localizer converges to the “head” position during
training as expected.

Figure 4: Our algorithm uses 200 iterations to locate “head”
of the bird in the left part. The top row in the right part shows
the multi-label attribute prediction loss at different positions,
and a lighter position has higher loss. The middle row shows
the rewards at different positions. The localizer is encour-
aged to focus on the light position. The bottom row shows
the probability map of the localizer. Lighter positions indi-
cate larger probability of localization.

Conclusion

In this paper, we present an attention localization scheme
for fine-grained recognition that learns part localizers from
its attribute descriptions. An efficient reinforcement learn-
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ing scheme is proposed for this task. The proposed scheme
consists of a reward function for encouraging different part
localizers to capture complementary information. It is also
highly computationally efficient when the number of at-
tributes and parts is large. Comprehensive experiments show
that our scheme obtains good part localization, improves at-
tribute prediction, and demonstrates significant performance
improvement on fine-grained recognition. In the future, we
will continue our efforts to improve the models of geometric
part location regularization.
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