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Abstract— We present Terrain Traversability Mapping
(TTM), a real-time mapping approach for terrain traversability
estimation and path planning for autonomous excavators in an
unstructured environment. We propose an efficient learning-
based geometric method to extract terrain features from RGB
images and 3D pointclouds and incorporate them into a global
map for planning and navigation for autonomous excavation.
Our method used the physical characteristics of the excava-
tor, including maximum climbing degree and other machine
specifications, to determine the traversable area. Our method
can adapt to changing environments and update the terrain
information in real-time. Moreover, we prepare a novel dataset,
Autonomous Excavator Terrain (AET) dataset, consisting of
RGB images from construction sites with seven categories
according to navigability. We integrate our mapping approach
with planning and control modules in an autonomous excavator
navigation system, which outperforms previous method by
49.3% in terms of success rate based on existing planning
schemes. With our mapping the excavator can navigate through
unstructured environments consisting of deep pits, steep hills,
rock piles, and other complex terrain features.

I. INTRODUCTION

Excavators are one of the most common types of heavy-
duty machinery used for many earth-moving activities, in-
cluding mining, construction, environmental restoration, etc.
According to [1], the size of the global market share for
excavators had reached $44.12 billion in 2018 and is ex-
pected to grow to $63.14 billion by 2026. As the demand
for excavators increases, many autonomous excavator sys-
tems [1], [2], [3] have been proposed for material loading
tasks, which involve use of perception and motion planning
techniques. Since excavation is considered one of the most
hazardous operations, robustness and safety are two of the
most important factors in designing automated systems.

Excavators are usually operated in unstructured and dan-
gerous environments consisting of rock piles, cliffs, deep
pits, steep hills, etc. An unstructured environment usually
refers to a terrain that lacks structure and has unpredictable
and potentially hazardous conditions. Such an environment
lacks any lane markings and the arrangement of obstacles
tends to be non-uniform. Due to tasks like digging and dump-
ing, the working conditions for excavators are constantly
changing. In addition, landfalls and cave-ins might happen,
which might cause the excavator to tip over and injure the
operator. Therefore, it is crucial to identify different terrains
and predict safe regions for navigation. In contrast, the
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Fig. 1: We highlight our system TTM, the operating environment,
input and output of our approach. To the best of our knowledge,
TTM is the first approach for excavator navigation in complex,
unstructured environments. Top left: Sensors on the excavator,
including RGB cameras and Livox LiDAR. Top right: Detection
region from a third-person perceptive. Middle left: Frontal view
captured by the camera. Middle right: Semantic segmentation
output, where green, yellow, and maroon correspond to flat region,
bumpy region, and rock, respectively. Bottom left: Colored point-
cloud with semantic labels. Bottom right: Terrain traversability
output, where traversability value decreases from green to grey.

conditions of the roads in structured environments such as
highways are usually navigation-friendly, so the core prob-
lem during navigation in structured environments is avoiding
obstacles rather than determining which part of the surface
is easier and safer to navigate. In addition, the boundaries
of different objects in structured, urban environments can be
clearly captured by perception methods, which reduces the
likelihood of mis-classifications.

There have been many works related to unstructured
environments, including perception and terrain classifica-
tion [4], [5], [6], as well as navigation [7], [8], [9], [10].
Perception is a difficult task in unstructured environments
because there could be many unexpected or unknown objects.
As mentioned in [4], in some cases, the navigable region
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and obstacles tend to have similar visual features. Without
robust perception results, navigation for excavators would
be difficult and could cause damage. Moreover, it requires
extra caution to apply navigation methods to excavators due
to their enormous size and weight. Therefore, using a better
algorithm to obtain a traversable region is an essential first
step for safe and reliable navigation for an excavator.

Terrain traversability is a binary value, or a probability
score, measuring the difficulty of navigating on a region.
Terrain traversability estimation is a critical step between
perception and navigation. In many cases [9], [11], a method
capable of detecting obstacles and distinguishing road and
non-road regions tends to be sufficient for navigation. On
the other hand, in an unstructured, hazardous environment
where off-road navigation is unavoidable, there are many
factors that must be considered, including efficiency, adapt-
ability, and safety. In such case, not only a more detailed
classification according to terrain features is need, but also
a continous value for traversability is preferred to describe
the complication of terrain and provide the safest option for
the navigation module.
Main Results:

We present Terrain Traversability Mapping (TTM), a real-
time mapping approach for terrain traversability classifi-
cation and navigation for excavators. We propose an ef-
ficient learning-based geometric fusion method to extract
traversability maps for planning and navigation tasks. Our
method leverages the physical constraints of the excavator,
including maximum climbing degree, width of the excava-
tor tracks, etc., to determine a traversability value for the
surface. Our method can process RGB images and point-
cloud streams in real-time and the global map is updated with
semantic and geometric terrain information at a rate of 10 Hz,
which can satisfy the requirements of excavators during oper-
ation. In addition, we present Autonomous Excavator Terrain
(AET) dataset, which includes 669 RGB images from the
working environments of excavators with seven categories
according to surface navigability. AET dataset provides us
good traversability estimation on similar construction sites
where excavators usually operate. We deploy our approach
on an excavator on several scenes with rock piles, steep
ramps, pits, hills, and puddles, as shown in Figure 1.

Our method TTM is the first traversability estimation
and mapping approach based on 3D geometric and 2D
semantic information that is used for path planning and
navigation of heavy-duty excavation machines in real-world
scenes. Our approach has been integrated with a state-of-
the-art Autonomous Excavator System (AES) [1] and we
highlight the benefits. The perception method in original
AES is capable of detecting rocks and target materials
for digging and dumping in the RGB images. Our TTM
approach strengthens the perception capability and semantic
understanding of the surrounding scene, and provides an
estimated traversability map for navigation. As a result, the
excavator can avoid dangerous regions and safely navigate
to the goal in unstructured environments. The novel aspects
of our work include:

1) We present a real-time terrain traversability estimation
and mapping algorithm (TTM) from 3D LiDAR and
RGB camera inputs for excavator navigation. We de-
velop a novel learning-based geometric fusion strat-
egy with machine specifications for terrain traversabil-
ity prediction in unstructured environments. We use
learned semantic terrain information as visual guidance
for dangerous surface detection and use geometric ter-
rain features as supplemental information in uncertain
and unknown regions.

2) We implement TTM in both simulated environments
and real-world settings on an excavator in various
challenging construction scenes. Our approach is the
first traversability mapping algorithm integrated with
planning and control modules, which are used to safely
guide an excavator in unstructured environments.

3) We present Autonomous Excavator Terrain (AET)
dataset, consisting of RGB images in unstructured
environments with seven different classes based on
terrain types, traversable regions, and obstacles.

II. RELATED WORK

A. Field Robots

Field robots usually refer to machines that operate in
off-road, hazardous environments. They are typically any
heavy-duty service robots for industrial usage in mining [12],
excavation [1], agriculture [13], construction [14], etc. To
satisfy industrial needs and save money and labor for the
company, many automated systems [1], [2], [3] have been
developed for those service robots in the field. However, it
remains a challenge to fully automate many tasks because
most of the applications are used in unknown, unstructured
environments. The automation must be robust and adaptable
to the changing circumstances of the surroundings.

B. Perception in Unknown Environments

There are four types of perception methods used in nav-
igation and terrain classification tasks: proprioceptive-based
methods, geometry-based methods, vision-based methods,
and hybrid methods. Proprioceptive-based methods like [15]
primarily use vibration or accelerometer signals collected
by IMU and tactile sensors to classify the terrain. For
these methods, the robot must traverse the region to make
predictions, so one significant disadvantage of those methods
is that their applications are constrained to safe and pre-
dictable environments and do not work well in unknown and
hazardous environments. Geometry-based methods like [16]
utilize stereo cameras or LiDAR to obtain pointcloud data
and extract relevant information. Geometric methods can
capture useful terrain attributes like shape, slope, and drastic
height variation, as well as the location of obstacles.

There are many vision-based methods proposed for var-
ious perception tasks. For example, [17] use SIFT features
extracted from the RGB images and classify terrains using
simple models like MLP. In recent years, as many fast and
reliable deep learning solutions for computer vision have
been developed, researchers have begun to train a deep model



for perception using a large amount of annotated data. For
example, [18] performs semantic segmentation for urban
scenario benchmarks, while [4] focuses on coarse-grain
semantic segmentation for terrain classification. Computer
vision is a powerful tool in detecting textures that geometry-
based methods are unable to identify.

Given the complimentary outputs of different perception
methods, there are also hybrid methods that take advantage of
the strengths of each perception method to make classifica-
tion decisions based on collective information from multiple
sensors and multiple data representations. For example, [19]
uses both image input and audio input to cluster road features
with a Gaussian mixture model. Our proposed method is also
a hybrid method, leveraging the strengths of RGB cameras
and 3D LiDAR.

C. Terrain Traversability Analysis

There are plenty of works [20], [21], [22] on classify-
ing different terrains based on either material categories
or navigability properties. [20] takes a voxel-based octree
representation of the terrain and outputs semantic labels
for each voxel using Conditional Random Field. [21] uses
semantic mapping to associate points with 2D semantics
to obtain a 3D semantic pointcloud. The goal of these
classification methods is to correctly predict surface types,
and they lack understanding of the navigability of the surface.

Compared to terrain classification, traversability is a more
subjective concept and is specific to navigation. For different
robots, the definition of traversability could be slightly differ-
ent. In [16], the notion of traversability is entirely based on
geometric attributes of the surface, including slope, height
variation, and roughness of the surface. [4] proposes an
attention-based deep network for traversability prediction in
a natural and unstructured environment. [23] uses pointcloud
and RGB images to classify 2D terrains with safe, risky, and
obstacle labels.

D. Datasets in Unstructured Environments

Most recent developments in perception tasks like object
detection and semantic segmentation focus on urban driving
scene datasets like KITTI [24], Waymo [25], etc., which
achieve high accuracy in terms of average precision. On the
other hand, unstructured scenes like the natural environment,
construction sites, and complicated traffic scenarios are less
explored, primarily for two reasons. The first reason is that
there are fewer datasets with unstructured environments, and
the second is that perception and autonomous navigation in
unstructured off-road environments is challenging due to its
unpredictability and diverse terrain types.

Recent efforts in off-road perception and navigation in-
clude RUGD [26] and RELLIS-3D [27], which are semantic
segmentation datasets collected from a robot navigating in
off-road and natural environments and contain scenes like
trails, forests, creeks, etc. [28] is a construction dataset
containing annotation of heavy-duty vehicles for detection,
tracking, and activity classifications.

III. TERRAIN TRAVERSABILITY MAPPING

We propose an efficient 2D-3D hybrid method for terrain
traversability mapping (TTM) to extract terrain features and
generate a traversability map as the robot navigates through
an unknown environment. TTM takes a 3D pointcloud stream
from the LiDAR, an RGB camera stream from the RGB cam-
era, and the corresponding poses of the excavator extracted
from the GPS-RTK module. The output of our method is
a global map consisting of terrain information, including
semantic information, geometric information, and a final
traversability score.

The map is represented as an elevation grid map and is
updated based on incoming pointclouds and RGB images.
Internally, each grid cell in the map stores the average height
value of the latest N points within this cell, as well as overall
information about those points like update time, slope, step
height, and their semantic information. A traversability score
is calculated for each grid cell. In Figure 2, we present an
overview of our approach. Our code is based on the open-
source grid map library [29].

Our method is a hybrid method that combines 2D semantic
and 3D geometric information. Most of the existing meth-
ods [16], [20] use 3D pointcloud or voxels to detect obstacles
and classify them into different terrain types, while some
methods like [21], [22] only use 2D semantic segmentation
and register terrain labels on the pointcloud. Combining both
2D semantic information and 3D geometric information is
essential for a robust prediction. For example, we can use
geometric information from pointclouds to detect pits or
hills, while it is difficult to get such terrain information from
an RGB photo. On the other hand, 2D semantic segmentation
can provide terrain semantics through visual features. For
example, a terrain with a flat surface indicated through
LiDAR detection could still be a water puddle, or a surface
with a high slope could be a small pile of dirt, which is
traversable, or a rock pile, which needs to be avoided.

There are some reasons why we choose not to use 3D
segmentation methods directly on the pointcloud. First, it is
difficult to annotate 3D data with semantic labels, while 2D
labels are more accessible and easier to annotate. Second,
3D segmentation networks are usually heavy models and
require longer inference time. Finally, during navigation
in unstructured environments, excavator tracks could cause
dust in the air, which introduces a lot of noise for the
LiDAR input. 2D RGB images have rich color and texture
information and are more immune to dust.

The rest of this section is structured as follows: We start
with two components of our method, semantic mapping and
geometric computation in Section III-A and Section III-B,
respectively. We discuss how to use combined information
to estimate terrain traversability in Section III-C. We explain
how we process the output traversability map and integrate
it with path planning and navigation in Section III-D.

A. Learning-based Semantic Mapping to Pointcloud

To extract semantic information of the terrain, we choose
to use 2D semantic segmentation on unstructured terrains.



Fig. 2: Overview of our method (TTM): Our method takes RGB images and pointclouds as inputs to infer traversability. We extract
semantic information using segmentation and associate terrain labels with pointclouds, as shown in A (top). We extract geometric
information using slope and step height estimation, as shown in B (bottom). Finally, we produce a traversability gridmap based on
semantic and geometric information and convert it to a 2D occupancy map for path planning, as shown in C (right).

Given an input RGB image I ∈ R3×H×W , the goal is to
generate a probabilistic map M ∈ RN×H×W , where N is
the number of classes. After obtaining the probabilistic map
P , our final output P is equal to argmax(M) ∈ ZH×W .

To better facilitate the learning process, we create a
novel Autonomous Exccavator Terrain (AET) dataset for
terrain classification and obstacle detection. According to
the traversability criterion of the navigable regions defined
in latest work [4] and the operating environments of exca-
vators, we define seven classes in AET dataset, including
flat regions, bumpy regions, mixed water and dirt, water
puddles, rock piles, obstacles, and other excavators. The goal
of the annotation is to identify different traversable regions
and obstacles during navigation. Based on AET dataset, we
train a Fast-SCNN [30] model for finding traversable regions
with real-time performance. Our training code is based on
[31]. For more details about AET dataset, please refer to
Section IV-D.

After we get the segmentation prediction P , we use a
timestamp to locate the corresponding pointcloud C. Given
a point ~p = [xp, yp, zp] ∈ C in the world coordinate, camera
intrinsic matrix K ∈ R3×3, and extrinsic matrix E ∈ R4×4,
we can calculate its corresponding image coordinates ~pi =
[u, v] based on the following formula:
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For each point captured by the LiDAR, we use calibration
matrices to find its correspondence to the segmentation
results and save its terrain label in the gridmap cell. In the
end, each gridmap cell is assigned a terrain label based on the
majority of the semantic labels. For cells that are not assigned

with a semantic label, we extract geometric information as
a replacement for traversability estimation.

B. Geometric Information Computation

In this section, we present details of slope and step height
estimation, and highlight how machine specifications are
considered for calculation of geometric traversability score
as our novel contribution.
Slope Estimation: Each grid cell g is abstracted to a single
point p = {x, y, z}, where x, y is the center of the cell in
the global coordinate frame and z is the height value of the
grid. The slope s in arbitrary grid cell g is computed by
the angle between the surface normal and the z-axis1 of the
global coordinate frame:

s = arcos(nz), nz ∈ [0, 1]

where nz is the component of normal ~n on the z-axis.
We use Principal Component Analysis (PCA) to calculate

the normal direction of a grid cell. By analyzing the eigen-
vectors and eigenvalues of covariance matrix C, created from
the nearest neighbors of the query grid cell, we can estimate
the direction of the surface normal vector as well as slope.
The covariance matrix C is calculated as follows:

C =
1

k

k∑
i=1

(pi − p̄) · (pi − p̄)T , C · ~vj = λj · ~vj ,

j ∈ {0, 1, 2}, λi < λj if i < j,

where k is the number of neighbors considered in the
neighborhood of g, pi = {x, y, z} is the position of the
neighbor grid in the global coordinate frame, p̄ is the 3D
centroid of the neighbors, λj is the j-th eigenvalue of the
covariance matrix, and ~vj is the j-th eigenvector. The surface
normal ~n of grid g is the eigenvector ~v0 that has the smallest
absolute value of eigenvalue λ0.

The purpose of the slope estimation is to get the shape of
the terrain and avoid navigating on a steep surface. Based on

1Up direction in the real world



the experience of several expert operators, the width of the
track is a good indicator of the navigation stability on rough
terrain. Usually, when the area of a rough region is less than
half of the track width, the excavator can navigate through it
without any trouble. In our case, the width of our excavator
track is 0.6 m, so we chose the grid resolution dres = 0.2m
and use eight neighborhood search methods, which means
the search area size equals the track width.
Step Height Estimation: The step height h is computed as
the largest height difference between the center point p of
the grid and its k′ nearest neighbors:

h = max (abs(pz − pzi )), i ∈ [1, k′]

Since slope is a description of variation in the terrain in a
relatively small region, we choose to use a neighbor search
parameter k′ = 7 ∗ 7 > k that spans 1.4 m to measure
height change in a larger scope. The step height calculation
guarantees that the track does not traverse areas with extreme
height differences.
Geometric Traversability Estimation: Based on informa-
tion about slope and step height of the terrain, we can
calculate a geometric traversability score Tgeo. According to
the physical constraints of the robot, we create some critical
values scri, ssafe, hcri, hsafe, as the thresholds for safety
and danger detection. The purpose of those threshold values
is to avoid danger when the surface condition exceeds the
limits of the robot and to avoid more calculations when
the surface is very flat. In other cases, the traversability is
calculated as a continuous value. The formula for geometric
traversability Tgeo is:

Tgeo =


0 s > scri or h > hcri

1 s < ssafe and h < hsafe

max(1− (α1
s

scri
+ α2

h
hcri

), 0) otherwise
,

where the weights α1 and α2 sum up to 1. In our case, we
use 0.5 and 0.5, respectively.

Unlike the method described in [16], we exclude the use
of a roughness score in Tgeo. In our context, the excava-
tor is more sensitive and prone to failure under extreme
slopes and step heights, while it can usually handle uneven
ground and relatively rough terrain. We also discover that the
roughness measurement is not effective in the traversability
computation. For more detailed comparisons, please refer
to the full report [32]. In addition, the measurement of
terrain roughness is accomplished through visual cues and
texture information, as bumpy regions are classified from
2D semantic information, and this method produces a more
meaningful output than geometric measurement.

Because the value of RTK on the Z-axis is unstable,
the value of Z may vary significantly at different times,
so we save update time in the grid and only use the grid
within a certain range 4t at the current time for geometric
information calculation.
Safe and Critical Threshold:

We use the specifications of our excavator to determine
the safe and critical values. We use an XCMG XE490D
excavator, which has a maximum climbing angle of 35

degrees. We use the typical recommended climbing angles
for any vehicle as a safe climbing angle, which is 10 degrees.
As a result, we set scri = 30 deg and ssafe = 10 deg.

For step height, we make sure that hcri and hsafe comply
with slope scri and ssafe. We get an approximation of the
maximum height allowed by scri and ssafe, expanding three
times the resolution dres along the surface:

hcri = 3 tan(scri)× dres = 0.35 m

hsafe = 3 tan(ssafe)× dres = 0.10 m

Thus, the step height estimation is complementary to slope
estimation; it provides a global perspective, whereas slope is
local terrain information. Combining these two specifications
can help us remove noise in the map, such as bumps caused
by dust, and ensure the robustness of the Tgeo.

C. Traversability with Geometric and Semantic Fusion

In this section, we describe our novel algorithm for
geometric-semantic fusion. From the semantic and geometric
information, we use a continuous traversability score T ∈
[0, 1] to measure how easily the surface can be navigated.
This is especially relevant to off-road scenarios because
we prefer flat regions over bumpy roads to save energy.
Moreover, when an excavator is navigating on a construction
site, being able to correctly identify different regions is
critical to avoid hazardous situations like flipping over.

The overall traversability score T is calculated based on
semantic terrain classes Csem and geometric traversability
Tgeo as follows:

T =


0 Csem = {rock, excavator, obstacle, water}
1 Csem = {flat} and Tgeo > 0

Tgeo otherwise
,

Based on our formulation, we make sure that the robot
avoids any obstacles like rocks or excavators and forbid-
den regions like water. We also consider flat regions as
traversable regions with a score of 1. In other cases like
bumpy, mixed, or unassigned regions, we set the score
according to the geometric information. With our current
scheme, we manage to minimize the use of continuous values
in the final traversability map to reduce the number of grey
regions to adapt to the effectiveness of existing planners.

D. Planning Based on TTM

We start with a novel post-processing step on the
traversability map for planning. We remove some small non-
traversable regions that satisfy all of the following criteria:
• The region has an average traversability value less than

some occupied threshold tocc.
• The region has a height less than the critical threshold

of step height hcri.
• The spans of the region along the x-axis and the y-axis

are less than half the distance between two tracks of the
excavator dtrack.

This post-processing step is mostly to accommodate ex-
isting planners, since they do not work well and fail to



Fig. 3: Visual results of TTM: Each row shows the input RGB image, the corresponding semantic segmentation result, the traversability
map with only geometric information, and the traversability map after fusion. In the final traversability map, the higher the traversability
score is, the easier it is for robots to navigate the corresponding terrain. We use the color scheme from green to grey to highlight some
semantic labels like rock, obstacle and water. We see that there are many places that are not detected through their geometric properties,
but that can be recognized using their visual features and are reflected in the final traversability map.

plan a feasible trajectory with too many scattered, noisy re-
gions. After post-processing, we transform the traversability
gridmap to a 2D occupancy gridmap as an input for path
planning. We use the Hybrid A* planner [33] to generate a
path and send the trajectory to the motion controller, which
guides the excavator to follow this trajectory. Some planning
results can be found in IV-E.

IV. IMPLEMENTATION DETAILS AND ANALYSIS

A. Implementation Details

We use an XCMG XE490D excavator to perform our
experiments. The excavator is equipped with a Livox-Mid100
LiDAR and a HIK web camera with FOV of 56.8 degrees
to detect the environment, and a Huace real-time kinematic
(RTK) positioning device to provide the location. We run our
code with a laptop with Intel Core i7-10875H CPU, 16 GB
RAM, and GeForce RTX 2060 6GB GPU on the excavator.

We train a Fast-SCNN [30] model on two NVIDIA
GeForce GTX 1080 Graphics cards for 240K iterations,
which takes approximately two days. We use a stochastic
gradient descent optimizer with a learning rate of 0.12 and
a momentum of 0.9. We also use polynomial learning rate
decay with a power of 0.9. The final model achieves a mean
IoU of 68.75% and an overall accuracy of 84.49%.

B. Visual Results and Analysis

In this section, we evaluate our method in real world with
visual results. In Figure 3, we show some typical scenarios
excavators encounter to illustrate the advantages of geometric
and semantic fusion. For visualization purposes, we change
the color scheme to range from green to grey and paint
the detected obstacles and forbidden regions like water to
the corresponding color in Figure 3. In the first and second

Fig. 4: Gridmap comparison between the geometric-only
scheme [16] and ours: (1) Our method is less noisy and has more
connected regions to plan a feasible trajectory. (2) Our method can
detect obstacles that the geometric method could not recognize.

cases, the steel bar and stone were not captured by geometric
calculation, while with semantic information, those obstacles
can be detected and avoided. In the last case, the rough and
bumpy region is in fact water and should not be traversed.

In Figure 4, we compare traversability maps generated by
using a geometric-only method [16] and using TTM with
geometric-semantic fusion. The output after fusion is less
noisy since segmentation results can smooth out safe regions.
Our method detects more non-traversable regions based on
obstacles and dangerous regions from semantic information.

C. Performance in the Real World

We set up our experiments on an excavator in the real
world. Our method consists of the following major parts,
which contribute to the overall runtime of the system:
• Segmentation generates a pixel-wise semantic classifi-

cation on each image in the RGB input stream.
• Projection casts the 2D segmentation result onto the



Fig. 5: Planner output comparisons between geometric-only scheme [16] (top) and TTM (bottom): We show planned trajectories
based on the Hybrid A* [33] planner. The planning is based on a global traversability map. We highlight some obstacles that are not
observed by geometric method (red), as well as some traversable regions that are falsely observed by geometric method (blue).

Run-time (ms) Max Min Mean

Segmentation 100.2 53.5 75.4
Projection 54.0 35.0 42.3
Tgeo Calculation 38.0 9.0 22.1

TABLE I: Runtimes of different modules. Our method can be run
in real-time and update the traversability map at a rate of 10 Hz.
The hardware is specified in Section IV-A.

3D pointcloud and assigns each point a semantic label
through the calibration matrix.

• Geometric traversability calculation estimates and
updates slope and step height based on point cloud data
in gridmap representation.

The final fusion step is under 2 ms and do not contribute
to the overall runtime of the method. As shown in Table I,
the running time per update of each component mentioned
above is 75.4 ms, 42.3 ms, and 22.1 ms, respectively.

Our method can handle an RGB image stream of 25 Hz
and a pointcloud stream of 10 Hz in the real world without
lagging, and the map can update semantic and geometric
information at a rate of 10 Hz. Please refer to the video for
more visual results of excavator navigation.

D. Dataset Collection

Our dataset is collected at a construction site while an
excavator is navigating through the work area. We collect
several videos (around 30 minutes in total) under different
circumstances and sample 669 images of size 1920×1080 for
our dataset. The training and testing sets are split according
to a 9:1 ratio. As shown in Figure 6, AET dataset covers
most of the situations that might be encountered on a work
site, including rock-piles, pits, stagnant water after rain, etc.

Flat surfaces, bumpy surfaces, and mixtures of water and
dirt are usually navigable. In most cases, when flat surfaces
are detected, they are preferrable to other surfaces. Water

Fig. 6: Autonomous Excavator Terrain (AET) dataset: We show
a few samples from our AET dataset (top) and corresponding
annotations (bottom). All images are collected in unstructured
environments with various terrain types.

is a forbidden region, since it is difficult to gauge how
deep the water is and the soil near the water could be soft
and easily deformed. Even though the excavator can usually
traverse through shallow water, we choose to minimize the
risk and damage. Obstacles like rocks and other excavators
must be avoided for safety. The annotation is decided and
implemented based on the opinion of a team of excavator
operators.

E. Planning Based on a Traversability Map

Based on the resulting occupancy gridmaps from
geometric-only method [16] and the proposed TTM, we
randomly choose start and goal position on an unoccupied
grid with over 90 trials. Using Hybrid A* [33] planner,
the success rates of finding a valid path without collision
for our TTM and the other method are 82.6% and 33.3%,
respectively. We show some comparisons on planning results
in Figure 5. In particular, we use an occupied threshold tocc
of 0.6, a critical threshold hcri of 0.35 m for maximum
step height, and a distance between two tracks dtrack of
2.75 m for map post-processing and planner configuration.



For more details of the experimentation, please refer to the
full report[32].

V. CONCLUSIONS, LIMITATIONS, AND FUTURE WORKS

In this paper, we present Terrain Traversability Mapping
(TTM) that combines 2D semantic terrain information and
3D geometric terrain information to make joint predictions
on terrain traversability in unstructured environments. We
present a novel LiDAR-camera fusion strategy based on a
learning-based geometric method. We prepare Autonomous
Excavator Terrain (AET) dataset with difficult real-world
scenes in unstructured construction sites for perception in the
wild. Finally, we show results on our approach with planning
and control modules for excavators in the real world and in
simulation on various scenes.

Our work has some limitations. First, due to safety issues,
we are not able to extensively test navigation in the real world
(especially in some dangerous scenarios where most regions
are bumpy or steep) to avoid failure cases like flipping
over. Second, we have tested our performance on existing
planners, which are not able to exploit the full potential of
traversability. For example, sometimes the excavator would
have been able to run over small obstacles with the space
between two tracks, but there is no existing planner that could
handle such a case.

As part of our future work, we need to consider how
to design a planner that can take full advantage of the
traversability map and utilize the specifications of the ex-
cavator like a human operator. Our final goal is using this
framework to guide the excavator to navigate on its own in
extreme and hazardous environments.
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