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Abstract

In this paper we present a novel approach for depth map

enhancement from an RGB-D video sequence. The basic

idea is to exploit the photometric information in the color

sequence. Instead of making any assumption about surface

albedo or controlled object motion and lighting, we use the

lighting variations introduced by casual object movement.

We are effectively calculating photometric stereo from a

moving object under natural illuminations. The key tech-

nical challenge is to establish correspondences over the en-

tire image set. We therefore develop a lighting insensitive

robust pixel matching technique that out-performs optical

flow method in presence of lighting variations. In addition

we present an expectation-maximization framework to re-

cover the surface normal and albedo simultaneously, with-

out any regularization term. We have validated our method

on both synthetic and real datasets to show its superior per-

formance on both surface details recovery and intrinsic de-

composition.

1. Introduction

The availability of affordable depth sensors has sparked a

revolution in many areas of computer vision, such as human

computer interactions, robotics, and video analysis. Among

these 3D modeling has probably received the most benefits

from this advancement of sensors. Nevertheless, the current

generation of depth sensors still suffers from limited reso-

lution and accuracy. As a result, fine-scale structural details

of an object cannot be recovered.

Many researchers have exploited high quality color im-

age as guidance to enhance the depth map, such as de-

noise and up-sampling [28, 11, 40, 6, 25]. Among these

approaches, the fusion of depth maps with shading infor-

mation contained in color images has shown its effective-

ness in recovering surface geometry details. Most of these

*The first two authors contributed equally to this work

methods implement shading refinement on single RGB-

D frame on the basis of Shape-from-Shading (SfS) tech-

niques [41, 27, 37]. However, the inherent ambiguity for

SfS still exists and smooth regularization term is usually

incorporated. Another problem is that an albedo image is

needed to predict the appearance, which is also unknown.

Typically a constant albedo assumption is made. In order to

handle varying albedos, previous shading-based refinement

methods often approached this chicken-and-egg problem

by assuming prior assumptions or by enforcing particular

albedo regularizers. However, these regularizers are heuris-

tic and may not work all the time. In this paper we propose

to take advantage of an RGB-D sequence to uniquely re-

solve the normal maps and albedo images.

We only make two basic assumptions about the object,

first it is primarily diffuse and second it is acquired by

casual movement of the object (not the camera). In this

way, the object’s movement induces illumination changes

in the image sequence, which is critical to resolve the sur-

face normal and albedo without any ambiguity. It resem-

bles the photometric stereo. But instead of controlling the

light when imaging the static object, we move the object

under general natural lighting. This kind of cue has been

exploited in multi-view photometric stereo [10] and shape

from video [22, 32, 42]. However, they have the environ-

mental lighting constrained to be calibrated directional light

and the object is experiencing turntable motion or the mo-

tion is already calibrated. On the contrary our approach

works under natural lighting with the object under arbitrary

motion, which makes our method more widely used in ev-

eryday environment.

Given the captured RGB-D sequence, first we try to align

the RGB-D sequence and find the correspondences among

the images using a novel robust matching technique. Then

the environmental lighting is estimated using the intensity

ratios of the aligned sequence, which effectively factors out

the impact of varying albedo. Finally, we formulate an

Expectation-Maximization framework in which the surface

normal and its albedo can be calculated robustly, in the pres-
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ence of some non-Lambertian reflection or cast shadow. A

detailed surface mesh is obtained after integration of the ini-

tial depth map with estimated normal map.

The main contribution is that we utilize the dynamic pho-

tometric information along the sequence to recover the sur-

face details beyond the resolution of current depth sensors.

Compared to previous depth enhancement schemes that use

the color information, our method, to the best of our knowl-

edge, is the least restrictive. It allows arbitrary surface

albedo, does not require controlled or calibrated lighting

or turntable capture. To achieve these, we make two tech-

nical contributions. The first is a novel image registration

scheme that is robust to lighting variations and the second

is an EM optimization scheme to produce per-pixel normal

and albedo map under general lighting.

2. Related Work

In this section, we will review the previous works in two

related topics: surface geometry or depth enhancement with

shading information, and intrinsic image decomposition.

2.1. Shape from shading and photometric stereo for
surface or depth enhancement

The Shape-from-shading (SfS) problem has long been

studied since the pioneering work by Horn [16]. It aims to

estimate surface normal (and then indirectly surface shape)

from a single image. There are various regularization terms

or prior assumptions [1, 2] that have been enforced to deal

with the inherently ill-posed problem.

Recent methods have shown that SfS can be used to

refine the noisy depth map captured from RGB-D cam-

eras [14, 41]. The inherent ambiguity of SfS is not re-

solved exactly, but with the initial depth close to the real

surface, Wu [37] and Roy [27] have achieved good perfor-

mance in recovering surface details. Varying albedo poses

another challenge as it needs to be factored out before light-

ing estimation and shading refinement. Some [14] assumes

uniform or piecewise constant albedo. Yu [41] deals with

this by clustering a fixed set of discrete albedos before op-

timizing geometry. A better, yet more complex strategy, is

to simultaneously optimize for unknown albedos and refine

geometry [18]. There are also previous works that adopt

the shading constraints to improve the coarse 3D shape re-

constructed using multi-view stereo [36]. The major dif-

ference between our method and these prior works is that

we fully exploit lighting effects contained in a video se-

quence to uniquely and simultaneously determine the sur-

face albedo and normal in a pixel-wise manner. Therefore

we are able to deal with arbitrary albedo.

Photometric stereo methods have been developed to

compute the surface normal using multiple images of a

scene taken under different or controlled illumination [38,

39]. Unlike SfS, photometric stereo is a well-defined

problem, which is then incorporated to enhance the raw

depth map [15, 43] captured from the current depth sensor.

Wu [35] and Zhou [46] have also shown its effectiveness un-

der multi-view setup or for images acquired from the inter-

net [31]. Besides, some have used the IR images instead of

color images for normal estimation [34]. Recently Chatter-

jee [8] exploited the IR image and proposed a factorization

method to handle objects with varying albedo. In these ap-

proaches, the objects are kept to be static or captured almost

under the same viewpoint with different lighting conditions.

Different from them we allow the object to rotate arbitrarily

under uncontrolled environment.

2.2. Intrinsic decomposition

There are some works about intrinsic decomposition that

focus on separating the albedo map from shading image, to

which our work is also related. The problem of intrinsic im-

age decomposition, first introduced by Barrow [4], is to sep-

arate reflectance and illumination from a single image. It is

again an ill-posed problem since there are two unknowns for

every observation. Additional constraints must be adopted

to make the problem solvable. The Retinex theory [23] is

widely used for this purpose. It assumes that shading varia-

tions are mostly low frequency while albedo changes are

mostly high-frequency. Based on this assumption, many

approaches have been proposed. For example, Tappen et

al. [33] train a classifier from reflectance and shading data

sets. Global priors, such as the reflectance sparsity, are de-

veloped [13, 5, 44] and they perform clustering or enforce

non-local smoothness on image reflectance. These priors

or regularization terms are not guaranteed to work well in

all cases, especially when the albedo variation is significant

(e.g., a textured surface).

More information has been used to reduce the ambigu-

ity. For example, researchers propose to use RGB-D image

as input and depth maps or normals are taken as additional

cues [9, 17, 3]. Lee et al. [24] employed temporal albedo

consistency constraints for RGB-D video. Another solution

is to leverage multiple images of the scene taken under vary-

ing lighting conditions [19, 21, 20]. However, without any

information about the surface geometry and environmental

lighting, the problem is still ill-posed with regularization

terms or pairwise constraints needed.

The main difference between our method and the prior

works is that we can solve normal and albedo for each pixel

independently, without the need for additional regulariza-

tion terms.

3. Preliminary Theory

While environmental lighting can be arbitrarily complex,

the appearance of a diffuse object can be described by a low

dimensional model [29]. Under this assumption, the shad-

ing function s for Lambertian reflectance can be modeled
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as a quadratic function of the surface normal with A, b, c

represented as the lighting parameters.

s(n) = n
TAn+ bTn+ c (1)

Then the captured image is generated by multiplying the

shading function with surface albedo ρ(p)

I(p) = ρ(p) · s(n(p)) (2)

Given a single image as observation, it may not be feasi-

ble to recover the surface normal and albedo since for each

pixel we have three equations with five unknowns to be esti-

mated. Photometric stereo, with more lighting variations, is

a typical solution to resolve the ambiguity. Mathematically,

the surface normal and its albedo can be computed by min-

imizing the following objective function that is formulated

for each pixel independently under natural lighting condi-

tion. No smoothness or albedo regularization is needed.

E(n, ρ) =
∑

k

||ρ · (nTAkn+ bTkn+ ck)− Ik||2 (3)

The underlying principle of our enhancement method is

based on photometric stereo, but we do not need to change

the lighting condition with the object being static; instead

we captured the RGB-D sequence of the object under arbi-

trary motion in uncalibrated natural illumination. Suppose

we keep the first frame as the reference frame, and we can

find the correspondences for pixels along the sequence. For

example, for pixel p in the reference frame, its correspon-

dence in frame k is W (p). The appearance of the pixel

W (p) is generated as,

Ik(W (p)) = ρ(p) ·
(

(Rkn)
TA(Rkn) + bT (Rkn) + c

)

= ρ(p) ·
(

n
T (RT

k ARk)n+ (bTRk)n+ c
)

(4)

where ρ is the albedo for pixel p which equals to pixel

W (p) and n is surface normal under reference frame coor-

dinate. Rk is the rotation from the reference frame to frame

k.

Therefore the changes of lighting induced by the object

motion provide valuable cues to recover the surface normal

and its albedo resembling photometric stereo.

4. Pipeline

An overview of our depth enhancement and albedo re-

covery framework is shown in Figure 1.

First, we fuse every M = 20 RGB-D frames via Kinect-

Fusion [26] to generate N key frame depth maps. They

are smoother and more accurate than the raw depth maps.

The extrinsic parameters between these key frames are com-

puted and then refined after bundle adjustment. A robust
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normal and 
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Figure 1: System Pipeline.

pixel matching strategy is proposed to deal with misalign-

ment. For lighting estimation, the entire sequence is used

to make the estimation more robust. Finally, given the com-

puted lighting and correspondences along the sequence, we

recover the surface normal and albedo image under our ro-

bust EM framework. The recovered normal can be inte-

grated with the reference key frame depth map to generate

surface model with much more structural details.

5. Approach

There are three major parts in our approach, including

searching correspondences among the images, lighting es-

timation, and normal and albedo recovery. They will be

described in details in the following sections.

5.1. Robust Pixel Matching

The key frame depth maps D0 ∼ DN are obtained via

depth fusion and the corresponding color images are de-

noted as I0 ∼ IN . We set the first frame as the reference

frame (Dref = D0, Iref = I0). We need to establish corre-

spondences between pixels in reference frame and those in

other frames.

5.1.1 Rigid alignment

First, the global rigid transformation from this reference

frame to other frames are calculated by detecting SIFT or

ORB features followed by feature matching. These extrin-

sic parameters are further refined with bundle adjustment

and finally we get the rotation R0 ∼ RN and translation

matrix T0 ∼ TN from the reference frame to other frames.

5.1.2 Lighting insensitive robust match

These key frames can be warped into the reference frame

given the current transformation. However misalignments

still exist after bundle adjustment as shown in Fig. 2(c),

which is caused by the imprecise depth maps and the imper-

fect synchronization between the captured color and depth

sequence. Optical flow is often used as a solution to find

correspondences between two images. Considering that the
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(a) Reference frame

(b) Sampled frame (d) Optical flow overlay(c) Initial overlay (e) Our overlay

Figure 2: Demonstration of matching. (a) is the reference frame and (b) is one sampled key frame. Image(b) is warped to

the reference frame with current transformation, and (c) displays the warped image overlaid with image(a). (d) shows the

overlaid result using the flow map computed from warped image and the reference image. (e) is the overlaid image after

applying our proposed lighting insensitive robust matching.

misalignment may be severe, we have tried to use large dis-

placement optical flow [7] to find the correspondences be-

tween the warped image and the reference image. However,

since the consistency assumption is not maintained in our

case, the alignment has got even worse in some part with

great illumination changes as displayed in Fig. 2(d). There-

fore, we have developed a robust method to deal with these

issues.

Suppose we have the reference depth map and color im-

age denoted as Dref and Iref respectively. For each pixel

p = (u, v) in Iref, its current corresponding pixel(q) after

bundle adjustment in image Ik is computed as,

λ

[

q

1

]

= K

(

Rk

(

K−1 ∗





u

v

Dref(u, v)





)

+ Tk

)

(5)

The corresponding pixel p in Iref and q in Ik may not be

the correct correspondence because of the misalignment.

Therefore, we implement a local search strategy to find its

best matching pixel in Ik.

For each pixel p in Iref, we set a searching region around

it and find its best match in Ik via NCC. However, the inten-

sity consistency is not preserved as the object is subject to

arbitrary movements. This makes the original NCC not suit-

able for matching in this case. To deal with this problem,

we apply chromaticity normalization in the color image to

eliminate the effect of lighting variations [12] and use the

normalized images for matching. For each pixel p, its ap-

pearance is generated as,

Ich(p) = ρch(p) ∗ s(p) ch ∈ {R,G,B}, (6)

in which s(p) is the shading function that accounts for the

lighting or normal variation.

So the chromaticity normalization is implemented as,

Icnch (p) =
Ich(p)

IR(p) + IG(p) + IB(p)
ch ∈ {R,G,B},

(7)

After this normalization, NCC can then be applied for

matching insensitive to the photometric inconsistency in-

duced by lighting factor.

Besides, the color image Iref is warped to the color frame

Ik under the guidance of Dref and we get the warped color

image Irefk . The NCC patch matching is implemented in

Irefk with Ik instead of using Iref directly. Since Ik and Irefk

are in the same viewpoint, the fattening effect of NCC is

successfully avoided.

Although for each pixel in Iref (or Irefk )we can find the

corresponding pixel in Ik that has the largest matching

score, we cannot guarantee they are always the correct cor-

respondence. To tackle this problem, we only keep the pix-

els that are reliable and use these pixels as control vertices

to deform all the other pixels to find their correct correspon-

dences.

Our criteria of reliable matches is that, 1) the largest

matching score should be larger than thresS ; 2) the differ-

ence between the largest score and second largest score of

local peaks should be larger than thres∆. If these principles

are maintained, the pixel in the searching region that has

the largest score is chosen as the correspondence. thresS
is set to be 0.75 and thres∆ is 0.05 in this paper for all the

experiments.

Next we use these reliable matches as control vertices to

deform the image Irefk so that it has an optimal match with

Ik. As for each control vertices ol in Irefk , the deformation
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function is defined as

f(ol) = ol +∆l, (8)

where ∆l is the motion vector between the optimal corre-

spondence and its initial correspondence in Ik.

For other pixels the deformation is formulated via bilin-

ear interpolation with control vertices [45],

f(u) = u+
∑

l

(θul ∆l) (9)

The interpolation coefficients θul is set according to the

distance to control vertices and only neighboring vertices

will affect the deformation.

Finally, our objective function is defined to maintain the

photo consistency of the two normalized images.

E(∆) =
∑

p

(

Icnrefk
(p)−Icnk (f

(

p,∆)
)

)

+λ
∑

l

||∆l−∆̂l||2

(10)

For the control vertices ∆̂ is the initial deformation vec-

tor between the current optimal correspondence obtained

from matching and its initial correspondence. λ is the con-

trol weight set to be 10 in this paper. Since we have good

initials ∆̂, the optimization will converge quite fast.

The matching result can be seen in Fig. 2(e).

5.2. Lighting estimation

The unknown albedo poses challenges for lighting es-

timation. In this paper, we employ the aligned color se-

quence and depth maps for robust lighting estimation, elim-

inating the need to make assumptions about albedo. With

the aligned color images we can compute the ratio images

to the reference image, for which the albedo is eliminated.

For each pixel p in Iref, suppose its corresponding pixel in

Ik is denoted as q, then the ratio value is computed as,

Ik(q)

Iref (p)
=

ρ(q)(nq
T RT ARnq + bT Rnq + c)

ρ(p)(np
T RT ARnp + bT Rnp + c)

=
nq

T RT ARnq + bT Rnq + c

np
T RT ARnp + bT Rnp + c

(11)

Therefore, the environmental lighting can be achieved

from the following minimization,

arg min
A,b,c

∑

k

∑

p∈Iref

γp||
nq

TRTARnq + bTRnq + c

np
TRTARnp + bTRnp + c

−
Ik(q)

Iref(p)
||2

(12)

The normal n are approximated using normals computed

with the key frame depth maps. The weighting term γp is

set to prevent the effects of dark pixels which are noisy and

might be caused by shadow.

5.3. Normal and albedo recovery

With the key frame color images all aligned into the ref-

erence frame (IW0 ∼ IWN ), estimated environmental light-

ing (A, b, c), and object rotation matrix R0 ∼ RN for each

frame, we are ready to recover the surface normal and its

albedo. For each pixel p in the frame if we denote observa-

tions as O = {IWk (p)}, then our goal is to find the optimal

albedo ρ and normal n confronting the pixel observations.

We drop the index of pixel locations for simplicity in the fol-

lowing description. The objective function can be defined

as:
E(n, ρ|O) =

∑

k

||ρ · sk(n)− IWk ||2, (13)

sk(n) = n
TRT

k ARkn+ bTRkn+ c (14)

The surface normal and albedo can be estimated after

minimization of the above function. However, the outliers

have not been taken into consideration. They will affect the

result if the observations violate the Lambertian assump-

tion or are in cast shadow. To deal with these outliers, we

introduce a set of hidden states Hk = {0, 1} indicating

whether the observation is actually generated by the Lam-

bertian model. An expectation-maximization (EM) algo-

rithm is developed to solve the problem. While our for-

mulation is inspired by [38], we extend it from its origi-

nal directional light assumption to general lighting. More

specifically, we denote the parameters to be estimated as

Ω = {n, ρ, σ, α} and the observation probability condi-

tioned on parameters Ω is given as,

P (Ok|Ω) = α · 1√
2πσ

exp(−||ρ · sk(n)− IWk ||2
2σ2

)

+ (1− α) · 1

C

(15)

P (Hk = 1) = α is the prior probability of Hk indicating

the proportion of observations generated by the Lambertian

model. 1
C

is the probability as being an outlier.

The posterior probability of the hidden variable Hk given

parameters Ω′ in current iteration and the observation Ok is

computed in every E-step,

ωk = P (Hk = 1|Ok,Ω
′)

=
α · exp(− ||ρ·sk(n)−IW

k ||2

2σ2 )

α · exp(− ||ρ·sk(n)−IW
k

||2

2σ2 ) + 1−α
C

(16)

Next, in the following M-step, we maximize the

complete-data log-likelihood given the marginal distribu-

tion Hk obtained from the E-step.

P (Ω) =
∑

k

logP (Ok, Hk = 1|Ω)ωk

+
∑

k

logP (Ok, Hk = 0|Ω)(1− ωk)

=
∑

k

log(
α√
2πσ

exp(−||ρ · sk(n)− IWk ||2
2σ2

))ωk

+
∑

k

log(
1− α

C
)(1− ωk)

(17)
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To maximize the above function, we set the first deriva-

tive of P with respect to α, σ and ρ equal to zero. In this

way, the updating rules for these parameters are obtained,

α =
1

N

∑

k

ωk

σ =

√

∑

k ||ρ · sk(n)− IWk ||2ωk
∑

k ωk

ρ =
1

∑

k sk(n)
2ωk

∑

k

sk(n) · ωk · IWk

(18)

Since the function P is nonlinear to surface normal n,

the updated normal is achieved by fixing other parameters

and solving the following energy minimization.

argmin
n

∑

k

||ρ · (nTRT
k ARkn+ bTRkn+ c)− IWk ||2ωk

(19)

The above EM iterative optimization process is per-

formed until no further improvement on the recovered nor-

mal and albedo. The initial parameter of α and σ is set to

be 0.75 and 0.05 respectively for all the datasets used in this

paper.

Finally, the normal is integrated with the reference depth

map to get enhanced surface geometry with structural de-

tails [43].

5.4. Implementation details

As a preprocessing step, the object is first segmented

from the image by integrating both color and depth infor-

mation into GrabCut [30] framework. We manually masked

the first frame with the rest of frames segmented automati-

cally.

We implement most parts of our framework in Matlab

and it takes us approximately 800s to process a dataset with

500∼600 frames. Considering that the normal and albedo

is computed in pixel-wise manner, the running time could

be reduced further with parallel computation.

6. Experimental results

In the experiments, we validate our method on synthetic

and real datasets with quantitative and qualitative compari-

son.

6.1. Synthetic data

In this section we use Stanford Bunny as our synthetic

model and preform a quantitative comparison between our

method and a shading refinement method [27]. First given

the 3D model, twenty images together with the depth maps

are rendered under natural illumination. The rendered

ground truth depth maps are over smoothed to filter out the

structural details . Those smoothed depth maps and ren-

dered color images are taken as input for our method.

Fig. 3 shows the comparison results on recovered normal

map and surface. The first column is the reference color

map and over smoothed mesh (displayed as normal map).

These are the input for shading refinement method. The out-

put of shading refinement method is displayed in the second

column. The texture copy artifacts are caused by imperfect

separation of albedo and shading layers. In comparison, the

surface normal can be recovered successfully with pixel-

wise recovery method with quite small error shown in the

third column. The albedo map computed from our method

together with its error map is demonstrated in the last col-

umn.

(a) Color (b) Shading Normal 

(e) Smoothed Normal

(c) Our Normal (d) Our Albedo

(h) Albedo error(g) Our Normal error(f) Shading Normal error

Figure 3: Results on synthetic Bunny model. (a) is the ren-

dered color image of the reference frame; (e) shows the nor-

mal map of the ground truth mesh after over smoothing; (b)

is the normal map computed after applying shading refine-

ment on the reference frame with its error map displayed in

(f); (c) and (g) are the normal map and its corresponding

error map achieved by our method. Our recovered albedo

map and its error map is also demonstrated in (d) and (h)

respectively.

(a) W/O EM (b) W/O EM error (c) With EM (d) With EM error

Figure 4: Results when adding salt and pepper noise. (a)

shows the computed normal map without our EM frame-

work and (b) is its error map; The normal and error map

after applying our EM optimization are shown in(c) and (d)

respectively.

Fig. 4 is shown to demonstrate the effectiveness of our

EM framework for robust normal recovery in the presence

of outliers. We have picked four out of those twenty images

randomly and added the salt and pepper noise with 0.50

density. It means the abrupt noise will affect approximately

fifty percent of the image pixels. As we can see from the

first two columns, the recovered normal map without EM
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(a1) Color (a3) Shading Refinement

(a6) Our Normal(a5) Ours(a4) W/O Local Match Refinement

(a2) KinectFusion

(b1) Color (b3) Shading Refinement(b2) KinectFusion

(b6) Our Normal(b5) Ours(b4) W/O Local Match Refinement

Figure 5: Comparison results on Backpack and Turtle model. (a1) and (b1) are the reference color images of Backpack and

Turtle respectively. The output from KinectFusion is shown in (a2) and (b2). The results computed by shading refinement

method are displayed in (a3) and (b3). (a4) and (b4) are the meshes acquired using our method but without applying our

locally robust matching procedure. Finally, (a5) and (b5) are the meshes achieved by our approach. The normal map is given

in (a6) and (b6).

optimization is noisy (the mean error is 8.37 degree), while

we can achieve much better performance after applying our

EM method and the mean error is 1.49 degree, which is

shown in the last two columns.

6.2. Real dataset

We have captured the real dataset using the depth sen-

sor of Kinect V2 and a color camera with resolution of

1920 × 1080. There are several models captured, namely

the Backpack, Turtle, Book, etc.

Fig. 5 shows the comparison results of a colorful Back-

pack and Turtle model respectively. Fig. 5(a2) and (b2)

displays the mesh model acquired from KinectFusion. As

we can see the surface details are not revealed as restricted

by the resolution and accuracy of the Kinect depth sensor.

After applying the shading refinement [27] on the fused

reference frame, some surface details are recovered, while

some textures are hallucinated as geometry details as well
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(Fig. 5(a3) and (b3)). Fig. 5(a4) and (b4) shows our results

without applying our local match refinement step. The un-

even surface in some part as marked in red is caused by

misalignment. Fig. 5(a5,b5) and Fig. 5(a6,b6) displays our

final results of recovered meshes and surface normals. For

the Backpack, it actually experiences non-rigid deformation

during the movement and therefore we only consider the

front part of the backpack which is mostly rigid. We have

marked some colorful patterns on the Turtle surface to make

the texture more complex to show the superior performance

of our pixel-wise recovery method.

To further validate our robustness against texture copy

problem, the results of a colorful Book cover are demon-

strated in Fig. 6. As displayed in Fig. 6(b) the textures have

been successfully factored out from the image and the re-

covered model keeps as a planar surface after the enhance-

ment. In comparison, the result from shading refinement

method(Fig. 6(c)) is affected by the texture copy effect with

fake geometric details appeared.

(a) Color (c) Shading refinement(b) Ours

Figure 6: Results on Book Model. (a) is the reference color

image. The recovered mesh surface from our method is dis-

played in (b). (c) shows the refined mesh with shading re-

finement method.

Intrinsic Image Decomposition In order to show the per-

formance of our method in albedo recovery, we have also

made some comparisons with two state-of-the-art intrinsic

image decomposition approaches as displayed in Figure 7.

For these two compared methods, they take the RGB-D im-

ages of the reference frame as input, as displayed in the

first column. The second column shows the result from

Chen [9]. The shading image is over smoothed and the ge-

ometry details are decomposed into albedo map incorrectly.

The method from Jeon [17] has better results on recovered

shading images for the Turtle model as displayed in the third

column. However, some textures still stay at the shading

image especially for the Backpack. In comparison, with

our pixel-wise albedo computation method, we are able to

recover a much sharper albedo map and the ”texture copy”

effect in the geometry is barely noticeable.

7. Conclusion

In this paper, we present a novel approach to recover

surface details and its albedo map from an RGB-D video
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Figure 7: Comparison results on albedo recovery or intrin-

sic decomposition of the Turtle and Backpack model. The

first column is the input color image with its depth map.

The second column shows the result of Chen [9]. The third

column is the decomposed albedo and shading images from

method in [17]. Finally, the last column demonstrates the

result achieved by our method.

sequence. The object is experiencing casual motion from

which the induced illumination variation provides us the

cue to recover the surface normal and its albedo as well.

A robust lighting insensitive local match strategy is pro-

posed to establish correct correspondences along the se-

quence. Then, the environmental lighting is estimated by

exploiting the whole sequence to get rid of effect of albe-

dos. Finally, the surface normal and its albedo is calculated

robustly with our EM framework. We have validated our

method on both synthetic and real dataset and compared

with some state-of-the-art surface refinement and intrinsic

decomposition methods. As demonstrated in the experi-

ments, we have achieved good performance on both surface

details recovery and intrinsic decomposition.

The reconstructed object is limited to objects with pri-

marily diffuse surface. As a future work, we could ex-

tend our idea into objects that have a great portion of non-

Lambertian reflection. Right now we are mainly focusing

on depth enhancement, while we would like to implement

all these procedure in full 3D space.
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