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The replicability crisis

Begley and Ellis, Nature (2012)

Amgen could only replicate 6 of 53
studies they considered landmarks
in basic cancer science

HealthCare could only replicate
about 25% of 67 seminal studies

Systematic attempts to replicate
widely cited priming experiments
have failed



Media coverage...





The replicability problem

Early report (Kaplan, ’08)

50% of Phase III FDA studies ended in
failure
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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 

The Essay section contains opinion pieces on topics 
of broad interest to a general medical audience. 

Why Most Published Research Findings 
Are False 
John P. A. Ioannidis

Citation: Ioannidis JPA (2005) Why most published 
research fi ndings are false. PLoS Med 2(8): e124.

Copyright: © 2005 John P. A. Ioannidis. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original 
work is properly cited. 

Abbreviation: PPV, positive predictive value

John P. A. Ioannidis is in the Department of Hygiene 
and Epidemiology, University of Ioannina School of 
Medicine, Ioannina, Greece, and Institute for Clinical 
Research and Health Policy Studies, Department of 
Medicine, Tufts-New England Medical Center, Tufts 
University School of Medicine, Boston, Massachusetts, 
United States of America. E-mail: jioannid@cc.uoi.gr

Competing Interests: The author has declared that 
no competing interests exist.

DOI: 10.1371/journal.pmed.0020124

Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.

Great danger in seeing erosion of public confidence in science

Scientific community is responding
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Response: reproducibility intiatives

Reproducibility Initiative

http://validation.

scienceexchange.com/

http://validation.scienceexchange.com/
http://validation.scienceexchange.com/


Response: editorial policies



Response: best practices



The replicability issue

Many different components

1. Publishing culture

2. Granting agencies culture

3. Computational reproducibility

4. Statistics: how to choose a finding?
Statistical methodology enhancing
replicability

Can only do 3 and 4
1 and 2 above pay grade



Why is this happening? A new scientific paradigm

Collect data first =⇒ Ask questions later

Large data sets available prior to formulation of scientific hypotheses/theories

Very different from hypothesis-driven research



Example from genomics

Historically, molecular biology was hypothesis-driven research

“Sometime in the 90’s”

Eruption of high-throughput technologies

Enabled thousands of genes to be tested
simultaneously for differential expression

Small # of samples
High # of variables

Researchers begin to look everywhere

gene expression microarray

Complete revolution: from hypothesis- to data-driven research



False discovery rate (FDR), Benjamini-Hochberg ’95

True positives False negatives False positives

1000 hypotheses to test
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True positives False negatives False positives

1000 hypotheses, 100 potential discoveries
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Knockoffs: Tools for Replicable Selections

Joint with R. Barber
and Y. Fan, L. Janson and J. Lv



Some data-driven scientific problems

One response Y : phenotype; e.g. Crohn’s disease status, cholesterol level

Hundreds of thousands of variables X: genotype information

Ex. 1: which genetic variations affect traits, e.g. the risk of a disease?

from the analyses described above, and consideration of an expanded
reference group, described below.
Bipolar disorder (BD). Bipolar disorder (BD; manic depressive ill-
ness26) refers to an episodic recurrent pathological disturbance in
mood (affect) ranging from extreme elation or mania to severe depres-
sion and usually accompanied by disturbances in thinking and beha-
viour: psychotic features (delusions and hallucinations) often occur.
Pathogenesis is poorly understood but there is robust evidence for a
substantial genetic contribution to risk27,28. The estimated sibling
recurrence risk (ls) is 7–10 and heritability 80–90%27,28. The definition
of BD phenotype is based solely on clinical features because, as yet,
psychiatry lacks validating diagnostic tests such as those available for
many physical illnesses. Indeed, a major goal of molecular genetics
approaches to psychiatric illness is an improvement in diagnostic
classification that will follow identification of the biological systems
that underpin the clinical syndromes. The phenotype definition that
we have used includes individuals that have suffered one or more
episodes of pathologically elevated mood (see Methods), a criterion
that captures the clinical spectrum of bipolar mood variation that
shows familial aggregation29.

Several genomic regions have been implicated in linkage studies30

and, recently, replicated evidence implicating specific genes has been
reported. Increasing evidence suggests an overlap in genetic suscept-
ibility with schizophrenia, a psychotic disorder with many similar-
ities to BD. In particular association findings have been reported with

both disorders at DAOA (D-amino acid oxidase activator), DISC1
(disrupted in schizophrenia 1), NRG1 (neuregulin1) and DTNBP1
(dystrobrevin binding protein 1)31.

The strongest signal in BD was with rs420259 at chromosome
16p12 (genotypic test P 5 6.3 3 1028; Table 3) and the best-fitting
genetic model was recessive (Supplementary Table 8). Although
recognizing that this signal was not additionally supported by the
expanded reference group analysis (see below and Supplementary
Table 9) and that independent replication is essential, we note that
several genes at this locus could have pathological relevance to BD,
(Fig. 5). These include PALB2 (partner and localizer of BRCA2),
which is involved in stability of key nuclear structures including
chromatin and the nuclear matrix; NDUFAB1 (NADH dehydrogen-
ase (ubiquinone) 1, alpha/beta subcomplex, 1), which encodes a
subunit of complex I of the mitochondrial respiratory chain; and
DCTN5 (dynactin 5), which encodes a protein involved in intracel-
lular transport that is known to interact with the gene ‘disrupted in
schizophrenia 1’ (DISC1)32, the latter having been implicated in sus-
ceptibility to bipolar disorder as well as schizophrenia33.

Of the four regions showing association at P , 5 3 1027 in the
expanded reference group analysis (Supplementary Table 9), it is of
interest that the closest gene to the signal at rs1526805 (P 5 2.2 3
1027) is KCNC2 which encodes the Shaw-related voltage-gated pot-
assium channel. Ion channelopathies are well-recognized as causes of
episodic central nervous system disease, including seizures, ataxias
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Figure 4 | Genome-wide scan for seven diseases. For each of seven diseases
2log10 of the trend test P value for quality-control-positive SNPs, excluding
those in each disease that were excluded for having poor clustering after
visual inspection, are plotted against position on each chromosome.

Chromosomes are shown in alternating colours for clarity, with
P values ,1 3 1025 highlighted in green. All panels are truncated at
2log10(P value) 5 15, although some markers (for example, in the MHC in
T1D and RA) exceed this significance threshold.
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Ex. 2: which gene expression profiles help determine severity of a tumor?

Ex. 3: which factors/variables help determine whether a loan will be repaid?

How can we select variables without too many false positives?
 do not run into problem of irreproducibility



Some data-driven scientific problems

One response Y : phenotype; e.g. Crohn’s disease status, cholesterol level

Hundreds of thousands of variables X: genotype information

Ex. 1: which genetic variations affect traits, e.g. the risk of a disease?
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from the analyses described above, and consideration of an expanded
reference group, described below.
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mood (affect) ranging from extreme elation or mania to severe depres-
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of BD phenotype is based solely on clinical features because, as yet,
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that underpin the clinical syndromes. The phenotype definition that
we have used includes individuals that have suffered one or more
episodes of pathologically elevated mood (see Methods), a criterion
that captures the clinical spectrum of bipolar mood variation that
shows familial aggregation29.

Several genomic regions have been implicated in linkage studies30

and, recently, replicated evidence implicating specific genes has been
reported. Increasing evidence suggests an overlap in genetic suscept-
ibility with schizophrenia, a psychotic disorder with many similar-
ities to BD. In particular association findings have been reported with

both disorders at DAOA (D-amino acid oxidase activator), DISC1
(disrupted in schizophrenia 1), NRG1 (neuregulin1) and DTNBP1
(dystrobrevin binding protein 1)31.

The strongest signal in BD was with rs420259 at chromosome
16p12 (genotypic test P 5 6.3 3 1028; Table 3) and the best-fitting
genetic model was recessive (Supplementary Table 8). Although
recognizing that this signal was not additionally supported by the
expanded reference group analysis (see below and Supplementary
Table 9) and that independent replication is essential, we note that
several genes at this locus could have pathological relevance to BD,
(Fig. 5). These include PALB2 (partner and localizer of BRCA2),
which is involved in stability of key nuclear structures including
chromatin and the nuclear matrix; NDUFAB1 (NADH dehydrogen-
ase (ubiquinone) 1, alpha/beta subcomplex, 1), which encodes a
subunit of complex I of the mitochondrial respiratory chain; and
DCTN5 (dynactin 5), which encodes a protein involved in intracel-
lular transport that is known to interact with the gene ‘disrupted in
schizophrenia 1’ (DISC1)32, the latter having been implicated in sus-
ceptibility to bipolar disorder as well as schizophrenia33.

Of the four regions showing association at P , 5 3 1027 in the
expanded reference group analysis (Supplementary Table 9), it is of
interest that the closest gene to the signal at rs1526805 (P 5 2.2 3
1027) is KCNC2 which encodes the Shaw-related voltage-gated pot-
assium channel. Ion channelopathies are well-recognized as causes of
episodic central nervous system disease, including seizures, ataxias
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Ex. 2: which gene expression profiles help determine severity of a tumor?

Ex. 3: which factors/variables help determine whether a loan will be repaid?

How can we select variables without too many false positives?
 do not run into problem of irreproducibility



Some data-driven scientific problems

One response Y : phenotype; e.g. Crohn’s disease status, cholesterol level

Hundreds of thousands of variables X: genotype information

Ex. 1: which genetic variations affect traits, e.g. the risk of a disease?
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ase (ubiquinone) 1, alpha/beta subcomplex, 1), which encodes a
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we have used includes individuals that have suffered one or more
episodes of pathologically elevated mood (see Methods), a criterion
that captures the clinical spectrum of bipolar mood variation that
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16p12 (genotypic test P 5 6.3 3 1028; Table 3) and the best-fitting
genetic model was recessive (Supplementary Table 8). Although
recognizing that this signal was not additionally supported by the
expanded reference group analysis (see below and Supplementary
Table 9) and that independent replication is essential, we note that
several genes at this locus could have pathological relevance to BD,
(Fig. 5). These include PALB2 (partner and localizer of BRCA2),
which is involved in stability of key nuclear structures including
chromatin and the nuclear matrix; NDUFAB1 (NADH dehydrogen-
ase (ubiquinone) 1, alpha/beta subcomplex, 1), which encodes a
subunit of complex I of the mitochondrial respiratory chain; and
DCTN5 (dynactin 5), which encodes a protein involved in intracel-
lular transport that is known to interact with the gene ‘disrupted in
schizophrenia 1’ (DISC1)32, the latter having been implicated in sus-
ceptibility to bipolar disorder as well as schizophrenia33.

Of the four regions showing association at P , 5 3 1027 in the
expanded reference group analysis (Supplementary Table 9), it is of
interest that the closest gene to the signal at rs1526805 (P 5 2.2 3
1027) is KCNC2 which encodes the Shaw-related voltage-gated pot-
assium channel. Ion channelopathies are well-recognized as causes of
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Ex. 2: which gene expression profiles help determine severity of a tumor?

Ex. 3: which factors/variables help determine whether a loan will be repaid?

How can we select variables without too many false positives?
 do not run into problem of irreproducibility



Formalizing the selection problem

Each with their X and Y

variables response

Thousands/millions of variables X

Which ones are important?

Distribution of Y |X depends on X
through which variables?

Variable is a discovery if

p(response | variable, others)

6= p(response | others)

(Formally) j null iff Y ⊥⊥ Xj |X−j
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Selection in the computer age

Many sophisticated tools to measure strength of dependence

Black-box algorithm



‘Black box’ produces measures of strength of dependence
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‘Black box’ produces measures of strength of dependence
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How do we make reliable decisions in the face of unknown statistical variability?



Only one dataset: what should we report?
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True positives?

Modern science faces the problem of selection of promising findings from
the noisy estimates of many.

Y. Benjamini and Y. Hechtlinger



Knockoffs (Barber and Candès, 2015)

For each variable (e.g. SNP) Xj , make a knockoff version (e.g. fake SNP) X̃j

Run scoring procedure on features and knockoffs ‘serving as controls’

Original Features
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Original features
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e

Knockoff features

True positives?

Black box selects 49 original features & 24 knockoff features
=⇒ probably ≈ 24 false positives among 49 original features



How? By permutation?

Y X ~X

Can I use someone else’s genetic info as control?



Permuted dummies do not work!
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Knockoff dummies work!
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Permuted dummies: other feature importance Zj
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Knockoff dummies: other feature importance Zj
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What’s wrong?

𝑌

𝑋#

𝑋$

𝑋%

𝑌

𝑋#$

𝑋%$

𝑋&$

Original features Permuted features



Model-X knockoffs
C., Fan, Janson and Lv (’16)

i.i.d. samples from PXY

• PX known

• PY |X completely unknown

• Originals X = (X1, . . . , Xp) • Knockoffs X̃ = (X̃1, . . . , X̃p)

(1) Pairwise exchangeability: for any null j

X̃j , Xj , X−j , X̃−j
d
= Xj , X̃j , X−j , X̃−j

(2) Ignore Y when constructing knockoffs: X̃ ⊥⊥ Y |X
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Knockoffs as negative controls

All null scores
are exchangeable

(Zj , Z̃j)
d
=(Z̃j , Zj)



Knockoffs with binary response

Feature importance Zj and Z̃j from random forests
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Knockoffs with binary response

Feature importance Zj and Z̃j from random forests
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Knockoffs with binary response

Feature importance Zj and Z̃j from random forests
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Knockoffs-adjusted scores

Adjusted scores Wj with flip-sign property

Combine Zj and Z̃j into single (knockoff) score Wj

Wj = wj(Zj , Z̃j) wj(Z̃j , Zj) = −wj(Zj , Z̃j)

e.g. Wj = Zj − Z̃j

Conditional on |W |, signs of null Wj ’s are i.i.d. coin flips
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Knockoff estimate of FDR

++____ +++__++__0

t |W|

Interested in selecting {j :Wj ≥ t}

FDP(t) =
#{j null :Wj ≥ t}
#{j :Wj ≥ t} ∨ 1

≈ #{j null :Wj ≤ −t}
#{j :Wj ≥ t} ∨ 1

≤ #{j :Wj ≤ −t}
#{j :Wj ≥ t} ∨ 1

:= F̂DP(t)
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Selection (via sequential testing)

++____ +++__++

0 |W|

+++++...

Step-up rule: stop last time ratio between ’-’ and ’+’ below target FDR level
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Selection (via sequential testing)

Our selection

++____ +++__++

0 |W|

+++++...

Select ’+’s

Step-up rule: stop last time ratio between ’-’ and ’+’ below target FDR level



FDR control

Ŝ = {Wj ≥ τ}

τ = min
{
t : F̂DP(t) ≤ q

}
t

Theorem (Barber and C, ’15)

For knockoff+

FDR = E
[

# false positives

# selections

]
≤ q

Robust extension (Barber, C. and Samworth, ’18):
PX not known exactly and knockoffs are exchangeable only w.r.t. QX ≈ PX
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Knockoffs framework

Always FDR control

X Under finite sample

X Any dimension
(including p > n)

X Any model for Y | X
X Any black-box

The cost?

How to construct knockoffs?

Need access to PX (not PY |X)



Let’s Make Knockoffs! (Only a Taste)

PX known: with M. Sesia and C. Sabatti
with S. Bates, L. Janson and W. Wang

PX unknown: with Y. Romano and M. Sesia
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How to make knockoffs?

Exchangeability

!" !# !$ %!" %!# %!$%!& !&

Input
Features !
Dist. '(

Output
Knockoffs %!
Dist. ')(|(+



Challenges
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Challenges

!

How to make "#$|$?

"$ =
1
( )

*∑,,. /,.$,$.



The knockoff factory

• Gaussian variables
C., Fan, Janson & Lv ’16

• Hidden Markov models
C., Sabatti & Sesia ’17

• Some Bayesian networks
Gimenez, Ghorbani & Zou ’18

• Pretty much anything
(e.g. any graphical model)
Bates, C., Janson & Wang ’19



Sequential conditional exchangeable pairs (SCEP)

Bates, C., Janson & Wang, ’19

Leverages ideas from:

• MCMC: Metropolis-Hastings correction

• Importance sampling

• Graphical modeling

𝑋" 𝑋# 𝑋$
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Sequential conditional exchangeable pairs (SCEP)

Bates, C., Janson & Wang, ’19

Leverages ideas from:

• MCMC: Metropolis-Hastings correction
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• Graphical modeling
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Example: hidden Markovs models (HMM)

Z1 Z2 Z3

X1 X2 X3

Z̃1 Z̃2 Z̃3

X̃1 X̃2 X̃3

observed variables

imputed latent variables knockoff latent variables

knockoff variables

• Sample Z ∼ p(Z | X) (variation on Viterbi’s algorithm)

• Sample Z̃j ∼ p(Zj | Z−j , Z̃1:(j−1)) for j = 1, . . . , p

• Sample X̃ ∼ p(X | Z = z̃) from emission probs.
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Application to genetic data

C., Sabatti and Sesia (’17)

Haplotypes and genotypes well modeled by HMMs
Scheet (’06), Marchini (’07, ’11), Li (’10), Browning (’10)

Wellcome Trust Case Control Consortium

≈ 5, 000 subjects and 400,000 SNPs

Response: Crohn’s disease (CD)

Northern Finland 1966 Birth Cohort

≈ 4, 700 subjects and 330,000 SNPs

Response: lipid levels

Dataset
Number of discoveries

Original study Knockoffs (average)
CD 9 22.8

HDL 5 8
LDL 6 9.8

Nominal FDR level at 10%
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Selection
frequency

SNP
(cluster size) Chr.

Position range
(Mb)

Franke et
al. ’10

WTCCC
’07

100% rs11209026 (2) 1 67.31–67.42 yes yes

99% rs6431654 (20) 2 233.94–234.11 yes yes

98% rs6688532 (33) 1 169.4–169.65 yes

97% rs17234657 (1) 5 40.44–40.44 yes yes

95% rs11805303 (16) 1 67.31–67.46 yes yes

91% rs7095491 (18) 10 101.26–101.32 yes yes

91% rs3135503 (16) 16 49.28–49.36 yes yes

81% rs7768538 (1145) 6 25.19–32.91 yes yes

80% rs6601764 (1) 10 3.85–3.85 yes

75% rs7655059 (5) 4 89.5–89.53

73% rs6500315 (4) 16 49.03–49.07 yes yes

72% rs2738758 (5) 20 61.71–61.82 yes

70% rs7726744 (46) 5 40.35–40.71 yes yes

68% rs11627513 (7) 14 96.61–96.63

66% rs4246045 (46) 5 150.07–150.41 yes yes

62% rs9783122 (234) 10 106.43–107.61

61% rs6825958 (3) 4 55.73–55.77

Table: SNP clusters found to be important for CD over 100 repetitions of knockoffs.



Selection
frequency

SNP
(cluster size) Chr.

Position range
(Mb)

Confirmed
in Willer
et al. ’13

Found in
Sabatti

et al. ’09

100% rs1532085 (4) 15 58.68–58.7 yes yes

100% rs7499892 (1) 16 57.01–57.01 yes yes

100% rs1800961 (1) 20 43.04–43.04 yes

99% rs1532624 (2) 16 56.99–57.01 yes yes

95% rs255049 (142) 16 66.41–69.41 yes yes

Table: SNP clusters found to be important for HDL over 100 repetitions of knockoffs.

Selection
frequency

SNP
(cluster size) Chr.

Position range
(Mb)

Confirmed
in Willer
et al. ’13

Found in
Sabatti

et al. ’09

99% rs4844614 (34) 1 207.3–207.88 yes

97% rs646776 (5) 1 109.8–109.82 yes yes

97% rs2228671 (2) 19 11.2–11.21 yes yes

94% rs157580 (4) 19 45.4–45.41 yes yes

92% rs557435 (21) 1 55.52–55.72 yes

80% rs10198175 (1) 2 21.13–21.13 yes yes

76% rs10953541 (58) 7 106.48–107.3

62% rs6575501 (1) 14 95.64–95.64

Table: SNP clusters found to be important for LDL over 100 repetitions of knockoffs.



Deep knockoffs

Romano, Sesia & C. ’18

𝑋" 𝑋# 𝑋$ 𝑋%" 𝑋%# 𝑋%$

𝑋~	? 𝑋%~	?

PX unknown? Repurpose deep generative models

• KnockoffsGAN
Jordon, Yoon & van der Schaar ’19

• Knockoffs via VAE
Liu & Zheng ’18



Deep knockoffs: overall view

Deep neural net !"

Draw knockoff #$%
for &th example

', )' = ', )' +,-.(0) ?
2

3" ', )'

SGD
4 ← 4 − 78"3" ', )'

#$% = !" $%, 9 9~; 0, =
Measures distance
to exchangeability

3" ', )' =>
0?@

A
B ', )' , ', )' +,-.(0) + D>

0?@

A
'0E)'0

F



• Classic two-sample problem: given ! and ", test whether #$ = #&
• Discrepancy measure (ℋ is RKHS)

• E.g. (, * ∈ ℝ

• How to compare higher-order moments?

- ( = ( Distance between means

- ( = (,(. Error in first two moments

/0 = 1$ - ( − 1& - * ℋ
.

Maximum Mean Discrepancy (MMD) [Gretton et al. (‘12)] 



Expand quadratic and replace inner products with kernel operations

MMD #$, #& = ($$) * +, +′ − 2($& * +, / + (&&) * /, /′

Characteristic kernel, e.g. Gaussian, implies MMD = 0 iff   #$ = #&

MMD & the ‘kernel-trick’ [Gretton et al. (‘12)] 

23 = ($ 4 + − (& 4 / ℋ
6



Expand quadratic and replace inner products with kernel operations

MMD #$, #& = ($$) * +, +′ − 2($& * +, / + (&&) * /, /′

Characteristic kernel, e.g. Gaussian, implies MMD = 0 iff   #$ = #&

2MMD 3,4 = 1
6 6 − 1 7

89:

;
7
<=8

* +8, +< − 2
6>789:

;
7
<9:

;
* +8, /< + 1

6 6 − 1 7
89:

;
7
<=8

* /8, /<

Unbiased estimate

MMD & the ‘kernel-trick’ [Gretton et al. (‘12)] 

?@ = ($ A + − (& A / ℋ
>



Generate knockoffs

Evaluate loss

Update parameters

!"#$ ← !" − '()*+)* ,", .,"

+)* ,", .," = 0
12$

3
4MMD ,, 7, , ,, 7, 89:;(1) + ?0

12$

3
,1@ 7,1

A

Evaluate 7BC = D)* BC, EC for each example. The network D)* is fixed 

• Mini-batch SGD
• Random swaps
• Evaluate MMD on disjoint subsets of samples

Optimization: stochastic gradient descent



Software tools





HIV Drug Resistance

• Detect mutations in HIV associated with drug resistance
(to protease inhibitors)

• Y : log-fold-increase of lab-tested drug resistance

• Xj : presence or absence of mutation #j

• n = 1431, p = 150



Real X with simulated Y : FDR and Power

X fixed
Resample Y
Resample X̃



Real data example

Method selects variables that mostly correspond to real (replicable) effects



Summary and challenges

’Wrapper’ around
black-box algorithm
rigorously addresses
reproducibility issue

Other important things
to think about

Reducing our
irreproducibility

Establishing 
causality

 Guaranteeing fairness 
 and robustness of AI 
  systems
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This is not just about not being wrong (irreproducibility)

Robustness?

Would want predictions to be valid in
different samples collected in different
circumstances

“Constant conjunction” is a property of causal effects (Hume)



Fairness: can computer programs be racist and sexist?

Guido Rosa/Getty Images/Ikon Images

Blind application of machine learning
runs risk of amplifying
biases and prejudices

Identifying variables  chance to scrutinize model built from one sample:

Do we believe these variables are “structurally” important, or are they just
reflecting a spurious association in this sample?

Are we learning something about the world or reifying our prejudices?


