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ABSTRACT

With the increasing prevalence of deep neural networks and their
growing demand for more powerful hardware, understanding the
interplay of model architecture parameters, hardware architecture pa-
rameters, model and data parallelism on overall model performance
(training time and accuracy) becomes ever more important in order
to design next-generation deep learning (DL) hardware. To aid such
understanding, this work studies the effect of scaling model size
on overall performance, and debunks a long-held belief that larger
models must take longer to train.

We first break the total training time into number of steps and
time/step. We analytically model the training time per step and em-
pirically study the number of steps to convergence. We observe that
larger models take fewer steps to reach to minimum validation loss
(halting point). Therefore, the burden is on the hardware commu-
nity to improve hardware design such that the growth in training
time/step would be slower than the decrease in the number of steps
as model size scales. If successful, larger models will converge faster,
and therefore we can have a larger cake and eat it faster too.

1 INTRODUCTION

The recent success in deep learning has been a driving force in
the hardware industry for designing more powerful, energy-efficient
GPUs [3] and ASICs [1, 2, 7-11, 15] with special support for deep
learning. Recent studies suggest that deep learning accuracy scales
with training data [4, 12, 14]. Therefore, there is an expectation that
model size and as a result computation demands to grow rapidly with
dataset size. In this paper, we make an observation that suggests the
growth in model size and computation demand is expected to be even
faster than the growth in dataset size. We observe that larger models
take fewer steps to reach to similar levels of accuracy. Figure 1
shows this pattern for character-level language models trained on
0.01% of the Billion Word dataset [6], with batch size of 128, and
using Adam optimizer with an initial learning rate of 0.001. As
depicted, larger models take fewer steps to converge, while training
time per step grows with model size. On this particular design,
we also get better overall training time on an the existing GPU
hardware (Nvidia Maxwell). This overall trend of total training time
dropping by model size depends on the underlying hardware, model
architecture and algorithmic properties of the implementation. Note
here that the number of steps to convergence is only a function of
model architecture, while the training time per step is a function of
hardware architecture and the efficiency of the implementation. If
we can design our hardware and/or algorithms such that the training
time per step grows with a lower pace than the decrease in the
number of steps, we can practically train larger models faster than
smaller ones.
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Figure 1: Larger models take fewer steps to converge

There are three different approaches to control training time/step
as model size grows: Exploiting data parallelism, model parallelism
and kernel parallelism, which require non-trivial changes in imple-
mentation and heavy support in hardware. Recently, data parallelism
has been explored extensively in industry and academia [13, 17,
19, 20], however model parallelism has been used only for exotic
training and deployment scenarios [18]. We make the argument that
model parallelism must be considered as a first-class parallelism
requirement for future deep learning scaling. Specifically, as dataset
size grows, the potential to grow data and model parallelism grows
comparably. However, there are hard upper-bounds on scalabilty of
data parallelism [13, 17, 19, 20] that will encourage greater empha-
sis on ways to improve model parallelism. Further, we show that
increasing model size can proceed without increasing training time.
The main contributions include:

(1) To the best of our knowledge, we are the first to observe that
larger models take fewer steps to converge. We predict an
increasing pressure on hardware community to support larger
models and specifically model parallelism.

Our results suggests that number of steps to convergence has
a reciprocal relationship to model size and linear relationship
to dataset size (#Steps ~ a.% +b). Meanwhile, the
training time per step grows linearly in model size (without
changing parallelism).

(3) Finally, we analyze the implications of these findings on

future hardware/system design.

2

~

2 METHODOLOGY

We define time-to-convergence as the number of steps to reach
within 1% of the minimum validation loss. We use early stopping
(at minimum validation loss) to control overfitting. We increase the
model size by increasing the number of nodes per layer, while keep-
ing all the other architecture parameters the same (same learning rate,
same batch size, etc.). We evaluate our finding on three established
DL models: character-level language model (LM), word-level LM
and speech recognition.
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Figure 2: #Steps vs. Model Size Across Different Application Domains: X-axis represents model size in terms of the number of parame-
ters in log-scale. Y-axis is the number of steps to minimum validation loss. Different lines represent different dataset sizes (percentage
of full dataset). For character LM, we vary the dataset size from 0.01% to 0.4% of the 1B dataset. For word LM, we vary dataset size
from 0.1% to 10% of 1B dataset. For speech, we vary the dataset size from 1% to 10% of an internal 20000 hour dataset.
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Figure 3: Minimum Validation Loss vs. Model Size:X-axis represents model size in terms of in log-scale. We use early stopping (at
minimum validation loss) to control overfitting. Y-axis represent minimum validation loss (Lower is better).

e Word LM: We implement LSTM-based word LMs as de-
scribed in [16]. We restrict the vocabulary to the top 10,000
most frequent words in the Billion Word Dataset [6]. The
networks are 2-layer LSTMs, with sequence length of 80, the
same number of hidden nodes in each layer.

e Character LM: We implement char-LM using Recurrent
Highway Networks (RHNs)[21]. Specifically, we train a 1-
layer, depth 10 RHN, sequence length 150.

e Speech recognition: We train models similar to Deep Speech
2 (DS2) [5] which consist of two convolution layers followed
by four bidirectional LSTM recurrent layers.

3 RESULTS AND ANALYSIS

In this Section, we study the trade-off between convergence time,
accuracy and model size. Our preliminary results suggest that there
is a potential to increase model size to improve training time without
hurting accuracy.

3.1 Number of Steps to Minimum Validation Loss

Figure 2 shows the number of steps to convergence for the character,
word and speech model. X-axis and Y-axis are in logarithmic-scale.
We increase the model size on X-axis by increasing the width of each
layer. Different lines represent different dataset sizes (percentage of
a full dataset size). As shown, the number of steps to convergence
declines with model size and grows with dataset size. In general,
D4

the number of steps to convergence can be approximated by TeE
where D is the size of training set, M is model size, and k; and

ky are controlled by dataset characteristics and model architecture
parameters, respectively. We also observe that this power law rela-
tionship eventually plateaus, i.e there exists a model size beyond
which improving model size does not improve training time.

3.2 Accuracy

Although theoretical results suggest over-parametrizing models may
lead to worse generalization error, our empirical results show that
the change in accuracy is insignificant (Figure 3). As shown, loss
remains almost the same after it reaches to its best performance.

3.3 Sensitivity Analysis

We also study the effect of change in depth and learning rate on the
number of steps and the power-law relationship. We observe that
the number of steps to minimum validation loss also declines as we
sweep the number of layers from 1 to 128. We also observe that
adaptively changing learning rate (using Adam optimizer) improves
the number of steps in two ways: It shifts down the power-law curve,
and also makes it steeper.

3.4 System/Hardware Implications

Moving forward, we expect an increasing demand for larger models,
not only because they are more accurate with more data but also
because they train faster. Therefore, system/hardware designers need
to focus on larger models by providing support for model paral-
lelism through improving inter-device bandwidth and computational
throughput per device.
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