
Bloom Filters, Cuckoo Hashing,
Cuckoo Filters,

Adaptive Cuckoo Filters
and Learned Bloom Filters

Michael Mitzenmacher
With many various others

over the years

Bloom Filters
• Given a set S = {x1,x2,x3,…xn} on a universe U, want

to answer queries of the form:

• Bloom filter provides an answer in
– “Constant” time (time to hash).
– Small amount of space.
– But with some probability of being wrong.

Bloom Filters:
Approximate Membership Queries
• Given a set S = {x1,x2,x3,…xn} on a universe U, want to

answer membership queries of the form:

• Data structure should be:
– Fast (Faster than searching through S).
– Small (Smaller than explicit representation).

• To obtain speed and size improvements, allow some
probability of error.
– False positives: y Ï S but we report y Î S
– False negatives: y Î S but we report y Ï S

Bloom Filters
Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If Hi(xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

To check if y is in S, check B at Hi(y). All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B
Possible to have a false positive; all k values are 1, but y is not in S.

n items m = cn bits k hash functions

False Positive Probability
• Pr(specific bit of filter is 0) is

• If r is fraction of 0 bits in the filter then false positive
probability is

• Approximations valid as r is concentrated around E[r].
– Martingale argument suffices.

• Find optimal at k = (ln 2)m/n by calculus.
– So optimal fpp is about (0.6185)m/n

kckkkk pp)e1()1()'1()1(/--=-»-»- r

pmp mknkn º»-º - /e)/11('

n items m = cn bits k hash functions

Example

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

Fa
ls

e
po

si
tiv

e
ra

te m/n = 8

Opt k = 8 ln 2 = 5.45...

n items m = cn bits k hash functions

Split Bloom Filters

Key hashed to k cells
m bits split into m/k
disjoint groups

one has per group

“same” performance,
easier to parallelize

Perfect Hashing Approach

Element 1 Element 2 Element 3 Element 4 Element 5

Fingerprint(4)Fingerprint(5)Fingerprint(2)Fingerprint(1)Fingerprint(3)

Alternative Construction
• Bloom filters are NOT optimal.

– In terms of space vs. error tradeoff.
• Given a set of n elements, compute a perfect hash function

mapping them to an array of n cells.
– Perfect hash function = 1 cell per element.

• Store a log 1/ε -bit fingerprint of the element at each cell.
(Determined by random hash function.)

• To test y for set membership, hash to find its cell, then hash
to check its fingerprint.
– False positive probability of (0.5)m/n= ε, if m = n log 1/ε bits used

• Constant factor less space (about 40% less).
• Less flexible solution: can’t add new elements.

So Why Use Bloom Filters?

• In the real world, there is a 4-dimensional
tradeoff space.

So Why Use Bloom Filters?

• In the real world, there is a 4-dimensional
tradeoff space.
– Time.
– Space.
– Correctness (error probability).

So Why Use Bloom Filters?

• In the real world, there is a 4-dimensional
tradeoff space.
– Time.
– Space.
– Correctness (error probability).
– Programmer Time.

Classic uses of BF: Spell-Checking

• Once upon a time, memory was scarce...
• /usr/dict/words -- about 210KB, 25K words
• Use 25 KB Bloom filter
– 8 bits per word.
– Optimal 5 hash functions.

• Probability of false positive about 2%
• False positive = accept a misspelled word
• BFs still used to deal with list of words
– Password security [Spafford 1992], [Manber & Wu, 94]
– Keyword driven ads in web search engines, etc.

Classic uses of BF: Data Bases

• Join: Combine two tables with a common domain
into a single table

• Semi-join: A join in distributed DBs in which only the
joining attribute from one site is transmitted to the
other site and used for selection. The selected
records are sent back.

• Bloom-join: A semi-join where we send only a BF of
the joining attribute.

Modern Use of BF:
Large-Scale Signature Detection

• Monitor all traffic going through a router, checking
for signatures of bad behavior.
– Strings associated with worms, viruses, etc.

• Must be fast – operate at line speed.
– Run easily on hardware.

• Solution : Separate signatures by length, build a
Bloom filter for each length, in parallel check all
strings of each length each time a new character
comes through.

• Signature found : send off to analyzer for action.
– False positive = extra work along the slow path.

• [Dharmapurikar, Krishnamurthy, Sproull,
Lockwood]

Modern Uses

• All over networking : see my surveys

– Broder/Mitzenmacher : Network Applications of

Bloom Filters

– Kirsch/Mitzenmacher/Varghese : Hash-Based

Techniques for High-Speed Packet Processing

• But more and more every day.

The main point

• Whenever you have a set or list, and
space is an issue, a Bloom filter may
be a useful alternative.

• Just be sure to consider the effects of
the false positives!

Handling Deletions

• Bloom filters can handle insertions, but not
deletions.

• If deleting xi means resetting 1s to 0s, then
deleting xi will “delete” xj.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

xi xj

Counting Bloom Filters
Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If Hi(xj) = a, add 1 to B[a].

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0B

To delete xj decrement the corresponding counters.

0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 0B
Can obtain a corresponding Bloom filter by reducing to 0/1.

n items m = cn bits k hash functions

Counting Bloom Filters: Overflow

• Must choose counters large enough to avoid
overflow.

• Poisson approximation suggests 4 bits/counter.
– Average load using k = (ln 2)m/n counters is ln 2.
– Probability a counter has load 16 (Poisson approx):

• Failsafes possible.
• Generally 4 bits/counter.
– Can do better with slower, multilevel scheme.

17E78.6!16/)2(ln 162ln -»» -e

Counting Bloom Filters In Practice

• If insertions/deletions are rare compared to
lookups
– Keep a CBF in “off-chip memory”
– Keep a BF in “on-chip memory”
– Update the BF when the CBF changes

• Keep space savings of a Bloom filter
• But can deal with deletions
• Popular design for network devices
– E.g. pattern matching application described.

Cuckoo Hashing

• Basic scheme: each element gets two possible
locations (uniformly at random).

• To insert x, check both locations for x. If one is
empty, insert.

• If both are full, x kicks out an old element y.
Then y moves to its other location.

• If that location is full, y kicks out z, and so on,
until an empty slot is found.

Cuckoo Hashing Examples

A B C

E D

Cuckoo Hashing Examples

A B C

E D

F

Cuckoo Hashing Examples

A B FC

E D

Cuckoo Hashing Examples

A B FC

E D

G

Cuckoo Hashing Examples

E G B FC

A D

Cuckoo Hashing Examples

A B C

E D F

G

Good Properties of Cuckoo Hashing
• Worst case constant lookup time.
• High memory utilizations possible.
• Simple to build, design.

Cuckoo Hashing Failures

• Bad case 1: inserted element runs into cycles.
• Bad case 2: inserted element has very long

path before insertion completes.
– Could be on a long cycle.

• Bad cases occur with very small probability
when load is sufficiently low.

• Theoretical solution: re-hash everything if a
failure occurs.

Basic Performance

• For 2 choices, load less than 50%, n elements
gives failure rate of Q(1/n); maximum insert
time O(log n).

• Related to random graph representation.
– Each element is an edge, buckets are vertices.
– Edge corresponds to two random choices of an

element.
– Small load implies small acyclic or unicyclic

components, of size at most O(log n).

Natural Extensions

• More than 2 choices per element.
– Very different : hypergraphs instead of graphs.
– D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis.
– Space efficient hash tables with worst case

constant access time.
• More than 1 element per bucket.
– M. Dietzfelbinger and C. Weidling.
– Balanced allocation and dictionaries with tightly

packed constant size bins.

Thresholds

Bucket
size

1 2 3 4 5 8 10

Load 0.5 0.897 0.959 0.980 0.989 0.997 0.999

2 Choices

Choices 2 3 4 5 6 7
Load 0.5 0.918 0.976 0.992 0.997 0.999

Bucket Size 1

Stashes

• A failure in cuckoo hashing occurs whenever
one element can’t be placed.

• Is that really necessary?
• What if we could keep one element unplaced?

Or eight? Or O(log n)? Or εn?
• Goal : Reduce the failure probability.

A Simple Experiment

• 10,000 elements, table of size 24,000, 2
choices per element, 107 trials.

Stash Size Needed Trials
0 9989861
1 10040
2 97
3 2
4 0

Bloom Filters via Hash Tables

• Recall one could obtain an optimal static
Bloom filter using perfect hashing

• Can we use multiple-choice hashing/cuckoo
hashing to get a “near-perfect” hash table for
a Bloom filter type object?

Perfect Hashing Approach

Element 1 Element 2 Element 3 Element 4 Element 5

Fingerprint(4)Fingerprint(5)Fingerprint(2)Fingerprint(1)Fingerprint(3)

Modern Update : Cuckoo Filters

• Use a cuckoo hash table to obtain a near-
perfect hash table

• Store a fingerprint in the hash table
• Can support insertion and deletion of keys
• Very space efficient
– From cuckoo hash table construction, with

buckets that hold multiple keys.

Cuckoo Filters : Issues

• Consider cuckoo hash table, 2 choice per key,
4 fingerprints of keys per bucket.

• Buckets fill, an item has to be moved.
• How do we know where to move it?
– We don’t have the key any more.
– Just the fingerprint.

Partial-key Cuckoo Hashing

• Can’t use the key when moving a key.
• So we have to use the fingerprint instead.

• Note fingerprint is the same in both locations.
• Can compute h1 from h2 and vice versa with

the stored fingerprint.

Partial-key Cuckoo Hashing
• Can’t use the key when moving a key.
• So we have to use the fingerprint instead.

• Note fingerprint is the same in both locations.
• Can compute h1 from h2 and vice versa with the

stored fingerprint.
• But now the two choices are limited, not

completely random. Will this still work?

Partial-key Cuckoo Hashing
• Does it work?
• In practice, yes.

– Essentially no discernible change in the threshold under
reasonable settings.

• In theory, no.
– You “need” logarithmic sized fingerprints…
– But with a small constant factor.
– So in practice it ends up OK.

• Provable bounds on performance of partial-key cuckoo
hashing.
– Eppstein has shown a simplification actually gets same

performance as cuckoo hashing. (Just xor with fingerprint gives
partitioned filter.)

Bit-Saving Tricks

• Every bit counts for space purposes.
• Bucket size of 4.
• Sort the fingerprints.
• Take the first 4 most significant bits.
• After sorting there are 3876 possible

outcomes.
– Less that 212.
– So use only 12 bits to represent these 16.
– Saves 1 bit per item.

Cuckoo Filter Performance

Motivation: Adaptivity
• “Bloom filter” data structures for membership

checks are often used in situations with repeated
queries
– Whitelists / blacklists
– Network security processing

• So “false positive probability” is not the right
measure.
– Rather, false positive rate over data stream.

• Goal: reduce/remove duplicated false positives
for repeated queries.

Adaptive Cuckoo Filters :
Key Differences

• Must keep a cuckoo hash table that mirrors
the cuckoo filter, with elements in
corresponding locations.
– To see when we have false positives, and respond.
– Can be kept in slower memory; only used to

check for false positive, or insertion/deletion.
• Allows fingerprints to change, using different

hash functions.

Adaptive : Buckets of Size 1
• Use 4 hash functions per element.
– Achieves high loads, 95+ percent.

• Use s extra bits per cell, to keep track of hash function
used for the current fingerprint.

• On lookup:
– Check element against fingerprints in each of 4 hash

buckets, using hash function from the s bits.
– In case of match, check cuckoo table to make sure it’s a

true positive.
– If false positive, increment the hash function counter and

change the fingerprint.
• Should remove the false positive.
• Might create new ones.

Theoretical Analysis

• Requires simplifying assumptions
– Assume requests for A non-set items are

independently and uniformly generated over an
interval.
• More skewed requests are better for us.

– Probability of a false positive on a bucket on a
request depends on number of elements that
hash to that bucket.
• Approximately Poisson number of elements.
• False positive with prob. = 2^{-#bits used in fingerprint}

Markov Chain Analysis

• Consider a single bucket.
• State is current hash function number.
• Will either
– reach a state with no more false positives
– cycle through all the fingerprints (at a slow rate)

• Can derive a corresponding (ugly, calculable)
expression for false positive rate.

Adaptive : Buckets of Size > 1

• Use 2 hash functions, 4 cells per bucket.
– Achieves high loads, 95+ percent.

• Use a different fingerprint for each cell location.
• On lookup:
– Check element against all fingerprints in both cells.
– In case of match, check cuckoo table to make sure it’s

a true positive.
– If false positive, swap the element to new cell within

the bucket.
• Should remove the false positive.
• Might create new ones.

Theoretical Analysis

• Requires simplifying assumptions
– Assume requests for A non-set items are

independently and uniformly generated over an
interval.
• More skewed requests are better for us.

– Probability of a false positive on a cell on a
request depends on number of elements that
hash to that cell.
• Approximately Poisson number of elements.
• False positive with prob. = 2^{-#bits used in fingerprint}

Markov Chain Analysis
• Consider a single bucket.
• State is configuration of (up to) 4 elements within the

bucket.
• Will either
– reach a state with no more false positives
– do random walk on set of 24 configurations

• Can derive a corresponding (ugly, calculable)
expression for false positive rate.
– But expression is too big to calculate efficiently; depends

on number of elements hashing to each cell.
– Use sampling to approximate expression for false positive

rate.

Simulation Setup
• Random experiments
– Vary bits/cell (includes bits for storing hash function if

needed): 8, 16
– Vary bits per hash function counter: 1, 2, 3
– Vary A/S ratio: [not-set-elements/set-elements] :

1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.
– Vary queries/element ratio: 10, 100, 1000

• CAIDA traces
– 3 traces, each about 1 minute
– Use flow 5-tuple as key
– Some flows placed into filter, rest not, based on varying
A/S ratio

– Hundreds of thousands of total flows
– Very skewed packets/flow distribution

Results for Random Tests
8 bits per cell

16 bits per cell

Results for CAIDA Tests
8 bits per cell

16 bits per cell

Experiment Summary
• ACFs perform better for lower A/S ratios, and for larger

number of queries/element.
– Small number of bits/cell, random queries only bad case

for ACFs.
• Markov chain estimates are pretty accurate.
• Even better performance on skewed distributions of

CAIDA traces.
– In particular, variance is much less, because false positives

are removed.
• 2 choices, 4 elements per cell often best or near-best

configuration.
• Can reduce false positives by an order of magnitude.

Learned Bloom Filters
• Google Brain suggests can do better than

standard Bloom filters
– In a data dependent way
– Assuming you can “learn” the set from the Bloom

filter
• Use machine learning to develop a small-size

oracle that provides probability an element is in a
set
– Oracle should (hopefully) give few false positives
– And you need a backup to catch any false negatives.

Learned Oracle

Backup Filter

Input

Positives

Negatives

PositivesNegatives

Items that the oracle says are very likely
positives are treated as positives. Might be
some false positives.

Items that are negatives might include
possible false negatives! So we have a
backup Bloom filter to catch oracle
negatives in the set.

This might create additional false positives.

New Stuff
• Checkmy blog/arxiv for
– Explanation of the different types of “guarantees” offered

by Bloom filters and learned Bloom filters
• Learned Bloom filters have “guarantees” only if test query data

looks like future query data
• Standard Bloom filter guarantees are stronger

– Understanding of size needed for learned Bloom filter.
• Equations to tell you how small/good the oracle needs to be.

– Optimization of learned Bloom filters by using
sandwiching.
• Better to put a Bloom filter before and after the oracle.
• Remove false positives at the source!

– Extended to learned Bloomier filter analysis.

Learned Oracle

Backup Filter

Input

Positives

Negatives

PositivesNegatives

Learned Oracle

Backup Filter

Positives

Positives

Negatives

PositivesNegatives

Initial Filter

Input

Negatives

Conclusions / Future Work
• Cuckoo filter improves on Bloom filter constructions.
• Adaptivity appears useful for set membership data

structures.
• Can maintain simplicity, high load while having

adaptivity.
– Downside: requires space to store all elements (in an

offline structure).
– Upside: large reduction in false positives.

• Analysis is difficult, and context dependent.
• Other structures/uses for adaptivity?
• Learned Bloom filters, and related data structures?

