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ABSTRACT

Recurrent Neural Networks (RNNs) are used in state-of-the-art models in domains
such as speech recognition, machine translation, and language modelling. Spar-
sity is a technique to reduce compute and memory requirements of deep learning
models. Sparse RNNs are easier to deploy on devices and high-end server pro-
cessors. Even though sparse operations need less compute and memory relative to
their dense counterparts, the speed-up observed by using sparse operations is less
than expected on different hardware platforms. In order to address this issue, we
investigate two different approaches to induce block sparsity in RNNs: pruning
blocks of weights in a layer and using group lasso regularization to create blocks
of weights with zeros. Using these techniques, we demonstrate that we can create
block-sparse RNNs with sparsity ranging from 80% to 90% with small loss in ac-
curacy. This allows us to reduce the model size by roughly 10×. Additionally, we
can prune a larger dense network to recover this loss in accuracy while maintain-
ing high block sparsity and reducing the overall parameter count. Our technique
works with a variety of block sizes up to 32×32. Block-sparse RNNs eliminate
overheads related to data storage and irregular memory accesses while increasing
hardware efficiency compared to unstructured sparsity.

1 INTRODUCTION

Improvements in several applications such as speech recognition (Amodei et al., 2016), language
modeling (Józefowicz et al., 2016), and machine translation (Wu et al., 2016) are a result of large
Recurrent Neural Networks (RNNs) trained on large scale datasets. As the datasets available to train
these models have grown, so have model sizes. Deployment of such large models is compute and
memory intensive.

Pruning deep neural networks is an effective strategy to reduce the overall memory and compute
requirements of these models (Narang et al., 2017; Han et al., 2015). However, these approaches in-
duce random, unstructured sparsity in the weight matrices. Speed-up obtained with random sparsity
on various hardware platforms are lower than expected (as shown in Narang et al. (2017); Narang
& Diamos (2017)). Sparse formats do not efficiently utilize the hardware resources due to storage
overheads, irregular memory access, and inability to take advantage of array data-paths in modern
processors.

Block sparsity can address these issues. Saving indices of non-zero blocks instead of indices for
non-zero elements reduces the storage overhead by a factor of block size. Block-sparse formats
store blocks contiguously in memory reducing irregular memory accesses. Block sparsity inherently
allows us to take advantage of array-data-path in modern processors.

In order to induce block sparsity in RNNs, we propose a block pruning approach that zeros out
blocks of weights in the matrix while the network is training. At the end of training, the algo-
rithm creates a block-sparse RNN. In addition to this pruning technique, we examine the efficacy
of group lasso regularization to induce block sparsity in the network. We also combine group lasso
regularization with block pruning.
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We demonstrate that block pruning and group lasso regularization with pruning are successful in
creating block-sparse RNNs. Inducing block sparsity with 4×4 blocks in vanilla RNNs and Gated
Recurrent Units (GRUs) (Cho et al., 2014) results in 9% to 17% loss in accuracy compared to the
dense baseline. Model size reduces by nearly 10×. Block sizes can be scaled up to 32×32 with our
approach. Larger blocks require lower sparsity to maintain similar accuracy. We can also reduce
accuracy loss by starting with a larger dense matrix than the baseline and then pruning it down while
still reducing the number of parameters compared to the baseline.

Our approach is agnostic to the optimization algorithm and does not require any hyper-parameter
retuning (besides pruning and regularization hyper-parameters). Furthermore, since our approach
does not require re-training the model, training time remains the same.

2 RELATED WORK

There have been several approaches to reduce the network size by pruning the model. Hanson &
Pratt (1989) use several bias techniques to decay weights in a network. LeCun et al. (1989) and
Hassibi et al. (1993) both use Hessian-based approaches to prune weights below a certain threshold.
Simpler approaches like sorting or thresholding can be used to prune a neural network. Han et al.
(2015) and Liu et al. (2015) prune Convolution Neural Networks (CNNs) while maintaining high
accuracy. Yu et al. (2012) use a hard threshold to prune deep learning models. Narang et al. (2017)
and Zhu & Gupta (2017) prune recurrent neural networks during the initial training run with a small
accuracy loss using gradual pruning. Unlike our technique, all of the above approaches induce
random, unstructured sparsity in neural networks.

Several approaches exist to induce structured sparsity in neural networks. Mao et al. (2017) use
a simple threshold based technique to create structurally sparse CNNs. Yu et al. (2017) propose
Scalpel that prunes CNNs taking into account the underlying target hardware architecture. Wen
et al. (2017) alter the structure of Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber,
1997) to create LSTMs with smaller memory footprint. They demonstrate that this technique works
for language modeling on the Penn Tree Bank dataset. Our approach works with both vanilla RNN
and GRU models trained on a large-scale datasets for speech recognition.

Group lasso regularization has been used as an efficient method for generating sparse structures
(Yuan & Lin, 2006b; Kim & Xing, 2010). Wen et al. (2016) use group lasso regularization to
induce structured sparsity in convolutional neural networks. Regularization is a known method to
induce sparsity in deep neural networks (Faraone et al., 2017; Fan et al., 2016). To the best of our
knowledge, none of these approaches have been used with RNNs trained on large-scale datasets.

Other approaches to reduce compute and memory footprint for deep learning models include quan-
tization (Micikevicius et al., 2017; Vanhoucke et al., 2011; Rastegari et al., 2016; Gupta et al., 2015)
and low-rank factorization (Denil et al., 2013; Denton et al., 2014). Our approach is orthogonal to
these methods and can be combined with them.

3 IMPLEMENTATION

3.1 BLOCK PRUNING

Our approach to pruning deep learning models builds on the work by Narang et al. (2017). They
propose a weight pruning algorithm that introduces random, unstructured sparsity in RNNs. In their
work, they propose pruning weights below a monotonically increasing threshold. Their pruning
strategy does not impose any structure on the weights.

We extend this approach to prune blocks of a matrix instead of individual weights. In order to prune
blocks, we pick the weight with the maximum magnitude as a representative for the entire block.
If the maximum magnitude of a block is below the current threshold, we set all the weights in that
block to zeros. Figure 1 depicts the process of generating a block-sparse mask from a weight matrix
for a given threshold. The block-sparse mask is multiplied with the weights to generate block-sparse
weight matrix. The monotonically growing threshold (ε) causes more blocks to be pruned as training
progress. We stop pruning more blocks after around 40% of training has completed. Any blocks
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Figure 1: Generating block-sparse masks from a weight matrix

Table 1: Heuristics to pick hyper-parameters for block-pruning

HYPER-PARAM DESCRIPTION HEURISTIC VALUES

start itr Iteration to start pruning Start of second epoch
ramp itr Iteration to increase the rate of

pruning
Start of 20% of total epochs

end itr Iteration to stop pruning more pa-
rameters

Start of 40% of total epochs

start slope
(θ)

Initial rate of increasing the thresh-
old

See Equation 2

ramp slope
(φ)

Rate of increasing threshold after
ramp iteration

1.2θ to 1.7θ

freq Number of iterations after which ε
is updated

100

that had been zeroed out are held at zero even after pruning has ended resulting in a sparse model at
the end of training.

Narang et al. (2017) use six hyper-parameters to determine the threshold at a given iteration. Table 1
provides the description and heuristics (adapted for block pruning) for these hyper-parameters. The
start slope and ramp slope determine the rate at which the threshold increases. In order to determine
start slope, they recommend using weights from an existing dense model. To achieve 90% sparsity,
they assign q to the weight which is the 90th percentile of the absolute values in a weight matrix.
Assuming φ is 1.5θ, they use Equation 1 to determine θ.

θ =
2× q × freq

2× (ramp itr − start itr) + 3× (end itr − ramp itr)
(1)

For block pruning, we need to modify the start slope to take into account the number of elements in
a block (Nb). In order to calculate the start slope, we first calculate start slope for weight pruning
(θw) using the Equation 1. Given θw, we suggest using Equation 2 to determine the initial slope
(θb) for block pruning. Based on empirical results, we have found that using this approach allows
us to achieve block sparsity ranging from 85% to 95%. Further tuning of these hyper-parameters is
required to achieve desired block sparsity.

θb = θw × 4
√
Nb (2)

We prune all the recurrent and fully connected layers in the network using the same block size. The
pruning hyper-parameters are same for each type of layer in the network - recurrent weight layer
and linear/fully connected layer.
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3.2 GROUP LASSO REGULARIZATION

Group lasso is a type of weight regularization that works on groups of weights and can zero out all
the weights in a group. In order to induce block sparsity in the network, we divide all weights in the
model into blocks. For each block, we add a loss term proportional to the `2 norm of the block.

L = Ltraining + λg

G∑
g=1

‖w(g)‖2

where w(g) is a block of weights, ‖w(g)‖2 is the `2 norm of the block, and G is the total number
of block. Our use of `2 norm is a variant of the more general group lasso defined in Yuan & Lin
(2006a) as ‖n‖K = (n′Kn)1/2.

Group lasso has the property that a large enough λg will drive all weights within certain groups to
hard zeros. Thus, we explore group lasso regularization to produce block-structured sparsity. We
choose an appropriate constant λg for the duration of training.

One interpretation of weight regularization is that less important weights are driven towards zero
and more important weights retain large absolute values. Thus, we combine group lasso with block
pruning, such that group lasso guides the selection of blocks to prune. We apply group lasso regular-
ization to coincide with the pruning schedule. We turn off regularization when the pruning schedule
ends, which is typically after around 40% of training epochs. As discussed in Section 3.1, weights
that were already set to zero remain unchanged after this point. Group lasso is related to the well-
known `1 regularization. In Appendix A, we discuss exploration of `1 regularization combined with
weight pruning.

4 EXPERIMENTS

We run block sparsity experiments on two different speech recognition models from Amodei et al.
(2016). The RNN model consists of a convolutional layer, followed by seven bidirectional recurrent
layers and a Connectionist Temporal Classification (CTC) layer (Graves et al., 2006). The baseline
RNN model (RNN Dense 1760) consists of 1760 hidden units in each recurrent layer with nearly
67 million parameters. The GRU model consists of two convolutional layers, three recurrent layers
with GRU cells and a CTC layer. The baseline GRU model (GRU Dense 2560) consists of 2560
hidden units in each layer with a total of 115 million parameters. The dataset used for training these
models consists of 2100 hours of English speech. We use a validation set consisting of 3.46 hours
of data. The Character Error Rate (CER) results are reported on an independent test set, consisting
of 2.9 hours of English data.

In order to introduce block sparsity in RNNs, we run three different types of experiments - Block
Pruning (BP), Group Lasso (GL), and Group Lasso with block pruning (GLP). We prune weights
in the recurrent layers (both linear and recurrent weights) and fully connected layers. Biases, batch-
normalization parameters and weights in the convolutional and CTC layers are not pruned since they
account for a small portion of the total weights in the network. Besides pruning hyper-parameters
and λg , no other hyper-parameter changes were required for sparse training runs. The models are
trained using Nesterov Stochastic Gradient Descent (SGD) with momentum. All models are trained
for 25 epochs. The dense models are trained without any regularization.

In Section 4.1, we report results for different sparse models pruned with 4×4 blocks. Section 4.2
compares the results for the two different group lasso experiments. Section 4.3 discusses the impact
of varying the block size on the accuracy of the model.

4.1 BLOCK SPARSITY

We conduct three types of experiments for both RNN and GRU models: pruning the baseline model,
training smaller dense models, and pruning a model larger than the baseline model.

Initially, we prune the baseline RNN and GRU models. Using BP and GLP, we are able to reduce
the parameter count for both these models by nearly 10×. As shown in Table 2, the sparse RNN
model with 1760 hidden units has an overall block sparsity of 89% with a relative loss in accuracy

4



Table 2: GRU and bidirectional RNN model results with 4×4 blocks

# PARAMS RELATIVE PRUNING
MODEL (in millions) SPARSITY CER PERF ALGORITHM

RNN Dense 1760 67 0.0% 15.36 0.0% N/A
RNN Dense 704 11.6 0.0% 18.95 -23.4% N/A
RNN Sparse 1760 7.3 89.2% 17.93 -16.7% BP
RNN Sparse 2560 12.9 90.8% 15.89 -3.4% GLP
RNN Sparse 3072 25.8 87.3% 15.66 -1.9% BP

GRU Dense 2560 115 0.0% 15.42 0.0% N/A
GRU Dense 704 11.0 0.0% 21.26 -37.9% N/A
GRU Sparse 2560 10.8 90.6% 16.78 -8.8% GLP
GRU Sparse 3584 25.6 88.4% 16.23 -5.2% BP

of 16.7%. The sparse GRU model achieves slightly higher sparsity (90%) while losing only 8.8% of
accuracy. This indicates that the block-sparse GRU model retains most of the capacity of the dense
model.

Secondly, we train dense models with fewer parameters to determine if sparsity is reducing overfit-
ting in the large dense baseline models. For both RNN and GRU models, we train a dense model
with 704 hidden units in each layer, resulting in approximately the same number of parameters as
the final sparse models. Table 2 shows that these dense models perform worse than the sparse mod-
els for both RNN and GRU models. Large sparse models are a better approach to reduce parameter
count than dense small models.

Finally, we train sparse models with more hidden units in each recurrent layers to recover the accu-
racy. For RNN models, we increase the hidden layer size to 2560 and 3072. As shown in Table 2,
the RNN sparse 3072 is only 1.9% worse than the dense baseline model. The 2560 and 3072 sparse
RNN models reduce the overall parameter count by 5×and 2.5×respectively. Similarly, pruning the
GRU model with 3584 hidden nodes reduces the accuracy loss to about 5% while still shrinking the
model by 4.5×.

Our evaluation show that inducing block sparsity in the baseline model allows us to reduce the model
size by approximately 10×with a small loss in accuracy. Pruning a model larger than the baseline
model allows to reduce the accuracy loss while reducing model size by nearly 5×. Our results also
indicate that large sparse models result in better accuracy that small dense models.

4.2 GROUP LASSO VARIANTS

Table 3 highlights the results of GL and GLP experiments for two different models. For both RNN
models with 1760 and 2560 hidden nodes, group lasso without any pruning does significantly worse
than combining group lasso with the block pruning methodology.

Table 3: Group lasso experiments for RNN models with 4×4 blocks

# PARAMS RELATIVE PRUNING
MODEL (in millions) SPARSITY CER PERF ALGORITHM

RNN Sparse 1760 10.9 83.3% 30.14 -96% GL
RNN Sparse 1760 6.2 90.8% 19.24 -25.3% GLP
RNN Sparse 2560 24.4 82.8% 27.4 -78.4% GL
RNN Sparse 2560 12.9 90.8% 15.89 -3.4% GLP

In order to achieve high sparsity (80% or higher), we need to set λg to a relatively high value. For
instance, experiments using GL required a λg of approximately 3×larger than the GLP experiments.
This high regularization factor hurts the model accuracy. The dense baseline model is trained without
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Table 4: GRU and bidirectional RNN results for different block sizes using BP

BLOCK # PARAMS RELATIVE
MODEL SIZE (in millions) SPARSITY CER PERF

RNN Sparse 1x1 7.3 89.2% 17.32 -12.8%
RNN Sparse 4x4 7.3 89.2% 17.93 -16.7%
RNN Sparse 12x2 10.8 84.1% 16.96 -9.99%
RNN Sparse 8x8 10.7 84.1% 17.66 -14.9%
RNN Sparse 16x16 11.1 83.6% 17.1 -11.3%
RNN Sparse 32x32 14.1 79.1% 16.67 -8.5%
GRU Sparse 1x1 13.1 88.7% 16.55 -7.3%
GRU Sparse 4x4 16.2 86.0% 16.97 -10.5%
GRU Sparse 16x16 20.8 81.9% 16.84 -9.2%

any regularization. Even without regularization, the dense model does not overfit the training dataset.
Group lasso experiments underfit the training data due to the high value of λg . Group lasso could
be more successful in inducing sparsity where the dense model overfits the training dataset. In the
GLP experiments, we can reduce the regularization factor since pruning forces smaller magnitude
weights to zero. This combined approach results in improved accuracy while maintaining high levels
of sparsity.

4.3 BLOCK SIZE VARIATION

Table 4 shows the results of varying block size for pruning for RNN and GRU baseline models.
Increasing the block size to 16×16 and 32×32 requires reducing the sparsity to 83.6% and 79.1%
respectively for RNN models to obtain good accuracy. Similar results hold true for the GRU model
as well. Large sparse blocks reduce memory overhead for storing non zero values and can take
advantage of array data-paths in more modern processors. Therefore, even though large blocks
achieve lower sparsity, they result in lower memory and compute requirements.

5 PERFORMANCE

The primary advantage of a block-sparse format is to increase hardware efficiency by making the
computation more regular. Sparse formats incur at least three types of overhead: i) indexing over-
head, ii) irregular memory accesses, and ii) incompatibility with array-data-paths, all of which are
mitigated by using larger block sizes.

Indexing Overheads. Sparse formats use extra memory to track the location of each non-zero value.
For example, the compressed-sparse-row (CSR) format uses approximately two extra index values
for each non-zero value. The size of these extra index values depends on the maximum matrix
size. Using 16-bit indices incurs 32-bits of overhead per non-zero value and allows up to 64k x
64k matrices to be supported. Assuming that neural network weights are represented with 16-bits
as in Micikevicius et al. (2017), this is a 200% overhead. Block sparsity reduces this overhead by
a factor of the block size because the index is shared over the entire block. For example, using a
block size of 4x4 reduces the memory bloat to 12.5%, and using a block size of 16x16 reduces the
overhead to less than 1%.

Irregular Memory Accesses. Caches lines, DRAM row buffers, and TLBs provide the best perfor-
mance when memory is accessed in relatively large contiguous units (e.g. 64 bytes for cache lines,
4KB for a DRAM row) as opposed to in fine-grained random accesses. Block-sparse formats store
blocks contiguously in memory, resulting in large coalesced accesses.

Array Data-Paths. Fine-grained sparsity cannot directly take advantage of array-data-paths, such
as the 16x16 TensorCore units in the Volta GPU described by NVIDIA (2017) or the 256×256 units
in the Google TPU described by Jouppi et al. (2017). There are significant advantages of using
these units, for example, on the Volta V100 GPU, they enable up to 8x higher throughput than the
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Figure 2: Speed-up for sparse matrix dense matrix multiply. Benchmarks are run on TitanX Maxwell
using the CuSparse library. Sparse matrices are represented in the CSR format. RNN matrix sizes
are (1760,1760) with 90% sparsity and (1760, batch size). GRU matrix sizes are (7680,2560) with
95% sparsity and (2560, batch size). Results are shown for matrices from Weight Pruning (WP) and
Block Pruning (BP).

SIMD data-paths. In order to keep these units busy, the block size should be at least as large as the
hardware data-path size (i.e. 16×16 or greater on V100).

Figure 2 shows that block-sparse matrices achieve higher speed-up than unstructured sparsity for
large batch sizes. In this case, the speed-up is achieved due to reducing irregular memory accesses
and improving load balance. 4×4 blocks have higher speed-up than 16×16 blocks. Further investi-
gation is needed to understand this behavior.

6 DISCUSSION

6.1 PRUNING CHARACTERISTICS

In Figure 3a, we plot the pruning schedule of a recurrent and linear layer of the bidirectional model
trained with BP and Weight Pruning (WP) (Narang et al., 2017). For all three algorithms, pruning
begins just after the first epoch at 2700 iterations. The BP and GLP models result in a sharper curve
with more weights being set to zero in a short span of iterations. In these experiments, we use the
max function to reduce the blocks to a single value which could be the cause of the sharpness in
pruning. Also the GLP model reaches 90% sparsity just before 10,000 iterations which is signifi-
cantly earlier than the BP model. GLP training encourages sparsity early on in the training run by
pushing the blocks of weights towards zero.

Figure 3b shows the histogram of the number of output connections for all the neurons in a network
for two models with different sparsity pruned with BP. The 94% sparse model does significantly
worse than the 89% sparse. For the model with 89% sparsity, only 180 neurons have all their output
weights set to zero out of a total of 38270. This model produced good accuracy relative to the dense
baseline. However, increasing the sparsity to 94% for the layer results in 1620 neurons having all
zero output weights. Additionally, a lot more neurons have a smaller number of non-zero output
weights.

6.2 IMPACT OF SPARSITY ON ACCURACY

Using our baseline RNN model, we run many weight and block pruning experiments, varying hyper-
parameters to produce a spectrum of results ranging from 70% to 97% sparsity. For these experi-
ments, the models are trained for 20 epochs and the accuracy is measured on the validation set
instead of the test set. Therefore, the relative accuracy for these models is slightly different from the
results reported in Section 4.1. As shown in Figure 4a, models pruned using WP with sparsity less
than 95% have relative accuracy ranging from -20% to -27%. Increasing the sparsity for the model
beyond 95% results in 30% or more accuracy loss. This accuracy ”cliff” is earlier for models pruned
with block sparsity. For block size 4×4, models with sparsity greater 90% yield a relative accuracy
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Figure 3: Figure 3a shows the pruning schedule for two layers in the network for WP, GLP and BP
models. The GLP and BP models use block size of 4x4. Figure 3b plots the histogram of the number
of output connections for all neurons in the network using block pruning with 4×4 blocks.
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Figure 4: Figure 4a shows the relative accuracy for different block sizes (4x4, 16x16) and WP for
varying sparsity on the RNN 1760 model. Any models with relative accuracy worse than -75% are
capped at 75%. Figure 4b shows the sparsity of different recurrent layers in the network in the RNN
model, pruned using BP and WP.

loss of 30% or higher. Similarly, for blocks of 16×16, models with sparsity greater than 86% have
30% or more accuracy loss. A similar trend is observed for block size 32×32. This indicates that
there is a tradeoff between sparsity, block size and accuracy of the model.

6.3 SPARSITY VS LAYERS

Figure 4b shows the sparsity of all the recurrent layers in the network using BP and WP. All recurrent
layers have the same pruning hyper-parameters. Layer 1 is the first recurrent layer and layer 14 is the
final recurrent layer before the CTC cost layer. For both block pruning and weight pruning, we see
that the initial layers are pruned more aggressively compared to the final layers. Increasing sparsity
in the layers closer to the output results in poor accuracy. Additionally, the variance in sparsity
across the layers increases with the block size. This increasing variance makes it harder to increase
the block size beyond 32×32 with the same pruning hyper-parameters for all recurrent layers.

7 CONCLUSION AND FUTURE WORK

We have demonstrated that using block pruning and group lasso combined with pruning during train-
ing we can build block-sparse RNNs that are about as accurate as the dense baseline models. The
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block-sparse models have significantly fewer parameters than the dense baselines reducing memory
requirements. Block-sparse models can take advantage of the underlying hardware efficiently.

We would like to investigate if pruning can be performed even earlier in the training, thereby allow-
ing us to train sparse models. Training sparse models would allow us to reap the benefits of sparsity
during training resulting in lesser compute and memory demands. Further work remains to imple-
ment efficient block-sparse matrix denese matrix/vector multiplies for GPU and ARM processors
that would provide increased speed-up during deployment.
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A `1 AND `1/2 REGULARIZATION

Prior to our work with group lasso regularization, we considered `1 and `1/2 regularizers to induce
sparsity in the network. These regularizers act on individual weights and could aid in inducing
unstructured sparsity in the network. `1 regularization is defined as:

L = Ltraining + λ

k∑
i=1

|wi|

where |wi| is the absolute value of a weight and k is the total number of weights. Note the gradient
expression for each weight wj :

∂

∂wj

k∑
i=1

|wi| = sgn(wj)

As with the group lasso experiments described in 3.2, we explore `1 regularization with and without
pruning. The weight pruning (WP) algorithm from Narang et al. (2017) is used along with regu-
larization. The motivation is the same as group lasso block sparsity experiments: either to guide
pruning or to produce sparsity directly.

We also explore `1/2 regularization which is defined as:

L = Ltraining + λ

k∑
i=1

|wi|1/2

Fan et al. (2016) uses `1/2 regularization to produce sparsity directly. The gradient for `1/2 regular-
ization is 1

2 |wj |−1/2. This term is smaller for weights with larger magnitude. Our expectation is that
`1/2 will drive unimportant weights towards zero while leaving large weights relatively unaffected,
thus avoiding the accuracy loss associated with excessive regularization.

For our `1 and `1/2 experiments, we use the Deep Speech 2 Bidirectional RNN baseline model
described in Section 4. These models are trained for 25 epochs on our internal training dataset of
2000 hours. The results are reported on a independent test set consisting of 2.9 hours.

Table 5: `1 and `1/2 results with the bidirectional RNN model with 1760 hidden units

# PARAMS RELATIVE PRUNING
MODEL (in millions) SPARSITY CER PERF ALGORITHM

RNN Dense 67 0.0% 15.36 0.0% N/A
RNN Sparse 7.3 89.2% 17.32 -12.8% Weight pruning
RNN Sparse 11.2 83.6% 24.8 -61.5% `1
RNN Sparse 7.4 89.1% 17.28 -12.5% `1 with pruning
RNN Sparse 6.6 90.3% 18.50 -20.4% `1/2 with pruning

Without pruning, `1 model results in significantly worse accuracy compared to the dense baseline.
Combining `1 with weight pruning allows us to recover the loss in accuracy with similar sparsity.
The `1/2 with pruning model performs worse than the `1 with pruning model. Comparing the two
regularizers, this result indicates that `1 is better at guiding pruning than `1/2, more suitable as a
regularizer, or both.

Similar to group lasso experiments, `1 regularization experiments require a significantly higher λ
to achieve high sparsity without any pruning. We suspect that these regularizers would be more
successful in inducing sparsity for models that overfit the training training dataset.
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