arXiv:1705.08947v2 [cs.CL] 20 Sep 2017

Deep Voice 2: Multi-Speaker Neural Text-to-Speech

Sercan O. Arik* Gregory Diamos*
sercanarik@baidu.com gregdiamos@baidu.com
Andrew Gibiansky* John Miller* Kainan Peng*

gibianskyandrew@baidu.com millerjohn@baidu.com pengkainan@baidu.com

Wei Ping* Jonathan Raiman* Yanqi Zhou*
pingweiOl@baidu.com jonathanraiman@baidu.com zhouyanqgi@baidu.com

Baidu Silicon Valley Artificial Intelligence Lab
1195 Bordeaux Dr. Sunnyvale, CA 94089

Abstract

We introduce a technique for augmenting neural text-to-speech (TTS) with low-
dimensional trainable speaker embeddings to generate different voices from a
single model. As a starting point, we show improvements over the two state-of-
the-art approaches for single-speaker neural TTS: Deep Voice 1 and Tacotron.
We introduce Deep Voice 2, which is based on a similar pipeline with Deep
Voice 1, but constructed with higher performance building blocks and demonstrates
a significant audio quality improvement over Deep Voice 1. We improve Tacotron
by introducing a post-processing neural vocoder, and demonstrate a significant
audio quality improvement. We then demonstrate our technique for multi-speaker
speech synthesis for both Deep Voice 2 and Tacotron on two multi-speaker TTS
datasets. We show that a single neural TTS system can learn hundreds of unique
voices from less than half an hour of data per speaker, while achieving high audio
quality synthesis and preserving the speaker identities almost perfectly.

1 Introduction

Artificial speech synthesis, commonly known as text-to-speech (TTS), has a variety of applications in
technology interfaces, accessibility, media, and entertainment. Most TTS systems are built with a
single speaker voice, and multiple speaker voices are provided by having distinct speech databases or
model parameters. As a result, developing a TTS system with support for multiple voices requires
much more data and development effort than a system which only supports a single voice.

In this work, we demonstrate that we can build all-neural multi-speaker TTS systems which share the
vast majority of parameters between different speakers. We show that not only can a single model
generate speech from multiple different voices, but also that significantly less data is required per
speaker than when training single-speaker systems.

Concretely, we make the following contributions:
1. We present Deep Voice 2, an improved architecture based on Deep Voice 1 (Arik et al., 2017).

2. We introduce a WaveNet-based (Oord et al., 2016) spectrogram-to-audio neural vocoder, and
use it with Tacotron (Wang et al., 2017) as a replacement for Griffin-Lim audio generation.

*Listed alphabetically.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

3. Using these two single-speaker models as a baseline, we demonstrate multi-speaker neural
speech synthesis by introducing trainable speaker embeddings into Deep Voice 2 and Tacotron.

We organize the rest of this paper as follows. Section 2 discusses related work and what makes the
contributions of this paper distinct from prior work. Section 3 presents Deep Voice 2 and highlights
the differences from Deep Voice 1. Section 4 explains our speaker embedding technique for neural
TTS models and shows multi-speaker variants of the Deep Voice 2 and Tacotron architectures.
Section 5.1 quantifies the improvement for single speaker TTS through a mean opinion score (MOS)
evaluation and Section 5.2 presents the synthesized audio quality of multi-speaker Deep Voice 2 and
Tacotron via both MOS evaluation and a multi-speaker discriminator accuracy metric. Section 6
concludes with a discussion of the results and potential future work.

2 Related Work

We discuss the related work relevant to each of our claims in Section 1 in order, starting from
single-speaker neural speech synthesis and moving on to multi-speaker speech synthesis and metrics
for generative model quality.

With regards to single-speaker speech synthesis, deep learning has been used for a variety of subcom-
ponents, including duration prediction (Zen et al., 2016), fundamental frequency prediction (Ronanki
et al., 2016), acoustic modeling (Zen and Sak, 2015), and more recently autoregressive sample-by-
sample audio waveform generation (e.g., Oord et al., 2016; Mehri et al., 2016). Our contributions
build upon recent work in entirely neural TTS systems, including Deep Voice 1 (Arik et al., 2017),
Tacotron (Wang et al., 2017), and Char2Wav (Sotelo et al., 2017). While these works focus on
building single-speaker TTS systems, our paper focuses on extending neural TTS systems to handle
multiple speakers with less data per speaker.

Our work is not the first to attempt a multi-speaker TTS system. For instance, in traditional HMM-
based TTS synthesis (e.g., Yamagishi et al., 2009), an average voice model is trained using multiple
speakers’ data, which is then adapted to different speakers. DNN-based systems (e.g., Yang et al.,
2016) have also been used to build average voice models, with i-vectors representing speakers as
additional inputs and separate output layers for each target speaker. Similarly, Fan et al. (2015)
uses a shared hidden representation among different speakers with speaker-dependent output layers
predicting vocoder parameters (e.g., line spectral pairs, aperiodicity parameters etc.). For further
context, Wu et al. (2015) empirically studies DNN-based multi-speaker modeling. More recently,
speaker adaptation has been tackled with generative adversarial networks (GANSs) (Hsu et al., 2017).

We instead use trainable speaker embeddings for multi-speaker TTS. The approach was investigated
in speech recognition (Abdel-Hamid and Jiang, 2013), but is a novel technique in speech synthesis.
Unlike prior work which depends on fixed embeddings (e.g. i-vectors), the speaker embeddings used
in this work are trained jointly with the rest of the model from scratch, and thus can directly learn
the features relevant to the speech synthesis task. In addition, this work does not rely on per-speaker
output layers or average voice modeling, which leads to higher-quality synthesized samples and lower
data requirements (as there are fewer unique parameters per speaker to learn).

In order to evaluate the distinctiveness of the generated voices in an automated way, we propose using
the classification accuracy of a speaker discriminator. Similar metrics such as an “Inception score”
have been used for quantitative quality evaluations of GANs for image synthesis (e.g., Salimans
et al., 2016). Speaker classification has been studied with both traditional GMM-based methods (e.g.,
Reynolds et al., 2000) and more recently with deep learning approaches (e.g., Li et al., 2017).

3 Single-Speaker Deep Voice 2

In this section, we present Deep Voice 2, a neural TTS system based on Deep Voice 1 (Arik et al.,
2017). We keep the general structure of the Deep Voice 1 (Arik et al., 2017), as depicted in Fig. 1 (the
corresponding training pipeline is depicted in Appendix A). Our primary motivation for presenting
an improved single-speaker model is to use it as the starting point for a high-quality multi-speaker
model.

One major difference between Deep Voice 2 and Deep Voice 1 is the separation of the phoneme
duration and frequency models. Deep Voice 1 has a single model to jointly predict phoneme duration

Phonemes Upsampled Phonemes
P iati .
Text | onUnCIAtOn L ipy hemes | Duration upsample

Dictionary \

| Speaker |

Synthesized
Speech

Figure 1: Inference system diagram: first text-phonemes dictionary conversion, second predict
phoneme durations, third upsample and generate Iy, finally feed Fj and phonemes to vocal model.

and frequency profile (voicedness and time-dependent fundamental frequency, Fp). In Deep Voice 2,
the phoneme durations are predicted first and then are used as inputs to the frequency model.

In the subsequent subsections, we present the models used in Deep Voice 2. All models are trained
separately using the hyperparameters specified in Appendix B. We will provide a quantitative
comparison of Deep Voice 1 and Deep Voice 2 in Section 5.1.

3.1 Segmentation model

Estimation of phoneme locations is treated as an unsupervised learning problem in Deep Voice
2, similar to Deep Voice 1. The segmentation model is convolutional-recurrent architecture with
connectionist temporal classification (CTC) loss (Graves et al., 2006) applied to classify phoneme
pairs, which are then used to extract the boundaries between them. The major architecture changes in
Deep Voice 2 are the addition of batch normalization and residual connections in the convolutional
layers. Specifically, Deep Voice 1’s segmentation model computes the output of each layer as

h(® = relu (W(l) « B0 4 b(l)) , (1)

where 2() is the output of the I-th layer, W () is the convolution filterbank, b(") is the bias vector, and
* 1s the convolution operator. In contrast, Deep Voice 2’s segmentation model layers instead compute

h® = relu (h(l‘l) +BN (W(” % hU—l))) , ®)

where BN is batch normalization (Ioffe and Szegedy, 2015). In addition, we find that the segmentation
model often makes mistakes for boundaries between silence phonemes and other phonemes, which can
significantly reduce segmentation accuracy on some datasets. We introduce a small post-processing
step to correct these mistakes: whenever the segmentation model decodes a silence boundary, we
adjust the location of the boundary with a silence detection heuristic.”

3.2 Duration Model

In Deep Voice 2, instead of predicting a continuous-valued duration, we formulate duration prediction
as a sequence labeling problem. We discretize the phoneme duration into log-scaled buckets, and
assign each input phoneme to the bucket label corresponding to its duration. We model the sequence
by a conditional random field (CRF) with pairwise potentials at output layer (Lample et al., 2016).
During inference, we decode discretized durations from the CRF using the Viterbi forward-backward
algorithm. We find that quantizing the duration prediction and introducing the pairwise dependence
implied by the CRF improves synthesis quality.

3.3 Frequency Model

After decoding from the duration model, the predicted phoneme durations are upsampled from a
per-phoneme input features to a per-frame input for the frequency model. > Deep Voice 2 frequency

>We compute the smoothed normalized audio power as p[n] = (x[n])?/zmx>) * g[n], where x[n] is the
audio signal, g[n] is the impulse response of a Gaussian filter, Zmax is the maximum value of z[n] and * is
one-dimensional convolution operation. We assign the silence phoneme boundaries when p[n] exceeds a fixed
threshold. The optimal parameter values for the Gaussian filter and the threshold depend on the dataset and
audio sampling rate.

3Each frame is ensured to be 10 milliseconds. For example, if a phoneme lasts 20 milliseconds, the input
features corresponding to that phoneme will be repeated in 2 frames. If it lasts less than 10 milliseconds, it is
extend to a single frame.

model consists of multiple layers: firstly, bidirectional gated recurrent unit (GRU) layers (Cho et al.,
2014) generate hidden states from the input features. From these hidden states, an affine projection
followed by a sigmoid nonlinearity produces the probability that each frame is voiced. Hidden states
are also used to make two separate normalized F{y predictions. The first prediction, fgry, is made
with a single-layer bidirectional GRU followed by an affine projection. The second prediction, feony,
is made by adding up the contributions of multiple convolutions with varying convolution widths
and a single output channel. Finally, the hidden state is used with an affine projection and a sigmoid
nonlinearity to predict a mixture ratio w, which is used to weigh the two normalized frequency
predictions and combine them into

f:W'fGRU+(1_w)'fconv- 3)
The normalized prediction f is then converted to the true frequency Fj prediction via
Fo=pur, +or, - [, “4)

where (ir, and o, are, respectively, the mean and standard deviation of Fy for the speaker the
model is trained on. We find that predicting F with a mixture of convolutions and a recurrent layer
performs better than predicting with either one individually. We attribute this to the hypothesis that
including the wide convolutions reduces the burden for the recurrent layers to maintain state over a
large number of input frames, while processing the entire context information efficiently.

3.4 Vocal Model

The Deep Voice 2 vocal model is based on a WaveNet architecture (Oord et al., 2016) with a two-layer
bidirectional QRNN (Bradbury et al., 2017) conditioning network, similar to Deep Voice 1. However,
we remove the 1 x 1 convolution between the gated tanh nonlinearity and the residual connection. In
addition, we use the same conditioner bias for every layer of the WaveNet, instead of generating a
separate bias for every layer as was done in Deep Voice 1. *

4 Multi-Speaker Models with Trainable Speaker Embeddings

In order to synthesize speech from multiple speakers, we augment each of our models with a single
low-dimensional speaker embedding vector per speaker. Unlike previous work, our approach does
not rely on per-speaker weight matrices or layers. Speaker-dependent parameters are stored in a very
low-dimensional vector and thus there is near-complete weight sharing between speakers. We use
speaker embeddings to produce recurrent neural network (RNN) initial states, nonlinearity biases,
and multiplicative gating factors, used throughout the networks. Speaker embeddings are initialized
randomly with a uniform distribution over [—0.1, 0.1] and trained jointly via backpropagation; each
model has its own set of speaker embeddings.

To encourage each speaker’s unique voice signature to influence the model, we incorporate the speaker
embeddings into multiple portions of the model. Empirically, we find that simply providing the
speaker embeddings to the input layers does not work as well for any of the presented models besides
the vocal model, possibly due to the high degree of residual connections present in the WaveNet and
due to the difficulty of learning high-quality speaker embeddings. We observed that several patterns
tend to yield high performance:

o Site-Specific Speaker Embeddings: For every use site in the model architecture, transform the
shared speaker embedding to the appropriate dimension and form through an affine projection
and a nonlinearity.

e Recurrent Initialization: Initialize recurrent layer hidden states with site-specific speaker
embeddings.

e Input Augmentation: Concatenate a site-specific speaker embedding to the input at every
timestep of a recurrent layer.

o Feature Gating: Multiply layer activations elementwise with a site-specific speaker embedding
to render adaptable information flow. >

“We find that these changes reduce model size by a factor of ~7 and speed up inference by ~25%, while
yielding no perceptual change in quality. However, we do not focus on demonstrating these claims in this paper.

SWe hypothesize that feature gating lets the model learn the union of all necessary features while allowing
speaker embeddings to determine what features are used for each speaker and how much influence they will
have on the activations.

Phoneme
pairs FO Voiced

Durations (bucketed)

Stacked Bi-GRU

:

— Conv-BN-Res | Stacked Bi-GRU |
— : L ¥ L
Conv-BN-Res (MLP]
x

softsign + 1

Bi-GRU | | Filter-Bank
L1

Phoneme 1 Phoneme n @ I Stacked Bi-GRU I

X
Conv + BN

Conv (b) f f f
M:l i t Me‘l m Phoneme 1 Phoneme n
(a) ©

Figure 2: Architecture for the multi-speaker (a) segmentation, (b) duration, and (c) frequency model.

Next, we describe how speaker embeddings are used in each architecture.

4.1 Multi-Speaker Deep Voice 2

The Deep Voice 2 models have separate speaker embeddings for each model. Yet, they can be viewed
as chunks of a larger speaker embedding, which are trained independently.

4.1.1 Segmentation Model

In multi-speaker segmentation model, we use feature gating in the residual connections of the
convolution layers. Instead of Eq. (2), we multiply the batch-normalized activations by a site-specific
speaker embedding:

h® = relu (h“*l) +BN (W * h(“l)) : gs) :)

where g, is a site-specific speaker embedding. The same site-specific embedding is shared for all
the convolutional layers. In addition, we initialize each of the recurrent layers with a second site
specific embedding. Similarly, each layer shares the same site-specific embedding, rather than having
a separate embedding per layer.

4.1.2 Duration Model

The multi-speaker duration model uses speaker-dependent recurrent initialization and input augmen-
tation. A site-specific embedding is used to initialize RNN hidden states, and another site-specific
embedding is provided as input to the first RNN layer by concatenating it to the feature vectors.

4.1.3 Frequency Model

The multi-speaker frequency model uses recurrent initialization, which initializes the recurrent
layers (except for the recurrent output layer) with a single site-specific speaker-embedding. As
described in Section 3.3, the recurrent and convolutional output layers in the single-speaker frequency
model predict a normalized frequency, which is then converted into the true Fy by a fixed linear
transformation. The linear transformation depends on the mean and standard deviation of observed
Fy for the speaker. These values vary greatly between speakers: male speakers, for instance, tend to
have a much lower mean Fj. To better adapt to these variations, we make the mean and standard
deviation trainable model parameters and multiply them by scaling terms which depend on the speaker
embeddings. Specifically, instead of Eq. (4), we compute the F{y prediction as

Fo = g, - (1 + softsign (VHTgf)) + oF, - (1 + softsign (Vngf)) - f, (6)

where gy is a site-specific speaker embedding, i, and og, are trainable scalar parameters initialized
to the I, mean and standard deviation on the dataset, and V,, and V; are trainable parameter vectors.

Audio Audio

7y
m]| Vocal |

[Gr

A
iffin-Lif
Encoder CBFG
i Bi-GRU @ Spectrogram
5 Decoder CBFG
FC Highway Layers
@ Mel i+1
Filter-Bank + Stacked Residual GRU
BN + ReLu
... |GRU -1 GRUi-1 | GRU i+l | ...
(- (- ()
A
Filter-Bank + = Attention
BN +ReLu [sofisign}—
% 1 % . [mep]
(MLP] N R
Tacotron Ch$ " t Ch* Mel i-1 Meli = Mel i+l Vocal
Speaker ar arn Speaker

Figure 3: Tacotron with speaker conditioning in the Encoder CBHG module and decoder with two
ways to convert spectrogram to audio: Griffin-Lim or our speaker-conditioned Vocal model.

4.1.4 Vocal Model

The multi-speaker vocal model uses only input augmentation, with the site-specific speaker embedding
concatenated onto each input frame of the conditioner. This differs from the global conditioning
suggested in Oord et al. (2016) and allows the speaker embedding to influence the local conditioning
network as well.

Without speaker embeddings, the vocal model is still able to generate somewhat distinct-sounding
voices because of the disctinctive features provided by the frequency and duration models. Yet,
having speaker embeddings in the vocal model increases the audio quality. We indeed observe that
the embeddings converge to a meaningful latent space.

4.2 Multi-Speaker Tacotron

In addition to extending Deep Voice 2 with speaker embeddings, we also extend Tacotron (Wang
et al., 2017), a sequence-to-sequence character-to-waveform model. When training multi-speaker
Tacotron variants, we find that model performance is highly dependent on model hyperparameters,
and that some models often fail to learn attention mechanisms for a small subset of speakers. We also
find that if the speech in each audio clip does not start at the same timestep, the models are much less
likely to converge to a meaningful attention curve and recognizable speech; thus, we trim all initial
and final silence in each audio clip. Due to the sensitivity of the model to hyperparameters and data
preprocessing, we believe that additional tuning may be necessary to obtain maximal quality. Thus,
our work focuses on demonstrating that Tacotron, like Deep Voice 2, is capable of handling multiple
speakers through speaker embeddings, rather than comparing the quality of the two architectures.

4.2.1 Character-to-Spectrogram Model

The Tacotron character-to-spectrogram architecture consists of a convolution-bank-highway-GRU
(CBHG) encoder, an attentional decoder, and a CBHG post-processing network. Due to the complexity
of the architecture, we leave out a complete description and instead focus on our modifications.

We find that incorporating speaker embeddings into the CBHG post-processing network degrades
output quality, whereas incorporating speaker embeddings into the character encoder is necessary.
Without a speaker-dependent CBHG encoder, the model is incapable of learning its attention mech-
anism and cannot generate meaningful output (see Appendix D.2 for speaker-dependent attention
visualizations). In order to condition the encoder on the speaker, we use one site-specific embedding
as an extra input to each highway layer at each timestep and initialize the CBHG RNN state with a
second site-specific embedding.

We also find that augmenting the decoder with speaker embeddings is helpful. We use one site-specific
embedding as an extra input to the decoder pre-net, one extra site-specific embedding as the initial
attention context vector for the attentional RNN, one site-specific embedding as the initial decoder
GRU hidden state, and one site-specific embedding as a bias to the tanh in the content-based attention
mechanism.

| Model | Samp. Freq. | MOS |

Deep Voice 1 16 KHz 2.06£0.24
Deep Voice 2 16 KHz 2.96 £0.38
Tacotron (Griffin-Lim) 24 KHz 2.57+0.28
Tacotron (WaveNet) 24 KHz 4.17+0.18

Table 1: Mean Opinion Score (MOS) evaluations with 95% confidence intervals of Deep Voice 1,
Deep Voice 2, and Tacotron. Using the crowdMOS toolkit, batches of samples from these models
were presented to raters on Mechanical Turk. Since batches contained samples from all models, the
experiment naturally induces a comparison between the models.

4.2.2 Spectrogram-to-Waveform Model

The original Tacotron implementation in (Wang et al., 2017) uses the Griffin-Lim algorithm to convert
spectrograms to time-domain audio waveforms by iteratively estimating the unknown phases.® We
observe that minor noise in the input spectrogram causes noticeable estimation errors in the Griffin-
Lim algorithm and the generated audio quality is degraded. To produce higher quality audio using
Tacotron, instead of using Griffin-Lim, we train a WaveNet-based neural vocoder to convert from
linear spectrograms to audio waveforms. The model used is equivalent to the Deep Voice 2 vocal
model, but takes linear-scaled log-magnitude spectrograms instead of phoneme identity and Fj as
input. The combined Tacotron-WaveNet model is shown in Fig. 3. As we will show in Section 5.1,
WaveNet-based neural vocoder indeed significantly improves single-speaker Tacotron as well.

5 Results

In this section, we will present the results on both single-speaker and multi-speaker speech synthesis
using the described architectures. All model hyperparameters are presented in Appendix B.

5.1 Single-Speaker Speech Synthesis

We train Deep Voice 1, Deep Voice 2, and Tacotron on an internal English speech database containing
approximately 20 hours of single-speaker data. The intermediate evaluations of models in Deep Voice
1 and Deep Voice 2 can be found in Table 3 within Appendix A. We run an MOS evaluation using the
crowdMOS framework (Ribeiro et al., 2011) to compare the quality of samples (Table 1). The results
show conclusively that the architecture improvements in Deep Voice 2 yield significant gains in
quality over Deep Voice 1. They also demonstrate that converting Tacotron-generated spectrograms
to audio using WaveNet is preferable to using the iterative Griffin-Lim algorithm.

5.2 Multi-Speaker Speech Synthesis

We train all the aforementioned models on the VCTK dataset with 44 hours of speech, which contains
108 speakers with approximately 400 utterances each. We also train all models on an internal dataset
of audiobooks, which contains 477 speakers with 30 minutes of audio each (for a total of ~238
hours). The consistent sample quality observed from our models indicates that our architectures can
easily learn hundreds of distinct voices with a variety of different accents and cadences. We also
observe that the learned embeddings lie in a meaningful latent space (see Fig. 4 as an example and
Appendix D for more details).

In order to evaluate the quality of the synthesized audio, we run MOS evaluations using the crowdMOS
framework, and present the results in Table 2. We purposefully include ground truth samples in the
set being evaluated, because the accents in datasets are likely to be unfamiliar to our North American
crowdsourced raters and will thus be rated poorly due to the accent rather than due to the model
quality. By including ground truth samples, we are able to compare the MOS of the models with
the ground truth MOS and thus evaluate the model quality rather than the data quality; however, the
resulting MOS may be lower, due to the implicit comparison with the ground truth samples. Overall,
we observe that the Deep Voice 2 model can approach an MOS value that is close to the ground truth,
when low sampling rate and companding/expanding taken into account.

®Estimation of the unknown phases is done by repeatedly converting between frequency and time domain
representations of the signal using the short-time Fourier transform and its inverse, substituting the magnitude of
each frequency component to the predicted magnitude at each step.

| Dataset || Multi-Speaker Model | Samp. Freq. | MOS | Acc. |
VCTK Deep Voice 2 (20-layer WaveNet) 16 KHz 2.87£0.13 | 99.9%
VCTK Deep Voice 2 (40-layer WaveNet) 16 KHz 3.214+0.13 | 100 %
VCTK Deep Voice 2 (60-layer WaveNet) 16 KHz 3.4240.12 | 99.7%
VCTK Deep Voice 2 (80-layer WaveNet) 16 KHz 3.534+0.12 | 99.9%
VCTK Tacotron (Griffin-Lim) 24 KHz 1.68+0.12 | 99.4%
VCTK Tacotron (20-layer WaveNet) 24 KHz 2.514+0.13 | 60.9%
VCTK Ground Truth Data 48 KHz 4.65+0.06 | 99.7%
Audiobooks || Deep Voice 2 (80-layer WaveNet) 16 KHz 2.97+0.17 | 97.4%
Audiobooks Tacotron (Griffin-Lim) 24 KHz 1.73£0.22 | 93.9%
Audiobooks Tacotron (20-layer WaveNet) 24 KHz 2.114£0.20 | 66.5%
Audiobooks Ground Truth Data 44.1 KHz 4.63+0.04 | 98.8%

Table 2: MOS and classification accuracy for all multi-speaker models. To obtain MOS, we use
crowdMOS toolkit as detailed in Table 1. We also present classification accuracies of the speaker
discriminative models (see Appendix E for details) on the samples, showing that the synthesized
voices are as distinguishable as ground truth audio.

Female
L2 o o £ 04 ° o
15} c @ Male
2 S °
g 14 ° g' ® o
£ 0.2 °
8 %9 ° S ® ®
= e © &
2 0 ° 2
e “eW 00 S 0.0 .‘. °
s (Y 4 ° 5 .’.
[]
2-1q e ."\ T ool °
] L ® S
2] (7]
—-21 ® w0 T T T T
-0.2 0.0 0.2 0.4

T T T T
-1 0 1 2
First principal component

First principal component

b)

@ (

Figure 4: Principal components of the learned speaker embeddings for the (a) 80-layer vocal model
and (b) character-to-spectrogram model for VCTK dataset. See Appendix D.3 for details.

A multi-speaker TTS system with high sample quality but indistinguishable voices would result in
high MOS, but fail to meet the desired objective of reproducing the input voices accurately. To show
that our models not only generate high quality samples, but also generate distinguishable voices, we
also measure the classification accuracy of a speaker discriminative model on our generated samples.
The speaker discriminative is a convolutional network trained to classify utterances to their speakers,
trained on the same dataset as the TTS systems themselves. If the voices were indistinguishable
(or the audio quality was low), the classification accuracy would be much lower for synthesized
samples than it is for the ground truth samples. As we demonstrate in Table 2, classification accuracy
demonstrates that samples generated from our models are as distinguishable as the ground truth
samples (see Appendix E for more details). The classification accuracy is only significantly lower for
Tacotron with WaveNet, and we suspect that generation errors in the spectrogram are exacerbated by
the WaveNet, as it is trained with ground truth spectrograms.

6 Conclusion

In this work, we explore how entirely-neural speech synthesis pipelines may be extended to multi-
speaker text-to-speech via low-dimensional trainable speaker embeddings. We start by presenting
Deep Voice 2, an improved single-speaker model. Next, we demonstrate the applicability of our
technique by training both multi-speaker Deep Voice 2 and multi-speaker Tacotron models, and
evaluate their quality through MOS. In conclusion, we use our speaker embedding technique to create
high quality text-to-speech systems and conclusively show that neural speech synthesis models can
learn effectively from small amounts of data spread among hundreds of different speakers.

The results presented in this work suggest many directions for future research. Future work may test
the limits of this technique and explore how many speakers these models can generalize to, how little
data is truly required per speaker for high quality synthesis, whether new speakers can be added to a
system by fixing model parameters and solely training new speaker embeddings, and whether the
speaker embeddings can be used as a meaningful vector space, as is possible with word embeddings.

References

O. Abdel-Hamid and H. Jiang. Fast speaker adaptation of hybrid NN/HMM model for speech recognition based
on discriminative learning of speaker code. In ICASSP, 2013.

S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang, X. Li, J. Miller, J. Raiman,
S. Sengupta, and M. Shoeybi. Deep voice: Real-time neural text-to-speech. In ICML, 2017.

J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-recurrent neural networks. In /CLR, 2017.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014.

Y. Fan, Y. Qian, F. K. Soong, and L. He. Multi-speaker modeling and speaker adaptation for DNN-based TTS
synthesis. In JEEE ICASSP, 2015.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber. Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In ICML, 2006.

C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang. Voice conversion from unaligned corpora using
variational autoencoding wasserstein generative adversarial networks. arXiv:1704.00849, 2017.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

G. Lample, M. Ballesteros, K. Kawakami, S. Subramanian, and C. Dyer. Neural architectures for named entity
recognition. In Proc. NAACL-HLT, 2016.

C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kannan, and Z. Zhu. Deep speaker: an end-to-end
neural speaker embedding system. arXiv preprint arXiv:1705.02304, 2017.

S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and Y. Bengio. SampleRNN: An
unconditional end-to-end neural audio generation model. arXiv:1612.07837,2016.

A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv:1609.03499, 2016.

D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted gaussian mixture models.
Digital signal processing, 10(1-3):19-41, 2000.

F. Ribeiro, D. Floréncio, C. Zhang, and M. Seltzer. Crowdmos: An approach for crowdsourcing mean opinion
score studies. In IEEE ICASSP, 2011.

S. Ronanki, O. Watts, S. King, and G. E. Henter. Median-based generation of synthetic speech durations using a
non-parametric approach. arXiv:1608.06134, 2016.

T. Salimans, 1. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training
gans. In NIPS, 2016.

J. Sotelo, S. Mehri, K. Kumar, J. F. Santos, K. Kastner, A. Courville, and Y. Bengio. Char2wav: End-to-end
speech synthesis. In ICLR2017 workshop submission, 2017.

Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, et al.
Tacotron: Towards end-to-end speech synthesis. In Interspeech, 2017.

Z. Wu, P. Swietojanski, C. Veaux, S. Renals, and S. King. A study of speaker adaptation for DNN-based speech
synthesis. In Interspeech, 2015.

J. Yamagishi, T. Nose, H. Zen, Z.-H. Ling, T. Toda, K. Tokuda, S. King, and S. Renals. Robust speaker-adaptive
hmm-based text-to-speech synthesis. IEEE Transactions on Audio, Speech, and Language Processing, 2009.

S. Yang, Z. Wu, and L. Xie. On the training of DNN-based average voice model for speech synthesis. In Signal
and Information Processing Association Annual Summit and Conference (APSIPA), Asia-Pacific, 2016.

H. Zen and H. Sak. Unidirectional long short-term memory recurrent neural network with recurrent output layer
for low-latency speech synthesis. In IEEE ICASSP, 2015.

H. Zen, Y. Agiomyrgiannakis, N. Egberts, F. Henderson, and P. Szczepaniak. Fast, compact, and high quality
LSTM-RNN based statistical parametric speech synthesizers for mobile devices. arXiv:1606.06061, 2016.

Appendices

A Training Deep Voice 2

Pl S
NonNemes Voca]
model
——
Text

Audio Segmentation
&del | Speaker

Frequency Segmented identity
ofil) utterances
proliie Duration
Frequency model |

model

Figure 5: System diagram for training procedure for Deep Voice 2.

For convenience, we depict the training procedure for Deep Voice 2 in Fig. 5, similar to the figure in
Arik et al. (2017). The pronunciation dictionary can be substituted by a grapheme-to-phoneme model
as in Arik et al. (2017), to adapt for unseen words in the pronunciation dictionary.

For frequency extraction during training, similar to Arik et al. (2017), we use the Praat software,
which may be substituted by another fundamental frequency and voicedness estimation algorithm.

The intermediate evaluation metrics for Deep Voice 2 models are compared to their Deep Voice 1
counterparts in Table 3. We obtain significant improvements in these evaluation metrics for all the
models, but we also note that the overall synthesis quality cannot be fully quantified by these metrics.

Model Evaluation metric Deep Voice 1 | Deep Voice 2
Segmentation | Phoneme pair error rate 7 % 0.1 %
Duration Mean absolute error 38.0 ms 17.5 ms
Frequency Mean absolute error 29.4 Hz 24.5 Hz

Table 3: Comparison of segmentation, duration, frequency models for Deep Voice 1 and Deep Voice
2, both trained with the same single-speaker data and evaluated as described in Arik et al. (2017).

B Model Hyperparameters

All hyperparameters of the models used in this paper are provided in Table 4.

To speed up the training of character-to-spectrogram model in Tacotron in our experiments, we added
a penalty term in the form CTC loss (obtained from the attention hidden states) to the overall loss
function. We do not have a clear conclusive evidence that it improves the overall audio quality but we
observed faster convergence in some cases.

Learning rate is presented as a triple ¢ — r — s, which means that the initial learning rate of ¢ was
decayed by a factor of r every s iterations. All models use the Adam optimization technique (Kingma
and Ba, 2014) with 8; = 0.9, B = 0.99, and ¢ = 1078.

Convolutional layers are presented as [X, 0, h X w filters, which means that there are | convolutional
layers, and o (output channels) filters in each layer. The filter size is & x w, where height A is in
frequency bins and width w is in time frames.

Any unspecified details or hyperparameters for Deep Voice 2 are identical to those from the best
models used in the original implementation of Deep Voice 1 (Arik et al., 2017). Similarly, any
unspecified details or hyperparameters for our Tacotron implementation are identical to those from
the best models used in the original implementation of Tacotron (Wang et al., 2017).

10

[

Single-Speaker

[

VCTK

[

Audiobooks

Number of MFCCs

40

0

40

Convolutional layers

4x,128 9 x b5 filters

4x, 649 x 5 filters

5%, 128 9 x b filters

E Recurrent layers (Bi-GRU) 4%, 512-wide 4x, 1024-wide 4%, 1024-wide
& Dropout keep probability 0.95 0.85 0.85
5 Learning rate 1072 -0.95 - 400 2-107%-0.95-1000 | 2-10~*-0.95 2000
En Silence threshold 0.1 0.1 0.1
R Gaussian width 0.25 ms 0.25 ms 0.25 ms
Batch size 8 8 8
Speaker embedding size N/A 16 32
Fully-connected 2%, 256 units 4%, 256 units 4x, 256 units
o Recurrent layers (Bi-GRU) 4x,256-wide 4x,512-wide 4x,512-wide
£ Dropout keep probability 0.8 0.85 0.85
g Output buckets 100 250 300
5 Learning rate | 3- 107 -0.9-300 6-10"7-0.9 - 400 3-10""-0.9-800
Batch size 128 32 32
Speaker embedding size N/A 16 32
Hidden layers (Bi-GRU) 3%, 256-wide 3%, 512-wide 3x, 512-wide
g Output dimension 32 32 64
g Convolution widths 5, 10, 20 3,6, 15,30 691835
53 Learning rate 1072 -0.9-300 4-1007-0.9-300 4-107%-0.9-300
= Batch size 32 32 32
Speaker embedding size N/A 16 16
_ Layers 60 20/40/60/80 80
8 Learning rate | 10~ ° —0.9886 — 1000 | 10~ ° —0.9886 — 1000 | 10~ > —0.9886 — 1000
S Batch size 8 8 8
Speaker embedding size N/A 16 16
Enc.-CBHG bank size 16 16 16
Enc.-CBHG channels 128 128 128
Enc.-CBHG recurrent size 128 128 128
Enc.-CBHG highway layers 4 4 4
Enc.-CBHG maxpool width 2 2 2
Enc.-CBHG proj. sizes 128, 128 128, 128 128, 128
£ Enc.-CBHG proj. width 3 3 3
g Decoder layers 3 3 3
§° Dropout keep probability 0.5 0.8 0.8
5 Attention size 128 256 512
2 Alttention state size 256 256 256
& Decoder prenet sizes 256, 128 256, 128 256, 128, 64
10 Post-CBHG bank size 8 8 8
% Post-CBHG channels 128 512 512
E Post-CBHG conv. widths 3 3 3
= Post-CBHG recurrent size 128 256 256
© ["Post-CBHG highway layers 7 7 7
Post-CBHG maxpool width 2 2 2
Reduction factor 4 4 4
CTC loss coefficient 0.01 0.01 0.01
Learning rate 107°-1-N/A 10~% - 0.95 — 3000 10~° - 0.95 — 3000
Batch size 16 16 16
Speaker embedding size N/A 32 32

Table 4: Model hyperparameters for all models presented in this paper.

11

C Training Time for Multi-speaker Models

We present the details of training time for multi-speaker models in Table 5. We use the same optimized
WaveNet inference kernels described in Deep Voice 1. For detailed analysis and corresponding
techniques to optimize the inference time, we refer the readers to (Arik et al., 2017).

Model Hardware Time per iteration | Number of iterations | Total time
Segmentation 1 Titan X GPU 1200 ms 90k 30 hours
Duration 1 Tesla K40 GPU 320 ms 60k 4.5 hours
Frequency 1 Tesla K40 GPU 1100 ms 25k 7.5 hours
Vocal (20 layer) 8 Titan X GPUs 280 ms 350k 27 hours
Vocal (40 layer) 8 Titan X GPUs 450 ms 350k 44 hours
Vocal (60 layer) 8 Titan X GPUs 600 ms 500k 83 hours
Vocal (80 layer) 8 Titan X GPUs 780 ms 500k 108 hours
Character-to-spectrogram | 1 TitanX GPU 450 ms 200k 25 hours

Table 5: Training time details of multi-speaker Deep Voice 2 and Tacotron models on VCTK dataset.

D Interpretation of Learned Embeddings

In this section, we explore the consequences of speaker-dependent models on intermediate model
outputs, model activations, and the distributions of the learned embeddings.

D.1 Speaker-Dependent Fundamental Frequency Profiles

Embedding for Speaker S, Embedding for Speaker S;4

—— Ground truth —— Ground truth
250 - —— Generated 250 - \ —— Generated

200- & 200 - \‘
150 - 150 -
\ .
100 -
100 -
50 -
L 50-
- iU UL
l ; U

3 4 5 6 ‘ ‘ | ‘ ‘ | ‘
Time (seconds) o 1 2 3 4 5 6
Time (seconds)

Frequency (Hz)
Frequency (Hz)

Input features for Speaker Sg

500 - -
—— Ground truth 500 —— Ground truth

—— Generated —— Generated

400 - 400 -

it i

300 -
0

w
=1
S

200

Frequency (Hz)
N
IS
8

100

S
3

Input features for Speaker Sy,
Frequency (Hz)

o

0 1 2 3 4 5 6 7 8

5 6 7 8
) Time (seconds)

Time (seconds
Figure 6: Time-dependent fundamental frequency profiles (collectively including the Fy and voiced-
ness) generated by the model when the inputs and embeddings correspond to Speaker Sg or Soy.
Speaker S is a 23-year-old female with a Southern England accent and Speaker Sz, is a 24-year-old
male with an Indian accent. The pronounced sentence is "Six spoons of fresh snow peas five thick
slabs of blue cheese and maybe a snack for her brother Bob". Spikes in the ground truth are caused by
the estimation errors using the Praat software (Arik et al., 2017), and we observe that our frequency
model can compensate them in some cases, learning from the other correct ground truth samples.

12

To demonstrate the significance of the speaker embeddings, we run inference for the frequency model
with the speaker embedding vectors corresponding to the actual speaker and a different speaker. As
shown in Fig. 6, while the input phoneme features are dominant in determining the overall shape of
the fundamental frequency profiles, the actual values are highly speaker dependent. For example,
when the speaker embedding vector of a male is substituted with the speaker embedding vector of a
female, the output frequency profile would cause generation of a female voice despite all the other
input features correspond to the correct male speaker.

D.2 Speaker-Dependent Attention Plots

Speaker Szs Speaker S, Speaker S15
» 100 - 0 100 - 100 - -0.8
Q Q Q
8 s 3 - 0.6
4 o £ - 0.4
o ©
r< < 5 - 0.2
o 0- " " g g O 0- " " " g g " o 0~ g v g " " " "
[20 40 60 80 0 20 40 60 80 100 120 0 20 40 60 80 100 120 140
Frame index Frame index Frame index

Figure 7: Attention plots for three speakers speaking at different speeds. Speaker So5 is a 22 year-old
male with a Scottish accent, Speaker S is a 23-year-old female with a Southern England accent, and
Speaker Si¢ is a 22-year-old male with a London accent. The pronounced sentence is "Six spoons of
fresh snow peas five thick slabs of blue cheese and maybe a snack for her brother Bob".

Fig. 7 shows the learned attention plots for three different speakers who talk at different speeds. It
demonstrates that the modifications in the Tacotron encoder architecture are highly effective making
the attention model speaker dependent such that different portions of the input text can be focused
depending on the speech features of the speaker.

D.3 Principal Components of the Embeddings

Female @ Great Britain
2 1 @ Male 21 @ Ireland
-‘E E‘ Asia
O Q P North American
g g @ South Hemisphere
e 14 ° g 1 ° ~ e %
S o° 9 : S o8 ° ¢ o
© © 4 od
2 0+ CI S 01 e %} 0% .0
2 oWooo 2 e Sele SeWoe0
& SO & V3 e
2 -1 o ¢° 2-11e C %t
§ e ° § Ce, ®
]]
-2 1 ° -2
-1 0 1 2 -1 0 1 2
First principal component First principal component

Figure 8: Principal components of the learned embeddings of the 80-layer vocal model, shown with
the genders and regions of the speakers.

We explore the latent space of the learned speaker embeddings by visualizing them in a lower dimen-
sional space. Fig. 8 and Fig. 9 show the first two principal components of the learned embeddings
of the vocal model and character-to-spectrogram model respectively. Although they are initialized
randomly and completely trained based on a loss function related to the generative quality, we can
observe discriminative patterns in the learned embeddings. Gender of the speaker is the most apparent
discriminative pattern in these learned embeddings that even a linear classifier fit on the shown two-
dimensional space can classify the gender with a very high accuracy. Besides, we observe apparent
discriminative patterns for the region of the speaker. ” In the two-dimensional space, especially Great
Britain and North America regions seem highly separable.

"The regions are determined according to https://en.wikipedia.org/wiki/Regional_accents_of_
English

13

https://en.wikipedia.org/wiki/Regional_accents_of_English
https://en.wikipedia.org/wiki/Regional_accents_of_English

E 0.4) Female é 0.4 1 ® @ GreatsBritain
c Y @ Male c (@ Ireland
5] o i
g & o° s é R American
S 0274 ° S 0214 ..“ [Szuth H:misphere
© ©
2 ® o o® []
2 0.0 A So ° 2 0.0 A ‘.J. {‘
s K 0 s Ky X3 or
° () °
S —0.21 S —0.21 .& L
o] o] o ©
& g °
-0.2 0.0 0.2 0.4 -0.2 0.0 0.2 0.4

First principal component First principal component

Figure 9: Principal components of the learned embeddings of the character-to-spectrogram model,
shown with the genders and regions of the speakers.

Speaker ID

®

Mean-pooling

Conv-BN
A

4
Conv-BN

BN
4
Conv

Conv-BN
7y

7'y
Mel 1 Mel m

Figure 10: Architecture for speaker discriminator.

E Speaker Discriminative Model

To compute multi-speaker classification accuracy, we use a speaker discriminative model trained on
the ground truth data set of multiple speakers. Although using another discriminator model such as
Deep Speaker (Li et al., 2017) or other methods would also suffice, we choose to create our own deep
learning based discriminative model. We note that our accuracy results on the test set are on par with
the state-of-the-art speaker classification methods in the literature. Our architecture is depicted in Fig.
10. We use mel-frequency cepstral coefficients (MFCCs) computed after resampling the input to a
constant sampling frequency. Then, we employ two-dimensional convolutional layers convolving
over both time and cepstral frequency bands, with a relu nonlinearity clipped to a maximum of six
after each convolutional layer. The last convolutional layer is followed by max-pooling layer. We
then mean-pool over time for all utterance timesteps and apply a fully connected layer with a relu
nonlinearity followed by a fully connected output layer with a softmax nonlinearity and cross-entropy
classification loss. In order to avoid overfitting to the dataset, we apply dropout after every relu
nonlinearity.

In order to demonstrate that the classification results are not sensitive to the choice of the hyperpa-
rameters of the discriminative model, we demonstrate the classification accuracy for other choices
in this section. Hyperparameters for all the discriminator models are available in Table 7. Only the
results for the models, D3 and D8, are presented in Table 2, as they yielded the highest validation set
accuracy.

14

Param. D1 D2 D3 (in Table 2) D4
Audio resampling freq. 16 KHz 16 KHz 16 KHz 16 KHz
Number of MFCCs 20 20 80 80
Hop length 160 160 160 160
Convolution layers |5x,32 2 x 10 filters| 5X%,329 x5 5x,322 x 20 5%,329 x5
Maxpool width & stride 2 2 2 2
Fully connected size 16 16 32 32
Dropout probability 0.75 0.75 0.75 0.75
Learning rate | 10— °—0.95 — 1000 | 10~?-0.95 — 1000| 10~°~0.95 — 1000| 10>~ 0.95 —1000

Table 6: Hyperparameters for speaker discriminative models for VCTK dataset.

Param. D5 D6 D7 D8 (in Table 2)
Audio resampling freq. 16 KHz 16 KHz 16 KHz 16 KHz
Number of MFCCs 20 20 80 80
Hop length 160 160 160 160
Convolution layers | 3x,329 x 5 filters| 5x 322 x 10 7,329 x5 5%,322 x 10
Maxpool width & stride 2 2 2 2
Fully connected size 32 32 32 32
Dropout probability 0.75 0.75 0.75 0.75
Learning rate | 10~ °—0.95 - 1000 | 10~°-0.99 — 2000 | 10>~ 0.95 — 1000 | 10—~ 0.99 — 2000

Table 7: Hyperparameters for speaker discriminative models for Audiobook dataset.

Dataset | Multi-Speaker Model D1 D2 D3 (in Table 2) D4
VCTK | Deep Voice 2 (20-layer WaveNet) | 97.87% 97.60% 99.92% 99.84%
VCTK | Deep Voice 2 (40-layer WaveNet) | 98.56% 98.68% 100.00% 100.00%
VCTK | Deep Voice 2 (60-layer WaveNet) | 98.56% 98.44% 99.68% 99.80%
VCTK | Deep Voice 2 (80-layer WaveNet) | 99.06% 99.21% 99.96% 99.96%
VCTK | Tacotron (Griffin-Lim) 95.89% 96.24% 99.37% 99.60%
VCTK | Tacotron (20-layer WaveNet) 87.93% 85.19% 60.87% 65.43%
VCTK | Ground Truth Data 98.07 % 98.00% 99.74% 99.66%

Table 8: Classification accuracy using speaker discriminative models D1, D2, D3 and D4. The
corresponding model hyperparameters are given in Table 6.

Dataset Multi-Speaker Model D5 D6 D7 D8 (in Table 2)
Audiobooks | Deep Voice 2 (80-layer WaveNet) | 98.24% 95.66% 96.80% 97.42%
Audiobooks | Tacotron (Griffin-Lim) 96.93% 94.89% 92.24% 93.87%
Audiobooks | Tacotron (20-layer WaveNet) 83.36% 80.81% 60.00% 66.53%
Audiobooks | Ground Truth Data 96.30% 97.49% 98.39% 98.80%

Table 9: Classification accuracy using speaker discriminative models D5, D6, D7 and D8. The
corresponding model hyperparameters are given in Table 7.

15

	1 Introduction
	2 Related Work
	3 Single-Speaker Deep Voice 2
	3.1 Segmentation model
	3.2 Duration Model
	3.3 Frequency Model
	3.4 Vocal Model

	4 Multi-Speaker Models with Trainable Speaker Embeddings
	4.1 Multi-Speaker Deep Voice 2
	4.1.1 Segmentation Model
	4.1.2 Duration Model
	4.1.3 Frequency Model
	4.1.4 Vocal Model

	4.2 Multi-Speaker Tacotron
	4.2.1 Character-to-Spectrogram Model
	4.2.2 Spectrogram-to-Waveform Model

	5 Results
	5.1 Single-Speaker Speech Synthesis
	5.2 Multi-Speaker Speech Synthesis

	6 Conclusion
	A Training Deep Voice 2
	B Model Hyperparameters
	C Training Time for Multi-speaker Models
	D Interpretation of Learned Embeddings
	D.1 Speaker-Dependent Fundamental Frequency Profiles
	D.2 Speaker-Dependent Attention Plots
	D.3 Principal Components of the Embeddings

	E Speaker Discriminative Model

