Al: The LinkedIn Way

Deepak Agarwal

VP of LinkedIn AI

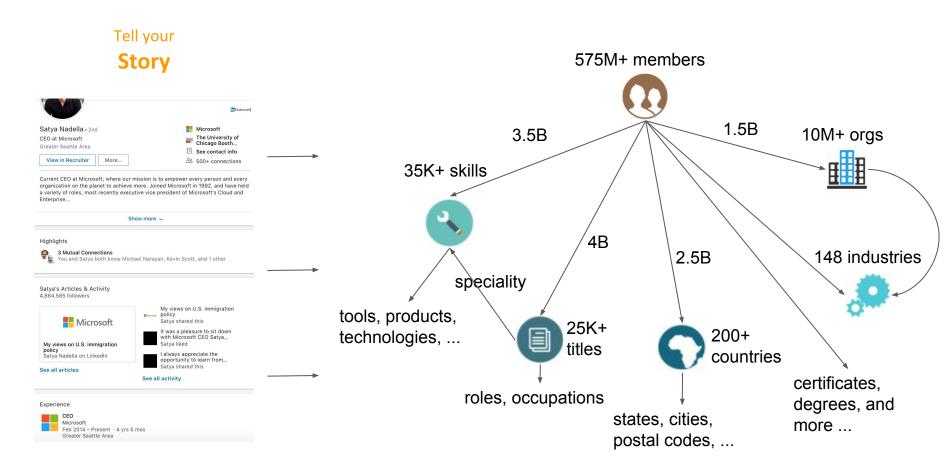
September 19, 2018

Let people know you're open

We are all seeking new professional opportunities

To Advance our Careers

LinkedIn operates the largest professional network on the Internet



Artificial Intelligence at LinkedIn

Every professional interaction with LinkedIn is personal, relevant and helps in providing opportunity

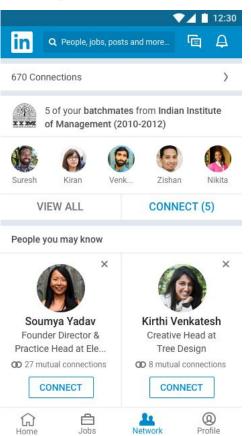
Automatically and optimally deliver the right information to the right user at the right time through the right channel

Accelerator of LinkedIn value propositions: engagement on the platform, customer ROI

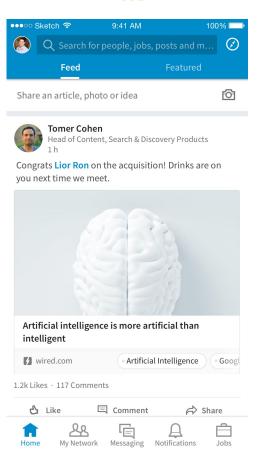
People

- Computer Scientists (optimization, NLP, computer vision)
- Infrastructure and System Engineers
- Statisticians

People You May Know



Feed



Jobs Learning

Principal Data Scientist

Microsoft · Bangalore, IN Posted 3 days ago · 1,142 views

Save

Apply

- 147 applicants
- · Full-time

Company

- 10001 employees
- · Computer Software

in 100 company alumni

€ ...

32 connections can refer you

Get referred to increase your chances of landing an interview.

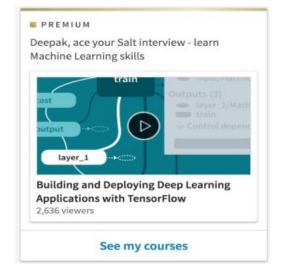
Ask for a referral

Job description

We are currently building the next generation of cloud services for partner monetization, user acquisition, engagement & membership platform. These services have a huge global footprint of over 240 markets and process millions of transactions daily, with loads growing linearly as Microsoft moves to a "cloud first", "mobile first" strategy. The platform powers all of Microsoft's key services - Windows App Store, Windows Phone, XBOX, Bing Ads, Office 365, Microsoft Azure to name just a few. This endeavor offers big opportunities for data science and machine learning.

Seniority Level Not Applicable

Industry Computer Hardware, Computer Software, Information Technology and Services



Courses related to Deepak's skills

Data Science Foundations: Python Scientific Stack

Viewers: 6,033

Pandas for Data Science

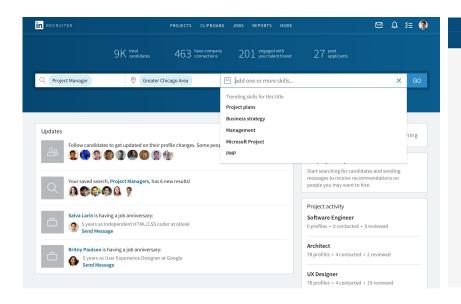
Viewers: 10,197

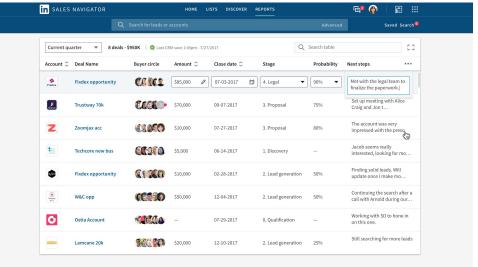
Building and Deploying Deep Learning Applications with TensorFlow

Viewers: 2,636

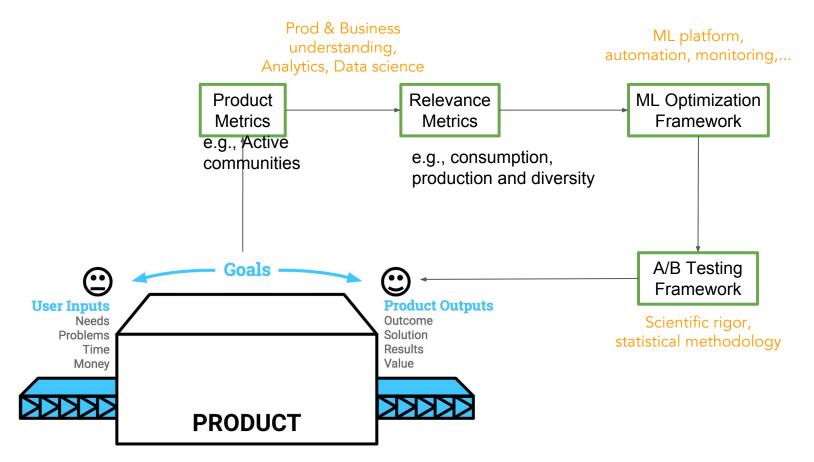
See more courses

Recruiter Search Sales





AI/ML process



App 1: Member engagement

Al Platform

Contributors on LinkedIn

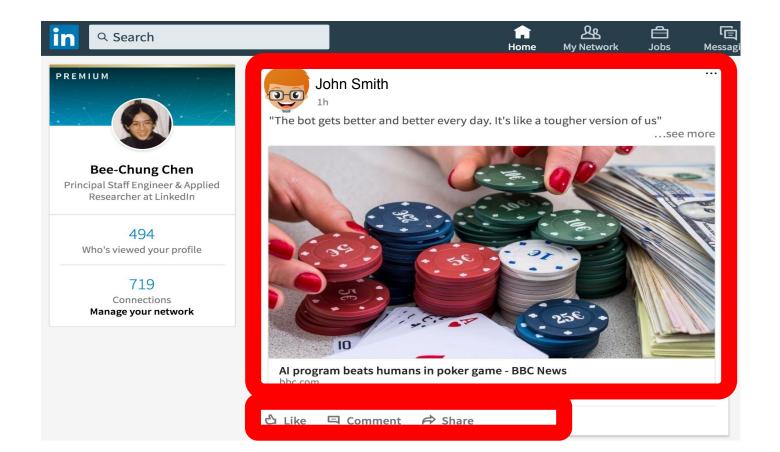
John contributes by sharing

umans in poker game

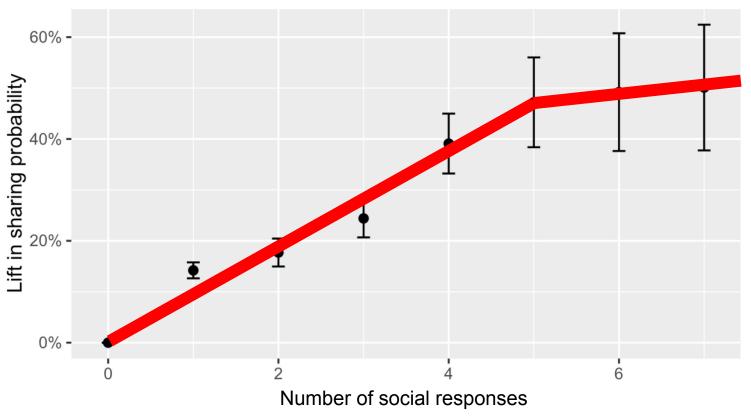
beaten four human players in a
) days. Libratus, an artificial
loped at Carnegie Mellon University,
ant of the game known as no-limit

Messaging, commenting, publishing are other ways to contribute on LinkedIn

Receiving Response to Contributions



Response to contributions leads to repeat contributions



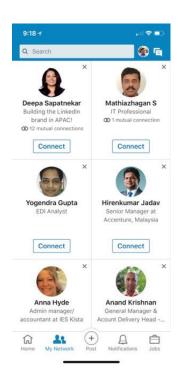
Contributions and Daily Active Uniques

 1 unit increase in contributors leads to 0.4-0.7 increase in Daily Active Users- Network A/B testing (Eckles et al, Journal of Causal Inference, 2016)

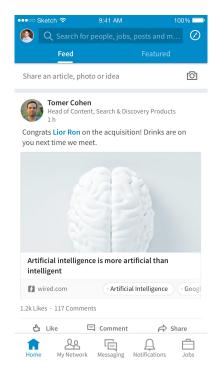
 Summary: Increase in frequent contributors improves daily active uniques and engagement

Standard approach: Local optimization

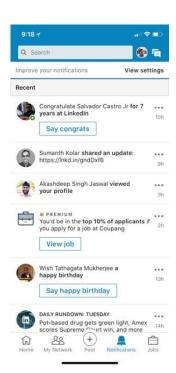
PYMK



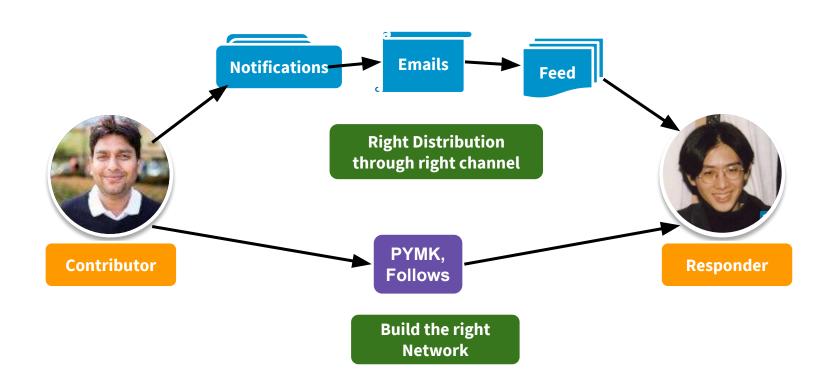
Feed



Notifications



Optimize Eco-system



Problem Formulation

- Create the right network that is value based, not volume based
 - Incorporate future downstream value in recommending new edges

 Optimize distribution of contributions to network across channels to encourage repeat contributions

- Guard against "high concentration" when distributing contributions
 - Better to have more contributors receiving some feedback instead of a few receiving a lot

Optimizing right network (PYMK)

Build connections that are likely to drive conversations:

$$score = P(connection) + \alpha P(conversation)$$

connection: same school? same company? ...

conversation: messaging(private) or comment/like/share (public)

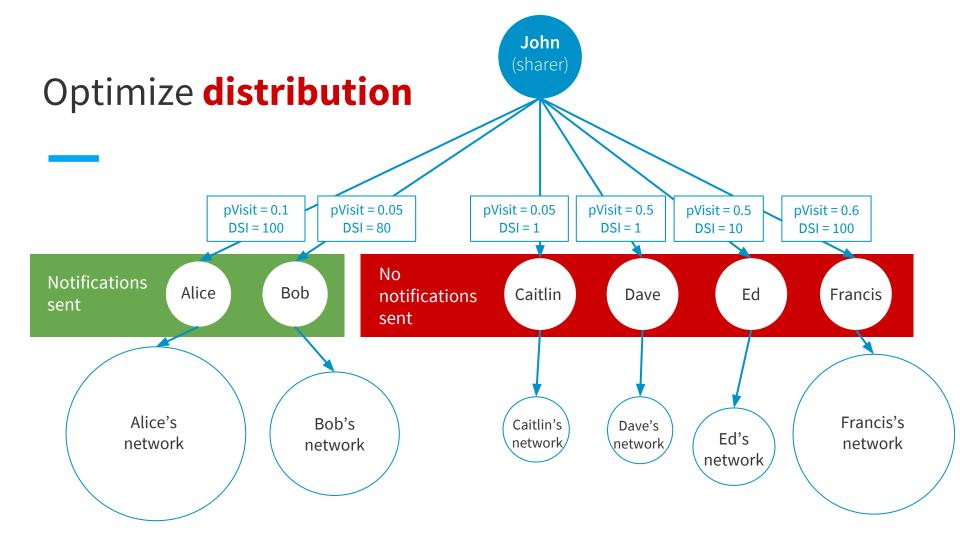
Content Distribution

$$P(click) + \alpha P(viral)E(\#DSI) + \beta P(resp)exp(-\gamma E(\#creator\ response))$$

DSI = downstream impactviral = share, like, comment resp = response to the creator via comment, like, re-share, messaging $\gamma = \text{temperature}$ α, β are weights

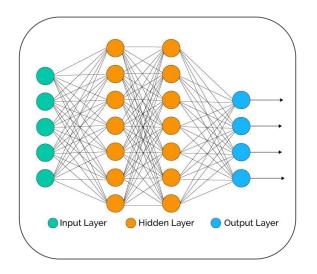
Get Notified

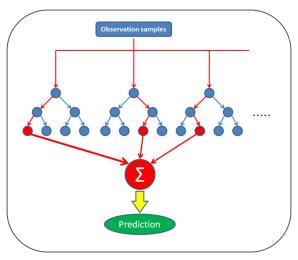
$$pVisit = \begin{cases} small & : ext{notify viewer} \\ big & : ext{wait to show on feed} \end{cases}$$

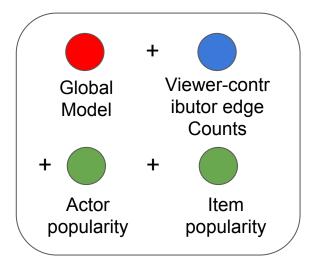


What Kind of Model?

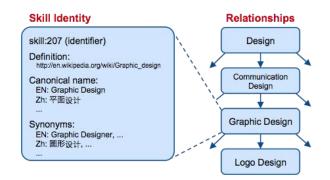
A combination of deep learning and trees models and real time "corrections" at fine granularities

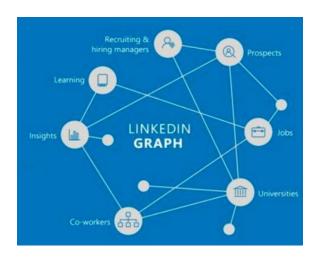






Features in ML model: Knowledge Graph, Learned Representation

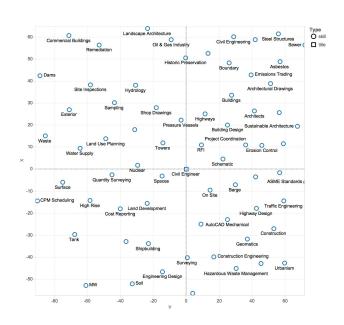




Information extraction

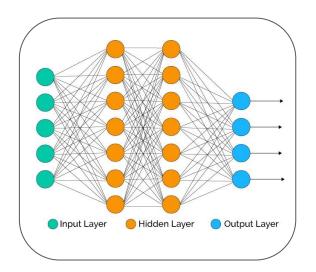
Human curation

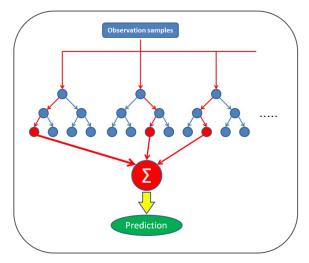
Deep Learning

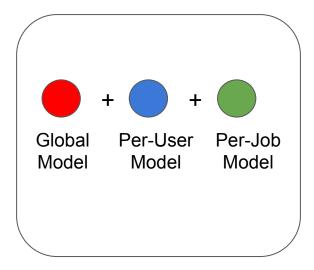


Challenges

- Jointly train a combination of different classes of models
- Automatically determine features, model structure & hyperparameters

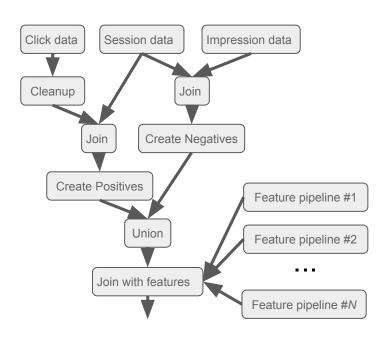




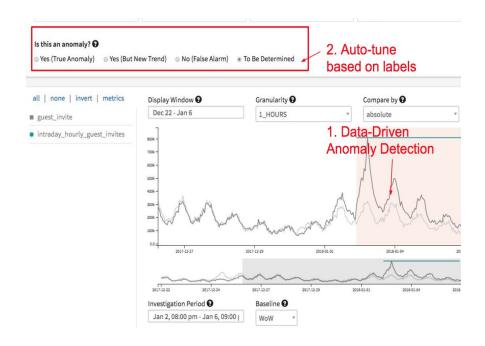


Challenges

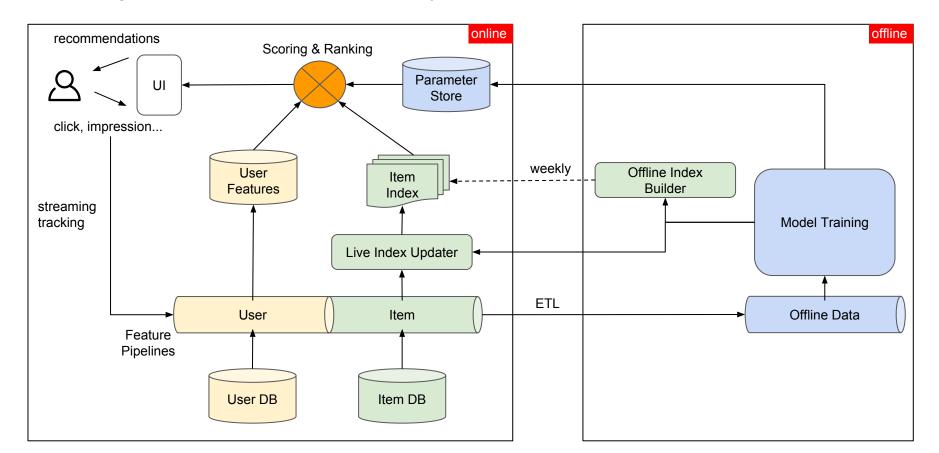
Manage data/modeling pipelines with complex dependencies



Automatically detect issues and gracefully degrade model performance



Challenges: 1) deploy large models to different places in production 2) manage complex model/data deployment processes

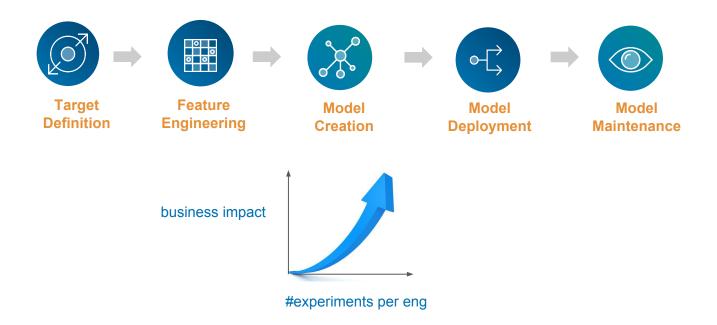


App 1: Member engagement

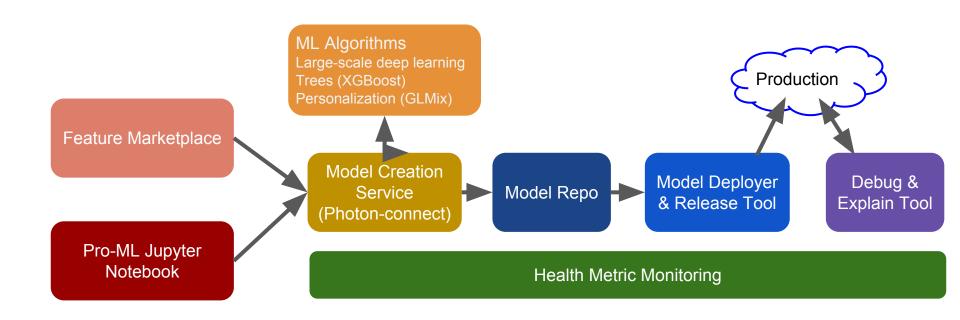
Al Platform

Pro-ML: Productive Machine Learning

We make the end-to-end process of running and iterating on large ML workflows easy, robust and almost automated



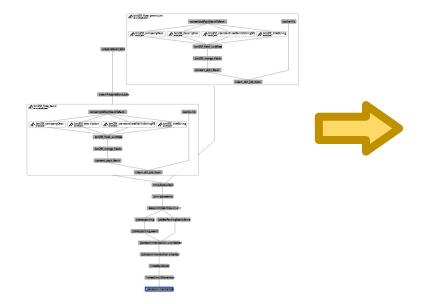
Pro-ML Key Components



Frame: Feature Access Abstraction Layer

Replaces complex feature preparation workflows with a simple, config-driven feature specification that makes features available for training and scoring in offline and online environments with automated consistency monitoring

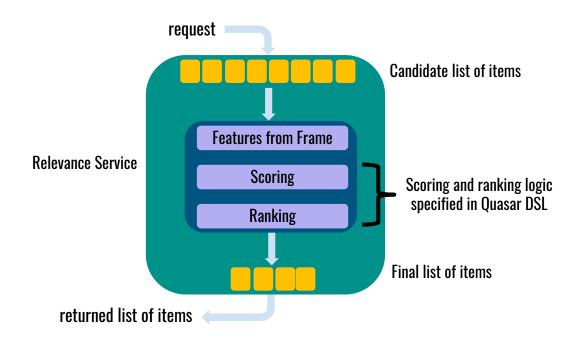
Before Frame: Complex Workflow



After Frame: Simple Config

Quasar: Unified Inference Engine @ LinkedIn

Provides a DSL to define the scoring and ranking computation logic of a model, and a high-performance execution engine to run the model



Democratize ML at LinkedIn

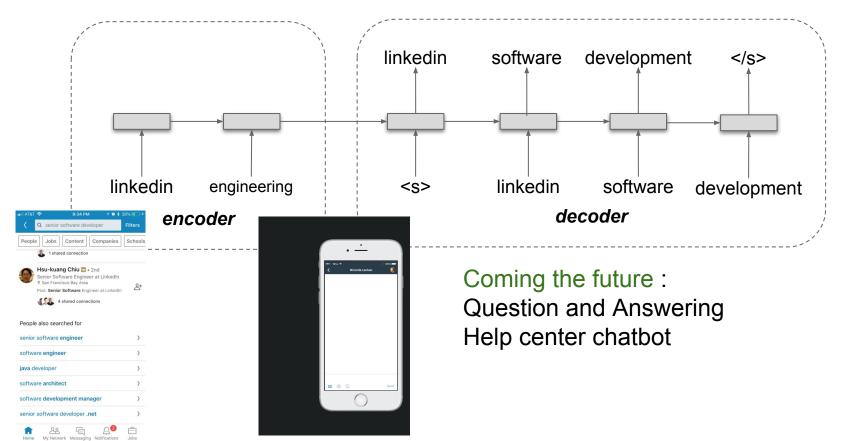
Focus: Using LinkedIn tools and infra, train all engineers to use basic supervised ML in their day-to-day job

Curriculum:

- Al Boot Camp: 5 full days (aimed at ICs)
- One-day course: Aimed at managers

Continuing education via LinkedIn Learning

Conversational AI: seq2seq model



More Methodological Research

Richer class of non-parametric models for personalization

Transfer learning

Active learning to collect human labels more effectively

Large scale & real-time Graph computations

Fairness, Transparency and Privacy

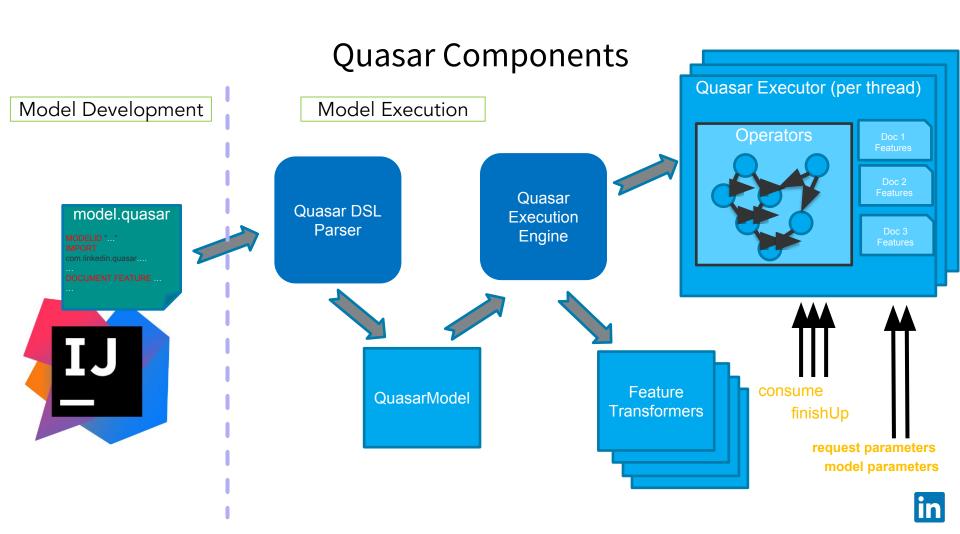
Efficient network A/B testing

.

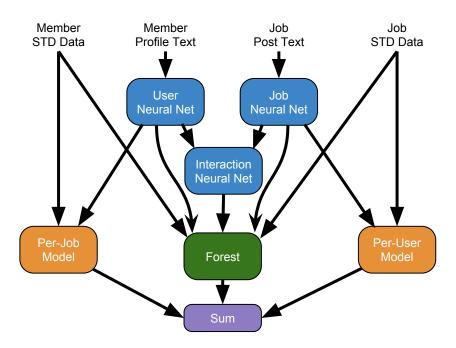
Summary

- ML/Al is "oxygen" of LinkedIn product
- Converting ill-posed business/product problem to well posed ML problem requires effort, rigor and collaboration
- Scaling ML process for large workflows challenging both from infra and organizational perspective

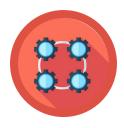
Appendix



Trains a DAG of different classes of ML models specified using Quasar DSL with features specified using Frame config



Applied Research



Focused on LinkedIn Ecosystem - create member delight Accelerator of Member Value

Centrally Managed but Deeply Aligned within Product Development

Knowledge Marketplace

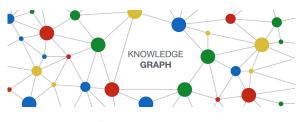
Mission

Create a knowledge marketplace where any member and enterprise customer can ask a question in natural language and we provide an answer almost instantaneously, eliciting more information if necessary.

Hey, we found you're skilled in {#skills}id, {/skills} technologies and hence you seem to be a good match for a role at {company}

Enrich conversations

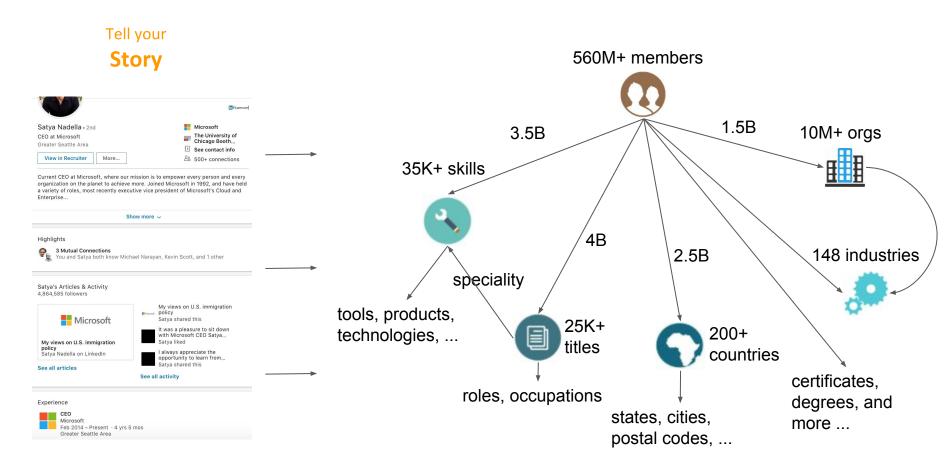
Surface premium value



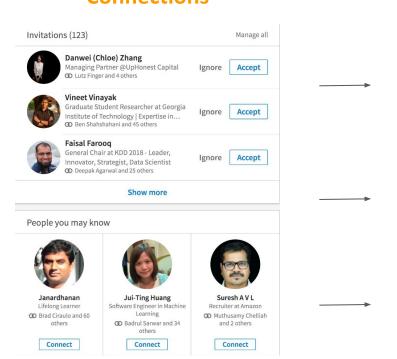
Data access

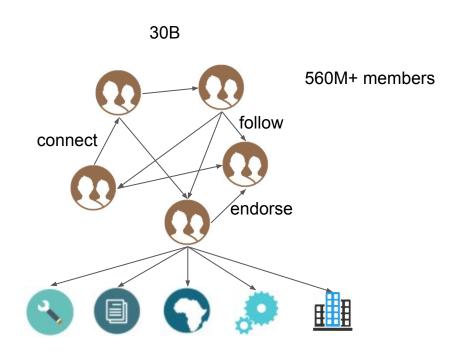
ML Infrastructure Ecosystem

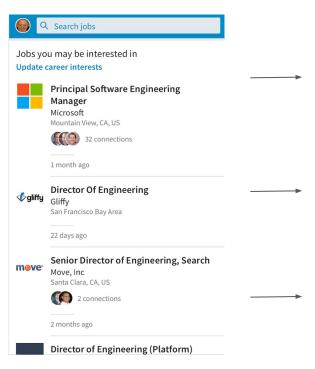
Exploration	Data Prep + Tracking	Creation	Delivery	Inference	Experimentation	Maintenance
Jupyter Notebooks	Tracking Data Collection (Kafka)	Feature Data Joins (Frame)	Nearline Feature Processing	Entity Feature Store	A/B Experimentation (TREX)	Monitoring
Spark	Label Collection	Training (Photon ML on Spark)	Feature Sharing (Frame)	Dynamic Feature Store (Pinot)	Analytics (Raptor)	Anomaly Detection (ThirdEye)
Query Explain / Debug (SLoQ)		Xgboost	Grid to Prod K/V push (Venice)	Inference Engine (Quasar)		Root Cause Analysis
Feed-admin tool (Debug)		Tensorflow	Grid to Prod Index push	L3 Blending Layer (ReMix)		Process Automation
				L1/L2 Indices: Graph, Search, Feed		

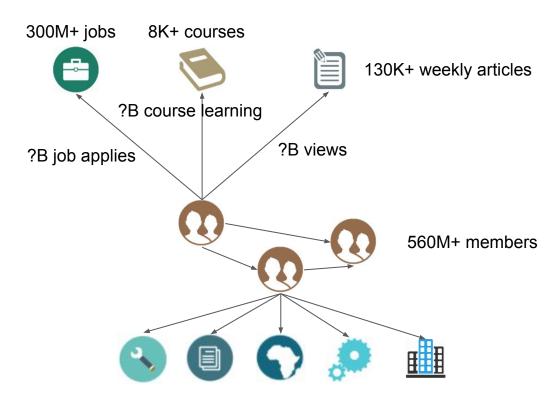


Make your **Connections**

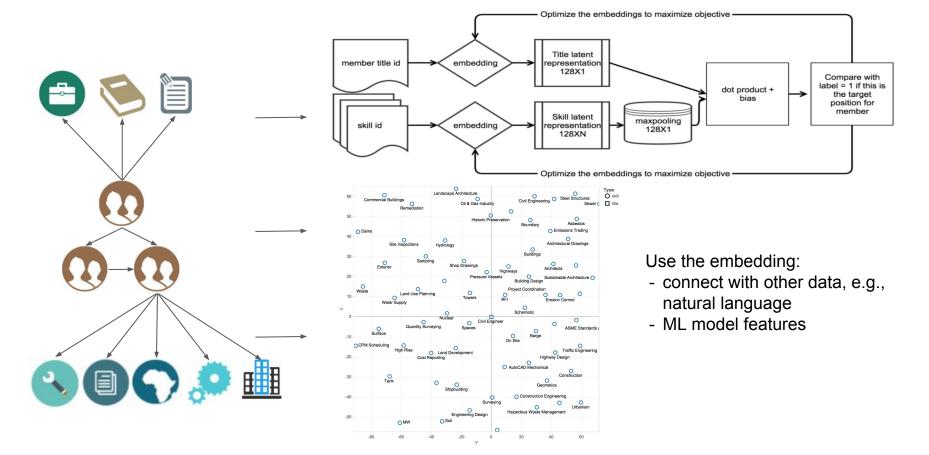




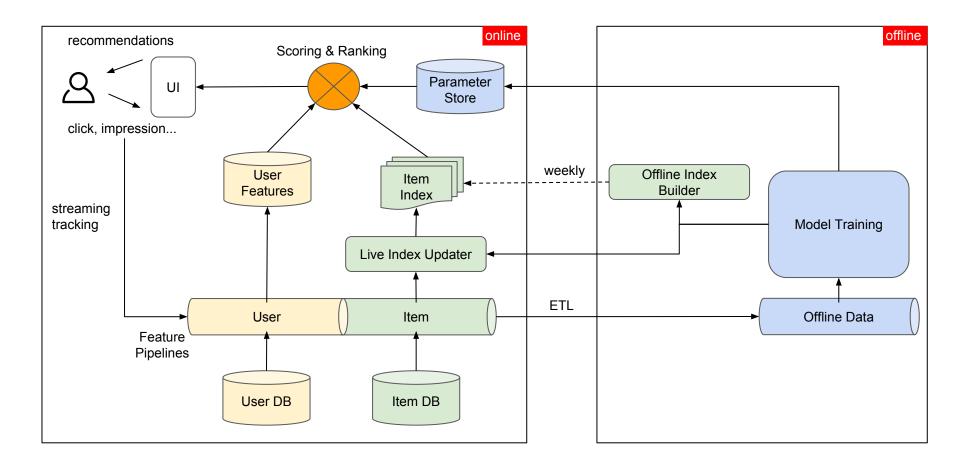




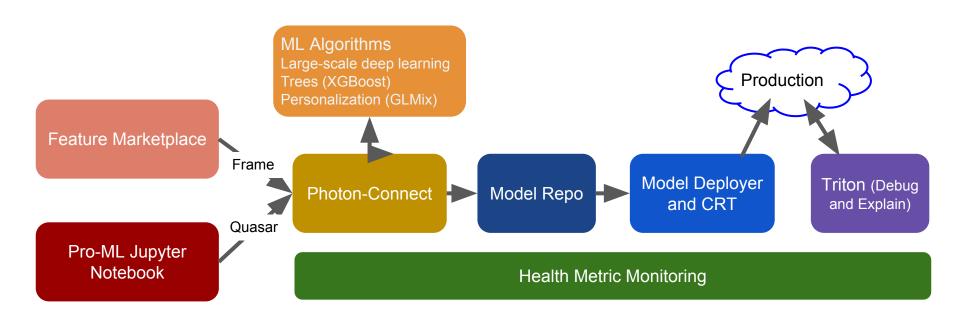
Network embedding



Challenge: Complex Model Deployment Process



Pro-ML Key Components



Provide

- A variety of common-used features
- A mechanism to share features across applications
- A feature data access abstraction layer

Enable leverage of features and simplified configuration of complex feature access patterns

Provide

- A model repo to record all ML models
- A deployer to deploy ML models and the associated data to different destinations in the production environment
- A central release tool to manage the deployment process

Enable ML models and the associated data to be first-class citizens in LinkedIn deployment tooling

Provide

- Monitoring of health metrics of ML models, feature data and workflows
- Mechanisms for issue detection and model graceful degradation
- Tools to debug and explain ML models

Enable automatic detection of issues and reduce developers' time on issue investigation

