
Neural Architect: A Multi-objective Neural Architecture Search
with Performance Prediction

Yanqi Zhou
Baidu Silicon Valley AI Lab

Sunnyvale, California
zhouyanqi@baidu.com

Gregory Diamos
Baidu Silicon Valley AI Lab

Sunnyvale, California
gregdiamos@baidu.com

ABSTRACT
Despite of prior advances in automatic Neural Architecture Search
(NAS), automatic NAS still largely relies on vast computational re-
sources (e.g. hundreds of GPUs, thousands hours of training time).
A Reinforcement Learning (RL) based NAS takes prohibitively long
time as a RL agent requires measuring the validation error for each
generated target architecture and the algorithm has little intrin-
sic parallelism. Moreover, prior works target only accuracy but
lack consideration for computational resources or efficiency. For
instance, increasing the model size can improve model accuracy,
but the network might be suboptimal under resource constraints
(e.g. total number of parameters). We propose Neural Architect, a
resource-aware multi-objective reinforcement learning based NAS
with network embedding and performance prediction. Instead of
searching a target network from scratch, we use network embed-
ding to encode an existing network to a trainable embedding vector.
Based on the embedding, a controller neural network generates
next “moves” that transforms the target network. We introduce
multi-objective reward function that takes network accuracy, com-
putational resource, and training time into consideration. The re-
ward is predicted by multiple performance simulation networks
that are pre-trained or trained jointly with the controller network.
With network embedding and performance prediction, Neural Ar-
chitect can find a good network architecture fast and efficiently.
With multi-objective optimization, we can find efficient network
architecture with resource constraints.

1 INTRODUCTION
Many techniques for automatic neural architecture search have
been proposed [1, 3–6] and yield promising results of designing
competitive models compared to human designed models. However,
many results are based on vast computational resources such as
hundreds of GPUs and thousands of GPU hours, which makes
NAS research less realistic for individual researchers or university
students. For example, to expedite the process, Google [5] uses
distributed and asynchronous training with 800 GPUs.

Moreover, existing techniques do not take consideration of re-
source constraints (e.g. total number of parameters, memory re-
quirement) for different hardware platforms or neural architecture
efficiency (e.g. accuracy per million parameters). As a result, those
techniques are likely to find network architectures that are gigantic
in size but less efficient. For example, several existing NAS works
achieve similar accuracy as DenseNet [2], but the total number
of parameters for these networks are significantly higher than
DenseNet.

In this work, we propose Neural Architect, as shown in Figure 1, a
resource-aware multi-objective reinforcement learning based NAS
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Figure 1: High-level Ideas of Neural Architect. A policy net-
work generates next “moves” based on network embedding.
A performance prediction network predicts target network
accuracy and training timewithout actually running the tar-
get network till convergence. Policy gradient is applied to
train the controller network.

with network embedding and performance prediction. The goal is
to find resource-efficient neural architectures with a multi-objective
reinforcement learning algorithm. The main contributions include:

(1) A reinforcement learning based controller neural network
with trainable network embedding that takes a configuration
of an existing network and makes adaptations to get better
neural networks.

(2) A multi-objective reward function that takes into considera-
tion of network accuracy, total number of parameters, and
training time. This enables users to customize the reward
function according to different needs (e.g. model accuracy,
hardware resources and training time).

(3) A performance prediction model that predicts network ac-
curacy and training time without running the target model
till convergence. It can be a regression based model or a
trainable neural network.

2 METHODOLOGY
Figure 1 shows high-level ideas of Neural Architect. Neural Archi-
tect consists of two networks: a policy network and a performance
simulation network. The policy network takes in network embed-
ding of current network and generates network transformation
actions such as “insert” (insert a layer) or “scale” (scale a layer). The
performance simulation network takes in network embedding of
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Figure 2: Network Embedding: an LSTM based network that
transforms an existing neural network configuration into a
trainable representation.

the generated target network and data distributions to approximate
the reward by predicting both network accuracy and training time.
Both the accuracy network and training time network are trainable
neural networks that are pre-trained or trained jointly with the
policy network. The final reward engine sets weights to network
accuracy, model size, and training time respectively according to
user specification. The configurable reward engine enables find-
ing neural architectures with various resource constraints such as
memory size and GPU time.

2.1 Network Embedding
An critical design feature of Neural Architect is its ability to adapt
an existing neural architecture rather than building from scratch.
To enable network adaptation, we design a LSTM based embedding
network to transform an existing neural architecture configura-
tion into a trainable representation. Figure 2 shows the embedding
network, where a layer embedding network takes a layer descrip-
tion and maps layer features into multiple lookup tables. Lookup
tables transform the discrete feature space into trainable feature
vectors. An LSTM network takes layer feature vectors and gen-
erates a layer embedding. After multiple layer embedding have
been produced, a network embedding LSTM network processes the
sequential information in these layer embeddings and generates a
network embedding. This network embedding will be used as an
input to the policy network and value network.

2.2 Policy Network
The policy network consists of several operation networks that
transforms the existing network using network embedding. Opera-
tions including “Insert” and “Scale” can be performed by the policy
network, but the policy network can be extended to support other
operations as necessary. A trainable action selector chooses the
operation to execute the next training iteration. An insert network
generates layer type, layer size, and related hyperparameters for
that layer. A scale network changes the size and hyperparameters of
an existing layer, including the channel size, filter size, and dropout
rate.

Figure 3 shows two of the representative “insert” operations gen-
erated by the policy network. "Insert Conv" inserts a convolution
layer into an existing network. "Insert Add" operation concatenates
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Figure 3: Two representative “Insert” operations: "Insert
Conv" and "Insert Add".

intermediate results from two previous layers, which is similar to
residual layer.

2.3 Performance Simulation Network and
Multi-objective Reward

Instead of running the target network till convergence, we use a
regression model or a neural network based performance prediction
to reduce the training time of the policy network. The performance
simulation network takes a target network embedding and an train-
ing dataset in terms of size, distribution, and regularity to generate
approximated accuracy and training time. Leveraging the embed-
ding network, we can unify layer representation and integrate the
information from individual layers. Given a set of sample networks,
we can obtain performance curves for each network. For each net-
work xi , we can obtain a validation accuracy ai and training timeti .
The objective is to reduce the L1 loss of the predicted accuracy and
target evaluated accuracy, and the L1 loss of the predicted training
time and target training time. Once the performance prediction
network is trained properly, it can be fixed and reused for neural ar-
chitecture search under various resource constraints. The training
time network could be used to model a real system (e.g. Tensorflow
running on a V100), or it could use a more idealized hardware model
(e.g. a roofline model). For the latter case, the trained policy network
can be used to guide future hardware and software optimizations.

If trained jointly, the performance simulation network becomes
a value network V . The parameters θ of the policy network are
optimized via gradient descent following:

∇θ loдπ (at |st ;θ )A(st ,at ;θv ) (1)

A(st ,at ) = rt + γV (st+1;θv ) −V (st ;θv ) (2)
The parameters θv if the value network is updated via gradient

descent using: ∇θv [(rt + γV (st+1;θv ) −V (st ;θv ))2]
In the multi-objective reward function, we penalize large mod-

els by applying a piece-wise linear negative reward function over
model size and training time. For instance, we can start applying
negative rewards once the model size exceeds 16 MB.
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