Have a Larger Cake and Eat it Faster Too: A Guideline to Train
Larger Models Faster

Newsha Ardalani
Baidu Silicon Valley AI Lab
ardalaninewsha@baidu.com

ABSTRACT

With the increasing prevalence of deep neural networks and their
growing demand for more powerful hardware, understanding the
interplay of model architecture parameters, hardware architecture pa-
rameters, model and data parallelism on overall model performance
(training time and accuracy) becomes ever more important in order
to design next-generation deep learning (DL) hardware. To aid such
understanding, this work studies the effect of scaling model size
on overall performance, and debunks a long-held belief that larger
models must take longer to train.

We first break the total training time into number of steps and
time/step. We analytically model the training time per step and em-
pirically study the number of steps to convergence. We observe that
larger models take fewer steps to reach to minimum validation loss
(halting point). Therefore, the burden is on the hardware commu-
nity to improve hardware design such that the growth in training
time/step would be slower than the decrease in the number of steps
as model size scales. If successful, larger models will converge faster,
and therefore we can have a larger cake and eat it faster too.

1 INTRODUCTION

The recent success in deep learning has been a driving force in
the hardware industry for designing more powerful, energy-efficient
GPUs [3] and ASICs [1, 2, 7-11, 15] with special support for deep
learning. Recent studies suggest that deep learning accuracy scales
with training data [4, 12, 14]. Therefore, there is an expectation that
model size and as a result computation demands to grow rapidly with
dataset size. In this paper, we make an observation that suggests the
growth in model size and computation demand is expected to be even
faster than the growth in dataset size. We observe that larger models
take fewer steps to reach to similar levels of accuracy. Figure 1
shows this pattern for character-level language models trained on
0.01% of the Billion Word dataset [6], with batch size of 128, and
using Adam optimizer with an initial learning rate of 0.001. As
depicted, larger models take fewer steps to converge, while training
time per step grows with model size. On this particular design,
we also get better overall training time on an the existing GPU
hardware (Nvidia Maxwell). This overall trend of total training time
dropping by model size depends on the underlying hardware, model
architecture and algorithmic properties of the implementation. Note
here that the number of steps to convergence is only a function of
model architecture, while the training time per step is a function of
hardware architecture and the efficiency of the implementation. If
we can design our hardware and/or algorithms such that the training
time per step grows with a lower pace than the decrease in the
number of steps, we can practically train larger models faster than
smaller ones.

Joel Hestness
Baidu Silicon Valley AI Lab
hestness @baidu.com

Gregory Diamos
Baidu Silicon Valley AI Lab
gregdiamos @baidu.com

105?”” T et 101?...., e 1055‘”” T ——

§ 10‘:\\ ! L3100\

g g rindl:

5 & g0 E

;o \ B 5 \

E] 3 E

fi; \\ . ¢ R T p

£ IR0 1 £ i

107 o 107 Lo 102

100 e 0 Y 1000t o7 BE TR VLR (A
Model Size (#params) Model Size (#params) Model Size (#params)

(a) Number of Steps (b) Time per Step (c) Overall Time

Figure 1: Larger models take fewer steps to converge

There are three different approaches to control training time/step
as model size grows: Exploiting data parallelism, model parallelism
and kernel parallelism, which require non-trivial changes in imple-
mentation and heavy support in hardware. Recently, data parallelism
has been explored extensively in industry and academia [13, 17,
19, 20], however model parallelism has been used only for exotic
training and deployment scenarios [18]. We make the argument that
model parallelism must be considered as a first-class parallelism
requirement for future deep learning scaling. Specifically, as dataset
size grows, the potential to grow data and model parallelism grows
comparably. However, there are hard upper-bounds on scalabilty of
data parallelism [13, 17, 19, 20] that will encourage greater empha-
sis on ways to improve model parallelism. Further, we show that
increasing model size can proceed without increasing training time.
The main contributions include:

(1) To the best of our knowledge, we are the first to observe that
larger models take fewer steps to converge. We predict an
increasing pressure on hardware community to support larger
models and specifically model parallelism.

Our results suggests that number of steps to convergence has
a reciprocal relationship to model size and linear relationship
to dataset size (#Steps ~ a.% +b). Meanwhile, the
training time per step grows linearly in model size (without
changing parallelism).

(3) Finally, we analyze the implications of these findings on

future hardware/system design.

2

~

2 METHODOLOGY

We define time-to-convergence as the number of steps to reach
within 1% of the minimum validation loss. We use early stopping
(at minimum validation loss) to control overfitting. We increase the
model size by increasing the number of nodes per layer, while keep-
ing all the other architecture parameters the same (same learning rate,
same batch size, etc.). We evaluate our finding on three established
DL models: character-level language model (LM), word-level LM
and speech recognition.

105 LT

[| 10° -
I 1 0.4%
I . =—0.2%

— 0.1%
s 7 === 0.04%

= 0.02%
\\ . —0.01%

#Steps to Min. Validation Loss
#Steps to Min. Validation Loss

104 —\\

107

10%

4%
——2%
——1%
—=0.4%
—0.2%
—0.1%

10%
4%
1 —2%
L m—1%
1 —0.4%
D e—0.2%
—0.1%

10 -

#Steps to Min. Validation Loss

el
108

1 el el PR R RSy PERNREeey L -
10° 10° 107 166 106 107 108
Model Size (#Params) Model Size (#Params) Model Size (#Params)
(a) Character LM (b) Word LM (c) Speech

Figure 2: #Steps vs. Model Size Across Different Application Domains: X-axis represents model size in terms of the number of parame-
ters in log-scale. Y-axis is the number of steps to minimum validation loss. Different lines represent different dataset sizes (percentage
of full dataset). For character LM, we vary the dataset size from 0.01% to 0.4% of the 1B dataset. For word LM, we vary dataset size
from 0.1% to 10% of 1B dataset. For speech, we vary the dataset size from 1% to 10% of an internal 20000 hour dataset.

2x10°-

Bx10% GXIOJ\—‘*\\

« 0 w £
§ V YT § -\\-‘.‘ 10% §) \ 10%

4% : -1
s —0.2% € 5x100° 4% — 4x10 a%
S [RSSS - i) —2% 9 N —2%
= —0.1% B]
3 R 0.04% 3 —1% J3x101- —_1%
z .uzﬂ/u 2 ——0.4% = ——0.4%
z 001% Z ==0.2% > —0.2%
< Rl € 4x10° - ——0.1% c 2x101 - ——0.1%
= = =

10° 108 107
Model Size (#Params)

(a) Character LM

108

(b) Word LM

07
Model Size (#Params)

108 107 108

Model Size (#Params)

108

(c) Speech

Figure 3: Minimum Validation Loss vs. Model Size:X-axis represents model size in terms of in log-scale. We use early stopping (at
minimum validation loss) to control overfitting. Y-axis represent minimum validation loss (Lower is better).

e Word LM: We implement LSTM-based word LMs as de-
scribed in [16]. We restrict the vocabulary to the top 10,000
most frequent words in the Billion Word Dataset [6]. The
networks are 2-layer LSTMs, with sequence length of 80, the
same number of hidden nodes in each layer.

e Character LM: We implement char-LM using Recurrent
Highway Networks (RHNs)[21]. Specifically, we train a 1-
layer, depth 10 RHN, sequence length 150.

e Speech recognition: We train models similar to Deep Speech
2 (DS2) [5] which consist of two convolution layers followed
by four bidirectional LSTM recurrent layers.

3 RESULTS AND ANALYSIS

In this Section, we study the trade-off between convergence time,
accuracy and model size. Our preliminary results suggest that there
is a potential to increase model size to improve training time without
hurting accuracy.

3.1 Number of Steps to Minimum Validation Loss

Figure 2 shows the number of steps to convergence for the character,
word and speech model. X-axis and Y-axis are in logarithmic-scale.
We increase the model size on X-axis by increasing the width of each
layer. Different lines represent different dataset sizes (percentage of
a full dataset size). As shown, the number of steps to convergence
declines with model size and grows with dataset size. In general,
D4

the number of steps to convergence can be approximated by TeE
where D is the size of training set, M is model size, and k; and

ky are controlled by dataset characteristics and model architecture
parameters, respectively. We also observe that this power law rela-
tionship eventually plateaus, i.e there exists a model size beyond
which improving model size does not improve training time.

3.2 Accuracy

Although theoretical results suggest over-parametrizing models may
lead to worse generalization error, our empirical results show that
the change in accuracy is insignificant (Figure 3). As shown, loss
remains almost the same after it reaches to its best performance.

3.3 Sensitivity Analysis

We also study the effect of change in depth and learning rate on the
number of steps and the power-law relationship. We observe that
the number of steps to minimum validation loss also declines as we
sweep the number of layers from 1 to 128. We also observe that
adaptively changing learning rate (using Adam optimizer) improves
the number of steps in two ways: It shifts down the power-law curve,
and also makes it steeper.

3.4 System/Hardware Implications

Moving forward, we expect an increasing demand for larger models,
not only because they are more accurate with more data but also
because they train faster. Therefore, system/hardware designers need
to focus on larger models by providing support for model paral-
lelism through improving inter-device bandwidth and computational
throughput per device.

REFERENCES

[1]

2

3

[4

[5

[6

[7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

2017. Carebrase. https://www.cerebras.net. (2017). [Online; accessed 20-Nov-
2017].

2017. GraphCore. https://www.graphcore.ai. (2017). [Online; accessed 20-Nov-
2017].

2017. NVIDIA Tesla Volta: The New GPU Architecture Designed to Bring Al to
Every Industry. https://www.nvidia.com/en-us/data-center/volta- gpu-architecture/.
(2017). [Online; accessed 20-Nov-2017].

Shun-ichi Amari, Naotake Fujita, and Shigeru Shinomoto. 1992. Four types of
learning curves. Neural Computation 4, 4 (1992), 605-618.

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, JingDong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al.
2016. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin.
In Proceedings of The International Conference on Machine Learning (ICML).
173-182.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. 2013. One Billion Word Benchmark for Measuring
Progress in Statistical Language Modeling. arXiv preprint arXiv:1312.3005
(2013).

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. In ACM Sigplan Notices, Vol. 49. ACM, 269—
284.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. Dadiannao: A machine-
learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. IEEE Computer Society, 609-622.
Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural networks.
IEEE Journal of Solid-State Circuits 52, 1 (2017), 127-138.

Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project Adam: Building an Efficient and Scalable Deep Learning Training
System.. In OSDI, Vol. 14. 571-582.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting
vision processing closer to the sensor. In ACM SIGARCH Computer Architecture
News, Vol. 43. ACM, 92-104.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. Facebook Al Research
Publications (2017).

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,
Hassan Kianinejad, Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou.
2017. Deep Learning Scaling is Predictable, Empirically. arXiv preprint
arXiv:1712.00409 (2017).

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings
of the 44th Annual International Symposium on Computer Architecture. ACM,
1-12.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui
Wu. 2016. Exploring the Limits of Language Modeling. arXiv preprint
arXiv:1602.02410v2 (2016).

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2016. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. arXiv preprint arXiv:1609.04836 (2016).
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).
Cho-Jui Hsieh James Demmel Kurt Keutzer Yang You, Zhao Zhang. 2017. Ima-
geNet Training in Minutes. arXiv preprint arXiv:1709.05011 (2017).

Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling SGD Batch Size to
32k for ImageNet Training. arXiv preprint arXiv:1708.03888 (2017).

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnik, and Jurgen Schmid-
huber. 2017. Recurrent Highway Networks. In Proceedings of The International
Conference on Machine Learning (ICML).

https://www.cerebras.net
https://www.graphcore.ai
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/

	Abstract
	1 Introduction
	2 Methodology
	3 Results and Analysis
	3.1 Number of Steps to Minimum Validation Loss
	3.2 Accuracy
	3.3 Sensitivity Analysis
	3.4 System/Hardware Implications

	References

