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Knobby Adaline, 1959
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Prof. Widrow @ Berkeley

30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and
Backpropagation

Bemard Widrow Michuel A. Lehr
Stanford University Department of Electrical Engineering,
Stanford, CA 94305-4055

Abstract

Fundamental developments in feedforward artificial neural networks
from the past thirty years are reviewed. The central theme of this
paper is a description of the history, origination, operating character-
istics, and basic theory of several supervised noural network training
algorithms including the Perceptron rule, the LMS algorithm, three
Madaline rules, and the backpropagation techni These thod
were deveoloped independently, but with the perspoctive of history they
can all be related to each other. The concept which underlies these
algorithms s the “minimal disturbance principle,” which suggests that
during training it is advisable to inject new information into a network
in & manner which disturbs existing infi ion to the llest extont
possible.
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An adaptive Ilnear neuron(ADALINE)
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A Two-Input Adaline
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Separating line in pattern space
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Adaline Capacity
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Adaline with polynomial preprocessor
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An elliptical separating boundary for the Exclusive
NOR Function

Separating
Boundary

(+L+1)®

Adaline

® Output = +1
Adaline (+1,-1)
Output = -1

Prof. Widrow @ Berkeley A Brief History of Neural Networks 10 / 54




A two-Adaline form of Madaline |
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Separating lines for the two-element Madaline
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A neuronal implementation of AND, OR, and MAJ
logic function
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A three-layer adaptive neural network
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Principal of Minimal Disturbance

Adapt to reduce the output error for the current train-
ing pattern with minimal disturbance to the responses

already learned.
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Error-Correction Algorithms for the Single Element

1. Linear:

o-LMS
2. Nonlinear:

¢ Perceptron Rule

e Mays's Rules
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a-LMS Algorithm
€k A dp — w'{xk. (1)

Changing the weights yields a corresponding change in

the error:

Aep = A(dy — wixi) = =x} Awg. (2)
In accordance with the a-LMS rule, the weight change
is as follows:
€EXk

Awp = — Wi = a0, 3
Wi Whs1 Wi alka ( )

Combining Eqgs. (2) and (3), we obtain

Aep = —

= —a€;. (4)
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Weight correction by the LMS rule

Xk = input pattern vector

VVk | = hext weight vector
+

-—AW = weight vector
k change

T wk = present weight vector

>y

Prof. Widrow @ Berkeley A Brief History of Neural Networks 18 / 54



Rosenblatt’s Perceptron
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Adaptive Threshold Element in the Perceptron
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Perceptron Rule
o If response is OK, do not adapt weights.

e Otherwise adapt weights by a fixed distance along the

X-Vector to reduce error

Good Features

e Guaranteed to converge to solution if problem is lin-

early separable

Bad Features

e Performs poorly if training set is not linearly separa-
ble.
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May’s Rule

Mays’s Increment Adaptation Rule

e
S Wi+ a & zxbs if skl 2 v
k41 x & 1 (l)
Wi + adklx-:[; if |sg| <
Mays’s Modified Relaxation Rule
W, if €= 0 and |sk| =+
WL—+1 = X z ' (2)
W, + ac;,.l—x:ﬁ otherwise

C. H. Mays Stanford Univ. Ph.D. Dissertation:

Adnwdivin MThanahald T ania 1009
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May’s Increment Adaptation Rule

o If linear output of Adaline falls outside dead zone,
adapt weights by Perceptron Rule,

o If linear output of Adaline falls inside dead zone,
adapt weights by the Perceptron Rule as though the
response were incorrect, whether or not this is the
case.

Good Features

e Guaranteed to converge to solution if problem is lin-
early separable.

 Solutions less sensitive to weight perturbations than
those of the Perceptron Rule.

® When the training set is not linearly separable, usu-
ally achieves better solution (fewer errors) than that
of the Perceptron Rule.

Bad Features

® When the training set is linearly separable, generally

takes slightly longer to converge than the Perceptron
Daula
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May’s Modified Relaxation Rule

o If response is correct and linear output of Adaline

falls outside dead zone, do not adapt.

e Otherwise, adapt weights by a-LMS.

Good Features

e Same as Mays's Increment Adaptation Rule.

Bad Features

e Same as Mays’s Increment Adaptation Rule.
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Error-Correction Algorithms for Multi-Element
Networks

e Madaline Rule I (MRI)

e Madaline Rule IT (MRII)
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A five-Adaline example of the MR | Architecture
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MR Il of B. Widrow and R. Winter

A ZPerturbation
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Toggle output of neuron with sum closest to zero. If output Hamming error is
reduced, adapt neuron. Repeat for neuron whose sum is next closest to zero, etc.
Can also adapt two at a time, etc. Adaptation reduces Hamming error.
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Steepest-Descent Algorithms for the Single Element

1. Linear:

p-LMS
2. Nonlinear:

» Backpropagation for the single element

e MRIII for the single element
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Mean Square Error Surface
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Mean Square Error Surface
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Conventional LMS
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Implementation of Conventional LMS

LMS = W, = W, + szkxk
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“Sigmoid” LMS(Back-Prop)
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Implementation of “Sigmoid” LMS(Back-Prop)
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+1

"'l

LMS
Algorithm

Prof. Widrow @ Berkeley A Brief History of Neural Networks 34 / 54



“Sigmoid” LMS(MR 1)

Prof. Widrow @ Berkeley
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Implementation of Sigmoid LMS-MRII|
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Error Surfaces for the Single Element

e Linear Error
e Sigmoid Error

¢ Signum Error
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Linear MSE, Sigmoid MSE, and Signum MSE

quadratic MSE d non-quadratic MSE
+1,-1
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Linear Mean Square Error Surface
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Sigmoid Mean Square Error Surface
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Signum Mean Square Error Surface
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Linear Mean Square Error Surface
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EXPERIMENT 2a
Same input as EXPT. la,
but different desired response.
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Sigmoid Mean Square Error Surface

EXPERIMENT 2b
Same input as EXPT. 1b,
but different desired response.
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Signum Mean Square Error Surface
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Steepest-Descent Algorithms for Multi-Element
Networks

e Backpropagation

e Madaline Rule III (MRIII)
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Backpropagation Network
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Detail of Backpropagation Node
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MRIII of David Andes

MRIII of DAVID ANDES
AXPerturbation CHINA LAKE
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Error Surfaces for Sigmoidal Multilayer
Networks
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Mean Square Error Surface

¢4 inputs
® 3-layer network: 5 feed 8 feed 2
* sigmoids

Randomize weights,
then vary two
first-layer weights.
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Mean Square Error Surface

* 4 inputs
® 3.layer network: 5 feed 8 feed 2
® sigmoids

Adapt weights by
backprop, then vary
two first-layer weights.
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Mean Square Error Surface

* 4 inputs
® 3-layer network: 5 feed 8 feed 2
® sigmoids
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EXPERIMENT 4a,
Randomize weights,
then vary one first-layer
weight and one third-
layer weight.
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Mean Square Error Surface

* 4 inputs
® 3-layer network: 5 feed 8 feed 2
* sigmoids
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backprop, then vary
one first-layer weight
and one third-layer
weight,
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Learning Rules
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