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Abstract—Approximate nearest neighbor (ANN) searching is
a fundamental problem in computer science with numerous
applications in (e.g.,) machine learning and data mining. Recent
studies show that graph-based ANN methods often outperform
other types of ANN algorithms. For typical graph-based methods,
the searching algorithm is executed iteratively and the execution
dependency prohibits GPU adaptations. In this paper, we present
a novel framework that decouples the searching on graph algo-
rithm into 3 stages, in order to parallel the performance-crucial
distance computation. Furthermore, to obtain better parallelism
on GPU, we propose novel ANN-specific optimization methods
that eliminate dynamic GPU memory allocations and trade
computations for less GPU memory consumption. The proposed
system is empirically compared against HNSW–the state-of-
the-art ANN method on CPU–and Faiss–the popular GPU-
accelerated ANN platform–on 6 datasets. The results confirm the
effectiveness: SONG has around 50-180x speedup compared with
single-thread HNSW, while it substantially outperforms Faiss.

I. INTRODUCTION

Nearest neighbor (NN) searching is a fundamental problem
since the early days of computer science [16], [17], with nu-
merous practical applications in many fields such as machine
learning, computer vision, data mining, information retrieval,
etc. The challenge of the NN task is to find the nearest
neighbor without scanning all data points in the repository of
data. In recent years, methods for approximate near neighbor
(ANN) search become popular, because many applications
[2], [10], [12], [30], [59], [61], [66] only require finding a
close enough neighbor instead of the exact nearest solution.

ANN searching methods. In the ANN searching paradigm,
each query is compared with a subset of data points instead
of the entire dataset. To obtain the subset, a vareity of
index structures have been proposed, including probabilistic
hashing [7], [9], [24], [31], [39], [41], [56], quantization [23],
[32], [33], [63], ball tree or KD tree variants [8], [11], [52],
and graph-based searching [19], [26], [46], [47], [64], etc.

Graph-based ANN methods. Recently, graph-based meth-
ods draw great attentions. In the literature, extensive ex-
periments show that graph-based methods outperform other
types of ANN methods in common metrics [19], [47], [50].
Typically, these methods build a graph index referred as Prox-
imity Graph. Vertices of proximity graph represent the points
in the dataset. Edges in the graph illustrate neighborhood
relationships between the connecting nodes. The neighborhood
relationship is defined on various constraints to make graphs
applicable for the ANN problem. For example, some graph

constraints like Delaunay Graphs [5] and Monotonic Search
Networks [13] guarantee that there exists a path with mono-
tonic decreasing distance to the query point from any starting
vertex. GNNS [26], IEH [35], EFANNA [18], NSG [19],
NSW [46] and HNSW [47] approximate the Delaunay Graph
or Relative Neighborhood Graph [60], to reduce the proximity
graph construction complexity to subquadratic time. Those
approximations make graph-based ANN methods applicable
to massive data and become popular tools in industry practice.

Algorithm 1 Searching algorithm on the proximity graph.
Input: Graph index G(V,E); a query point p;

Number of output candidates K
Output: Top K candidates for each query topk

1. Initialize a binary min-heap as priority queue q and a hash
set visited with the default starting point. Construct an
empty binary max-heap as priority queue topk

2. while q 6= ∅ do
3. (now dist,now idx) ← q.pop min()
4. if topk.size=K and topk.peek max()<now dist then
5. break
6. else
7. topk.push heap((now dist,now idx))
8. end if
9. for each (now idx,v) ∈ E do

10. if visited.exist(v) 6= true then
11. d← dist(p,v)
12. visited.insert(v)
13. q.push heap((d,v))
14. end if
15. end for
16. end while
17. return topk

Search on graph. Although these methods have diverged
constraints on building the graph indices, most of the graph-
based methods [18], [19], [26], [35], [46], [47], [57], [58] share
the similar heuristic searching algorithm (Algorithm 1) — a
variant of A∗ heuristic search [27]. Its workflow is similar to
Breadth-First Search (BFS), except the queue in the BFS is
replaced with a priority queue q. The priority queue orders
vertices ascendingly by the distance to the query point p. The
searching process starts from a default starting point. Then it



extracts a vertex from the priority queue q (line 3), updates
the top-K candidates (line 4-8), and inserts the neighbors of
the vertex into q for future exploration (line 13). The main
searching loop (line 2-16) stops when the extracted vertex
from the priority queue is worse than the searched top-K
result candidates (line 4-5). Abstractly, the algorithm greedily
follows a path to reach the nearest neighbor of the query point.
Fig. 1 illustrates an example for Algorithm 1.
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Fig. 1: An example to illustrate the searching algorithm on the
proximity graph (Algorithm 1). The star represents the query
point p. In this example, we target to find the top K = 3
nearest neighbors of p. Vertex 1 is the default starting point.
The searching path 1 → 2 → 8 → 7 is highlighted by the
dashed arrows. The right part shows the states of two priority
queues–q and topk–and the hash table visited in each iteration.

Parallelism. The searching procedure is executed
iteratively—each iteration relies on the progress of the
previous one. The execution dependency prohibits any
embarrassingly-parallel solutions for this algorithm. The
conventional parallel solution for graph-based ANN is to
execute different queries concurrently on multi-core CPUs.
There are few studies discussing the GPU adaptation for
graph-based methods. However, without considering the
architecture of GPUs, a query-parallel solution does not scale
on GPU platforms. In the meanwhile, there are an increasing
number of researches [21], [22], [36], [61] investigating
the ANN system on GPUs. For example, Faiss [36] is a
popular GPU-accelerated quantization-based ANN system.
As the quantization method has low instruction dependencies,
Faiss can fully parallel the execution and shows superior
performance over dense data compared with other CPU-based
methods. On the other hand, despite that graph-based methods
provide better results on CPUs, complex graph structures
and high execution dependencies of graph searching make
the GPU adaptation a challenging task. In this paper, we
investigate the GPU adaptation problem and propose a
combination of optimizations, for graph-based ANN methods.

Summary of Contributions:
• We introduce SONG (acronym of “Search ON Graph”)—

an ANN search system that performs graph-based ANN
searching on GPUs. To the best of our knowledge, SONG
is the first graph-based ANN system designed for GPUs.

• We develop a novel framework that decouples the search-
ing on graph algorithm into 3 stages: candidates locating,
bulk distance computation and data structures maintenance
to parallel the performance-crucial distance computation.
Unlike GPU Breadth-First search methods, our proposed
framework is optimized specifically for the graph-based
ANN searching by addressing the heavy high-dimensional
distance computation of ANN problems.

• We propose a combination of data structures and optimiza-
tions for GPU ANN graph searching. We employ open
addressing hash table, Bloom filter and Cuckoo filter to
serve as a high-performance hash table. We adopt a series
of optimizations: bounded priority queue, selected insertion
and visited deletion, to eliminate dynamic memory alloca-
tions and trade computations for less memory consumption.

• We present a parameterized graph searching algorithm–
multi-query and multi-step probing–in the candidate locating
stage that enables fine-tuning for the performance.

• We evaluate experimentally the proposed system and com-
pare it against HNSW (the state-of-the-art ANN method on
CPU platform) and Faiss (the popular GPU ANN system) on
6 datasets. The results confirm that SONG has around 50-
180x speedup compared with single-thread HNSW, while it
substantially outperforms GPU-version Faiss.

II. GPU ARCHITECTURE

In this section, we introduce the GPU architecture that is
the foundation for the GPU-specific optimizations of SONG.
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Fig. 2: GPU architecture.

Hardware architecture and memory hierarchy. Fig. 2
illustrates the GPU hardware architecture and memory hier-
archy. A GPU contains multiple streaming multiprocessors
(SM). Each SM has dozens of cores, two dispatch units, a
warp scheduler, a register file and a configurable L1 cache
and shared memory. All SMs share an L2 cache and a global
memory. The cores in SM are targeted at a limited subset
of computation instructions. The dispatch units and the warp
scheduler in the SM issue instructions and schedule execution
of the cores. Register file is an array of processor registers that
can be directly accessed by the cores. L0 instruction cache is
introduced recently in the NVIDIA Volta architecture [34].
L0 instruction cache is employed to provide higher efficiency
than the instruction buffers used in prior GPUs. Unlike CPU
platforms, the GPU L1 cache is configurable—we can allocate
a portion of the L1 cache as shared memory. Shared memory
can be manipulated explicitly and is accessible to all cores
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Fig. 3: An example to deonstrate the GPU warp proximity graph searching workflow. The graph (adjacency list) on the left
inherits from the example in Fig. 1. The shadowed cells represents the memory access pattern of the first iteration in Fig. 1.

inside the same SM. All SMs can access the global memory
and the L2 cache acts as a cache for the global memory I/Os.

Global memory can be accessed from all the cores across
SMs. Although the largest in size, global memory has the low-
est bandwidth and the highest access latency. Shared memory
is a high-bandwidth and low-latency memory. It is also shared
by cores within an SM. The two levels of cache L1 and L2 are
leveraged to improve the global memory access latency. When
global memory addresses are requested, aligned continuous
addresses are merged into a single memory transaction. Cores
have to access consecutive global memory addresses to access
data efficiently from global memory.

GPU programming model. In the CUDA programming
model, workloads are issued to the GPU in the form of
a function—the function is referred as a kernel. Similar to
the definition in CPU platforms, a logical instance of the
kernel is called a thread. Threads are grouped in blocks.
Physically, all the threads within a block locate on the same
SM. Threads can access the various units of the deep memory
hierarchy explicitly in the CUDA code. To manage thousands
of concurrent threads running on different parts of the data,
the SM employs SIMT (single-instruction, multiple-thread)
or SIMD (Single Instruction Multiple Data) parallelism by
grouping consecutive threads of a block into a warp. All the
threads in a warp have to perform the same instruction at a
time. If-else branch in the code blocks the execution of some
threads in the same warp. Threads working on different code
branches are executed sequentially.

III. SONG SYSTEM OVERVIEW

In this section, we identify the performance bottlenecks of
Algorithm 1, and present the main modules of SONG that
optimize the algorithm from a high-level view.

Distance computation. The profiling result of the search-
ing algorithm on CPU platforms shows that more than 95%
time is spent on distance computations (line 11) for most
common ANN benchmark datasets [47]—the performance is
dominated by distance computations. Compared with the time-
consuming high-dimensional distance computation, other op-
erations like priority queue maintenance and memory accesses

take less than 5% execution time. In contrast, GPUs are capa-
ble to efficiently parallel the high-dimensional distance com-
putation with its large number of cores. The major 95% cost
on CPUs can be significantly improved on GPUs. Although
the major cost is substantially reduced, other unnoticeable
problems on CPUs arise on GPUs. As opposed to the CPUs,
GPU memory accesses become the dominant factor.

Memory access. The CPU graph searching algorithm
introduces dynamic memory allocations and occupies a large
working memory in the searching. It is not scalable on GPU
because there are much fewer available memory budgets per
thread on GPU. In order to efficiently parallel the searching,
we have to limit the memory consumption of the priority
queues and the hash table in Algorithm 1.

High-level approach. Here we introduce the high-level
approach for solving one query in the GPU graph searching
algorithm. Since the major time of non-parallel approximate
nearest neighbor searching on high-dimensional datasets is
spent on computing distances [47], our GPU graph searching
algorithm focuses on exploiting GPU to accelerate the distance
computation. In order to fully utilize the GPU computing
bandwidth, we have to compute distances in a batch instead of
a large number of independent pair-wise distance computation
function calls. Therefore, we extract the distance computation
part from the searching workflow by decoupling the graph
searching algorithm into 3 stages: candidates locating, bulk
distance computation and data structures updating.

Fig. 3 illustrates the decoupled workflow. The graph (adja-
cency list) on the left inherits from the example in Fig. 1. The
ith row stores the adjacent vertices to vertex i. For example,
the first row in the graph shows that 1 connects to 2, 4, 5
and 7. As Algorithm 1, in each iteration, we first extract a
vertex from the priority queue q to begin the search. Consider
we are searching on vertex 1 in this example. The candidate
locating stage fetches the vertices (2, 4, 5, 7) that connect to
1 from the graph. Then, the bulk distance computation stage
reads the vector values of these vertices from the data matrix
and employs GPU warp reduction to compute the distances
to the query point p. The toy example in Fig. 1 is only
for illustrating the idea of the searching algorithm. In the



real ANN applications, the dimensionality goes from a few
hundred to a thousand—we can fully utilize the GPU threads
in the bulk distance computation stage. After that, the data
structure maintenance stage uses the distances to update the
priority queues and the hash table for the next iteration.

This 3-stage workflow decouples the distance computation
and queue maintenance dependency (Algorithm 1 line 9-
15) into a batch processing pipeline. Therefore, we can accel-
erate the distance computation through GPUs. However, these
3 stages are still executed sequentially. We optimize each stage
for the GPU architecture to achieve better performance.

IV. DATA STRUCTURE MAINTENANCE

A. Data Structures on GPU

The data structures are designed specifically for the graph
searching task on GPU. We introduce the fixed degree graph
for graph storage and the hash table alternatives.

Fixed degree graph storage. The proximity graph used
in graph-based ANN searching has the following property:
the degree of each vertex is bounded by a fixed constant
K [47]. Storing the graph as an adjacency list requires us
to keep an index in the GPU memory that tracks the offset
of each vertex. Index look-up is inefficient since it requires
an additional memory operation to load the index. Storing the
graph as a fixed-degree adjacency list eliminates the additional
index look-up in adjacency lists. We can locate a vertex by
multiplying its index with the fixed size of a vertex, because
each vertex takes the same fixed amount of memory. The fixed
degree graph is stored in the GPU global memory (Fig. 3).

Query. While the proximity graph and the dataset can be
persisted on the GPU global memory before the queries come,
the query points have to be transferred from the host CPU main
memory to the GPU global memory at runtime. During the
searching process of a query, the queried point is frequently
accessed to compute the distance to other vertices in the graph.
We explicitly copy the query point into the fast on-chip shared
memory to reduce GPU global memory reading.

Concurrency control. Although there are a few studies
introducing the lock-free concurrent priority queue and hash
table, those data structures are designed as a substitute for
host-side CPU data structures—not for the threads in a CUDA
kernel. Furthermore, only dozens of insertion are required
in an iteration. The sequential operations outperform the
complicated concurrent data structures. Therefore, the priority
queues and the hash tables are maintained by one single thread
in our proposed system.

Memory access patterns. GPU shared memory can be
accessed by all threads in the same block in low latency.
As we discussed above, p is copied to the shared memory
because p is frequently accessed in distance computations.
In addition, candidate and dist are allocated as fixed-length
array in the shared memory. The lengths of candidate and dist
are at most the fixed degree of the graph index. Allocating
them as a fixed-length array is more efficient than dynamic
allocation. Putting them into the shared memory eliminates
additional communication cost in the warp reduction. Because

the priority queues and hash tables are maintained by only one
thread, q, topk and visited are allocated as the local memory of
its host thread—no other threads access these data structures.
The graph index and the data are kept in the global memory.

B. Hash Table Alternatives

We discuss the design of the hash table (visited) in the
searching algorithm and its alternatives in this section.

Open addressing hash table. One of the most popular hash
table implementations is separate chaining, e.g., the hash table
(unordered set) implementation of GNU GCC uses separate
chaining to resolve the hash collision. However, the chaining
solution requires dynamic memory allocation, such as linked
list, destroy the GPU computation performance. We employ
another hash collision method–open addressing [43]–in our
GPU graph searching implementation. Open addressing probes
through alternate locations in the array until either the target
record is found, or an unused array slot is found. We allocate a
fixed-length array in the shared memory for each thread block.
The length is proportional to the searching parameter K and
can be pre-computed. The linear probing step can be paralleled
in the warp level—all threads in a warp probe the memory and
locate the insertion/deletion location by a warp reduction. We
limit the parallel probing in the warp level because the linear
probing does not need to probe many locations. Probing one
memory location for each thread in a warp (32 threads) is
usually sufficient to find a valid insertion/deletion location.

Bloom filter. We observe that the visit test does not have to
be answered precisely—false positives can be tolerated while
false negatives may incur heavy computation overhead. False
positives (visited tells us an element is visited but actually
not) prevent us to search some unvisited vertices—we may
lose some search accuracy when the skipped vertices are
the only path to the queried nearest neighbor. On the other
hand, false negatives (visited tells us a vertex is not visited
but actually we have searched this vertex before) lead us
to search the visited vertices again—it introduces significant
overhead when the revisited vertices are searched and inserted
into the priority queue multiple times. The data integrity
is also influenced, because additional checks are required
to avoid inserting one vertex multiple times in the priority
queue. To occupy less memory, we employ a probabilistic data
structure–Bloom filter [49]–to replace the hash table. Bloom
filter takes a constant small memory footprint that can be
implemented efficiently in GPU settings. In addition, Bloom
filter guarantees no false negatives and the false negatives are
theoretically constrained. Bloom filter works as a counterpart
of the hash table by slightly trades-off the accuracy introduced
by the false positives. The false positive rate is related to the
number of elements inserted into the Bloom filter. In practical,
a Bloom filter with around 300 32-bit integers has less than 1%
false positives when inserting 1, 000 vertices—the accuracy
loss introduced by the Bloom filter is ignorable. Suppose the
key of a data point is also a 32-bit integer, the Bloom filter
method takes at least 3x less memory than the hash table.
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Fig. 4: Examples for (a) bounded priority queue; (b) selected
insertion; and (c) visited deletion. Each step is built on top
of the previous optimization. The proximity graph referred in
this example is in Fig. 1.

C. Bounded Priority Queue Optimization

The searching algorithm (Algorithm 1) maintains a priority
queue that stores the current found top-k candidates for the
query. It is efficient to implement the priority queue as a
binary heap on CPU. However, straightforwardly transplanting
the binary heap to the GPU is problematic. The binary
heap implementation consumes unbounded memory—we keep
adding vertices into the queue during the search—the size of q
can grow much larger than K. Unbounded memory allocation
is catastrophic to GPU performance. In order to utilize GPU
effectively to store q, we have the following observation:

Observation 1: The searching on graph algorithm (Algo-
rithm 1) only utilizes the first K elements in q.

Proof. After the size of q grows to K+1, denote the (K+
1)th element in q as x. If we will not extract x from q in
future iterations, x will not be included in the top-K result.
Otherwise, we will extract x from q later. At that moment,
topk has already been filled by K elements. Meanwhile, since
there are at least K processed element better than the x, the
condition in Algorithm 1 line 4 is satisfied—the algorithm
exits and x is not included in the top-K result. �

Therefore, we can pop out the worse candidate from q
when its size grows to K + 1. Fig. 4(a) depicts the iterations
of this optimization. Comparing with the original algorithm
(Fig. 1), the bounded priority queue optimization eliminates
the insertions of 5, 13, 14 and bounds q within 3 elements.

We implement a GPU version of symmetric min-max
heap [3] to act as the bounded priority queue. Insertion and
popping the min/max element both take logarithmic time.

D. Selected Insertion Optimization
Since the data structure maintenance is dominated by

memory bandwidth and latency, this stage can be improved
when the data structures have smaller memory footprints. The
memory consumption of both hash table and Bloom filter
is proportional to the number of insertions. We propose the
selected insertion optimization to reduce the insertions to
visited—the memory consumption is decreased as a result.

After a vertex’s distance to the query point is computed,
the vertex is marked as visited in the original algorithm
(Algorithm 1 line 12). We propose a selection before the
insertion: the vertices that have larger distances than all the
K elements in the topk are filtered out—a vertex is marked as
visited and pushed into q only when it is among the current
top-K closest vertices to the query point.

Fig. 4(b) illustrates an example when applying the selected
insertion on top of the bounded priority queue optimization
in (a). In the 3rd iteration, vertex 13 and 14 are not marked
as visited nor pushed into q if we apply the selected insertion
optimization—because topk is fully filled with K candidates
while 13 and 14 have larger distances than all the vertices in
topk. In the 4th iteration, 6 is not inserted into q nor visited
because 4 is worse than all the candidates in topk. Since the
filtered vertex is not marked as visited, we may compute its
distance again when its neighbor is processed in the future
iterations. Note that the top-K candidates (in the topk priority
queue) are guaranteed to become closer and closer to the
query point during iterations. Therefore, a filtered-out vertex
is guaranteed to be filtered out again in future iterations.
With this selected insertion optimization, the correctness and
integrity of the searching algorithm are still preserved—no
vertex is inserted multiple times in the hash tables or priority
queues. The selected insertion method reduces insertions and
GPU memory usages at the cost of computing some distance
multiple times. In this example, the final visited size is 6—it
stores 4 less elements than Fig. 4(a). The distance computation
can be fully paralleled, while the hash table and priority
queue maintenance are sequential. Thus, this computation-
space trade-off is able to improve query performance.

E. Visited Deletion Optimization

We follow the idea of selected insertion and take one step
further to save more GPU memory aggressively—in order to
ensure the correctness of the searching algorithm, we only
need to keep the visited as a hash table that shows whether a
vertex is in the priority queues q and topk. Specifically, after a
vertex is extracted from the priority q and processed, we can
delete it from visited if the vertex does not update the topk.
Also, when the topk is updated, the popped-out vertex can also
be deleted from the visited hash table. The intuition is similar
to the selected insertion optimization: the deleted vertices
(logically re-marked as unvisited) have larger distances than
the current top-K candidates—they will not update the top-K
candidates nor be inserted into the priority queue q in future
iterations. Fig. 4(c) shows an example. When applying the
visited deletion optimization, the hash table visited is exactly
the union of q (size at most K) and topk (size at most K).
Therefore, the size of visited is bounded by 2K.

The visited deletion optimization requires the deletion op-
eration on visited. The deletion operation of hash table can be
performed in constant time. While our hash table alternative–
Bloom filter–does not support deletion. We choose Cuckoo
filter [14] as the hash table probabilistic data structure alter-
native to validate the visited deletion optimization.



Comparing with the original algorithm in Fig. 1 and the
running example in Figure4(c), we can observe that we utilize
almost 50% less memory by applying our 3 optimizations. In
real applications, the searching takes hundreds of iterations—it
yields more memory savings than this toy example.

V. CANDIDATE LOCATING

Basic candidate locating. In the candidate locating stage,
one thread in the warp (say, thread 0) is responsible to extract
the vertex id that is closest to the query point, and the
thread adds the current unvisited neighbor vertices into a list
candidate. In Figures 3, 2, 4, 5, 7 are located and stored in
candidate for the distance computation stage. Since this stage
is simple and does not involve complicated computations, one
thread can handle the task efficiently.

Multi-query in a warp. In the basic candidate locating
method, other threads are idle when thread 0 extracting the
vertex from the priority queue. We can process multiple
queries in a warp to improve thread utilization. For example,
consider we are processing 4 queries in a warp. We construct
priority queues and hash tables for each query. 4 active threads
(say, threads 0, 1, 2 and 3) extract the vertex id from their
corresponding q. Although we have more active threads, the
disadvantage is that we have to create a separate set of data
structures (priority queues and hash tables) for each query
processed in this warp. It is not clear to choose the best
number of queries in a warp. We discuss this problem in the
experimental evaluations (Section VIII-C).

Multi-step probing. The recent GPU BFS studies [44],
[45] suggest a strategy that expands adjacent neighbors in
parallel. In our graph searching problem, it corresponds to
extract multiple vertices from q instead of only the first vertex.
Multi-step probing fills more vertices into the candidate list.
Unlike the general BFS problem, searching on the proximity
graph usually goes along the direction to the query point in a
small number of steps. Therefore, the neighbors of the current
processing vertex are more likely to be the head of the priority
queue. The multi-step probing may waste the probing memory
accesses and distance computations on suboptimal candidates.
Its effectiveness is evaluated in Section VIII-C.

VI. BULK DISTANCE COMPUTATION

We now address the issue with heady distance computations
in graph-based ANN methods. The bulk distance computation
stage takes the vertices in the candidate list as input, fetches
the corresponding data from the dataset, computes their dis-
tances to the query point, and outputs the results into an array
in the shared memory (Fig. 3). All threads in the block are
involved in this stage–each thread takes charge of a subset of
dimensions to compute a partial distance. Afterwards, thread
0 aggregates the partial distances of all warps into one value
through a shfl down warp reduction. The aggregated distance
for the ith element in candidate is stored in disti.

Instead of simply computing the distance for each candi-
date concurrently, the above parallel strategy is more cache-
friendly. In the proposed parallel reduction, 32 threads are

organized to access contiguous memory addresses. If we pro-
cess the candidates concurrently, the memory access pattern of
each thread is independent—more cache misses are generated.

This parallel reduction distance computation method can be
applied to common popular ANN distance measures such as
p-norm distance, Cosine similarity, and inner product.

VII. OUT-OF-GPU-MEMORY DATASETS

In this section, we discuss the solution to tackle out-of-
GPU-memory datasets. This problem is particularly emergent
for storing high-dimensional data. Often the size of the graph
index is much smaller—it is proportional to the degree×#data,
where degree is the degree limit of the graph index and #data
is the number of data points in the dataset. Empirically, it is
sufficient to use 16 for the degree—the graph index is under 1
GB for millions of data points. For example, the 16-degree
graph index size of 8 million 784-dimensional data points
takes 988 MB, while the dataset size is 24 GB. For using GPU
to accelerate graph searching, we need to reduce the dataset
size to store it in the GPU. Accordingly, we employ random
hashing techniques that encode high-dimensional data into a
bit vector. Then the hashed dataset may fit in GPU memory,
and distances are computed on the low-dimensional bits.

1-bit random projection. Among numerous probabilistic
hashing methods, in this paper we focus on introducing a
popular method named “1-bit random projections” [9], [25],
[40]. Formally, for two data vectors u, v ∈ Rd, we generate a
random vector r ∈ Rd with entries in iid standard normal.
Then Pr (sgn(< u, r >) = sgn(< v, r >))) = 1 − θ(u,v)

π ,
where θ(u, v) is the angle between u and v. If entries of r are
sampled from iid cauchy instead of normal, then this collision
probability is closely related to the χ2 similarity [40]. With h
independent random vectors, each data point is mapped into
an h-bit vector. The hamming distance between the bit-vectors
becomes an good estimate of the similarity in the original data
(if h is not too small). In the implementation, h can be set as
a multiple of 32 so that the bit vector can be stored as several
32-bit unsigned integers. This way, the memory footprint of a
bit vector equals to the space of h/32 single-precision floating
values. We investigate the hashing performance for out-of-
GPU-memory dataset scenario in Section VIII-H.

Although they are not studied here, other techniques such
as sharding are also applicable to the scalability challenge. For
example, when multiple GPUs are considered, we can shard
the data for each GPU, build a graph index for each shard,
perform graph search on each GPU and merge the results.

VIII. EXPERIMENTS

In this section, we provide a detailed investigation on 6 real
datasets to analyze the effectiveness of the proposed system.

Implementation. We implement SONG as a C++11 proto-
type. The code is compiled with g++-6.4.0 enabling the “O3”
optimization. The GPU CUDA code is complied with nvcc
from the CUDA 10.0 that enables “-Xptxas -O3” optimization.
SONG loads pre-built graph index generated by NSW [46]. We
choose NSW since it is a general and flexible proximity graph



construction algorithm. Other alternative graph construction
algorithms are also adaptable to our acceleration framework.

Hardware System. We execute the experiments on a single
node server. The server has one Intel Xeon Processor E5-2660
(64 bit)–8 cores 16 threads–and 128 GB of memory. Ubuntu
16.04.4 LTS 64-bit is the operating system. The GPU we use
on the server is NVIDIA TESLA V100.

GPU Memory Hierarchy. The GPU L1 cache is con-
figurable: we can allocate a portion of the L1 cache as
shared memory. The L1 cache has lower latency and higher
bandwidth than the GPU global memory. Meanwhile, the
L1 cache capacity is limited: 96 KB per SM. We allocate
shared memory from the L1 cache for the heaps that store
the searching candidates and the top-k results, the working
query point, and the bulk computed distances. These data
structures are frequently accessed during the graph searching
algorithm. Moreover, their sizes are bounded and fit in the
L1 cache. The visited hash table is not bounded when we
do not apply any proposed optimization. Since its size can
grow beyond the L1 cache capacity, we can only put them in
the global memory. With our proposed selected insertion and
visited deletion optimization, the hash table size is bounded by
the searching parameter K so that we can store it in the shared
memory to accelerate the hash table probing and updating. The
dataset and the graph index cannot fit in the L1 cache, thus,
we store them in the global memory.

Compared algorithms. The compared algorithms are
HNSW—the state-of-the-art ANN method on CPUs, and
Faiss—the top GPU ANN system for large scale data. Other
studies [4], [36] have shown that other types of algorithms
such as tree-based, hashing-based approaches have inferior
performance. We do not include them as competitors in this
paper. We use the code of Faiss and HNSW from their GitHub
repository. Especially, there are multiple implementations of
HNSW, we choose the implementation from NMSLIB (the one
with the best performance in ANN Benchmark1). To make a
fair comparison, we vary parameters of HNSW and Faiss over
a fine grid. Then their best results are considered.

Methodology. The index of each algorithm is pre-built.
The index construction time is not included in the experiments.
Especially, SONG does not generate its own index. Instead,
we use the same graph index as NSW (similar to HNSW but
no hierarchical structures) for SONG. We run HNSW with one
single thread: since HNSW supports inter-query parallel, we
can assume the performance of HNSW is linearly scalable to
the number of threads. For Faiss and SONG, we execute the
queries in one batch on one single GPU. Similar to HNSW,
Faiss and SONG can also linearly scale with multiple GPU
cards. Comparing with the single-threaded HNSW gives us a
factor that shows how many CPU threads can be replaced with
one GPU. The performance are evaluated by searching time
(Query Per Second) and retrieval quality (recall).

Searching Time. We measure wall-clock time of each algo-
rithm and present the number of answered Query Per Second

1https://github.com/erikbern/ann-benchmarks

(throughput) as the execution time measurement. We choose
Query Per Second as the metric instead of the execution
time of a query batch, because Query Per Second can be
compared without normalizing query batch to the same size.
All experiments are performed at least 3 times. We report the
average value as the result.

Retrieval Quality. Recall is a widely-used retrieval quality
measurement for ANN algorithms. Suppose the candidate
point set returned by an algorithm is A, and the correct K
nearest neighbor set of the query is B, then the recall is
defined as: Recall(A) = |A∩B|

|B| . A higher recall corresponds
to a better approximation to the correct nearest neighbor result.

Dataset Dim #Data #Query Size in HDF5
NYTimes 256 289,761 10,000 301 MB
SIFT 128 1,000,000 10,000 501 MB
GloVe200 200 1,183,514 10,000 918 MB
UQ V 256 3,295,525 10,000 3.2 GB
GIST 960 1,000,000 10,000 3.6 GB
MNIST8m 784 8,090,000 10,000 24 GB

TABLE I: Specifications of the datasets.

Data. We use 6 ANN benchmark datasets for experi-
ments: NYTimes2, SIFT3, GloVe2004, UQ V5, GIST3 and
MNIST8m6. The specification of the datasets are shown in
Table I. The dimensions of our test datasets varies from
128 (SIFT) to 960 (GIST), while the number of data points
ranges from 290,000 (NYTimes) to 8,090,000 (MNIST8m).
MNIST8m is the largest dataset (24 GB) and NYTimes is
the smallest (301 MB). The distribution of the datasets also
diverges—NYTimes and GloVe200 are heavily skewed while
SIFT, UQ V, GIST and MNIST8m have less skewness. We use
MNIST8m for the study on out-of-GPU-memory scenarios.7.

A. ANN Search Performance Comparisons

ANN performance comparison results of SONG, Faiss and
HNSW are shown in Fig. 5. Table II presents the detailed
results of the speedup over Faiss.

0.5 0.6 0.7 0.8 0.9 0.95
SIFT 5.9 5.6 6.6 7.8 6.8 N/A
GloVe200 14.0 10.7 N/A N/A N/A N/A
NYTimes 20.2 N/A N/A N/A N/A N/A
GIST 4.8 6.2 7.7 N/A N/A N/A
UQ V 16.4 13.7 14.2 14.2 N/A N/A

TABLE II: Speedup over Faiss from the moderate recall (0.5)
to the high recall (0.95) for top-10. The N/A means Faiss
cannot reach the given recall. It is consistent with previous
studies [4], [6], [19], [36], [61]. The top-1 speedup is omitted.
It has a similar trend and slightly better speedup in general.

2https://archive.ics.uci.edu/ml/datasets/bag+of+words
3http://corpus-texmex.irisa.fr/
4https://nlp.stanford.edu/projects/glove/
5http://staff.itee.uq.edu.au/shenht/UQ VIDEO/
6https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html
7The number of queries in the original GIST dataset is 1,000. In order to

eliminate the difference of query batch size with other datasets, we duplicate
the GIST queries 9 more times to scale the queries to 10,000
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Fig. 5: Performance comparison of SONG, Faiss, and HNSW
on five datasets. The results for top-1, 10, 50, and 100 are
shown for NYTimes dataset, and top-10, 100 for other datasets.
Y-axis (Queries Per Second, or QPS) is in logarithmic scale.
In each figure, curves closer to top-right are better.

Table II shows the speedup over Faiss from moderate recalls
(0.5) to high recalls (0.95) for top-10. SONG is 4.8 − 20.2
times faster than Faiss at the same recall. Besides, Faiss cannot
reach high recalls for GloVe200, NYTimes and GIST. Com-
pared with single-thread HNSW, SONG is around 50-180x
faster—it implies SONG accelerated by 1-GPU can obtain
about 3-11x speedup over HNSW on a 16-thread CPU server.

ANN searching on NYTimes and GloVe200 is difficult—the
data points are skewed and clustered. Faiss has a competitive
performance with SONG in the low recall ranges (recall
< 60%). As a quantization-based method, Faiss is limited by
the quality of its generated quantization code. For NYTimes
and GloVe200, the Query Per Second drops dramatically at
higher recalls. With increasing the size of searching priority
queues, SONG can achieve more than 95% recall. Meanwhile,
SONG performs around 100 times better than HNSW when the
recall is around 80%. SIFT and UQ V are “friendly” to the
ANN searching—because of the un-clustered distribution of
the dataset, ANN methods can quickly locate the neighboring
points of a query point. SONG achieves 99% recall with a
priority queue size around 100 on SIFT. GIST has the largest
number of dimensions (i.e., 960) among these 5 datasets. Faiss
has a closer gap to SONG because the quantization method
of Faiss encodes the high dimensional data into codes in a
much shorter length. Thus Faiss is required to perform fewer
computations. Despite this, SONG still outperforms Faiss ow-
ing to its massively paralleled distance computation. In most
recall ranges, SONG is about 180 times faster than HNSW.

Top-K nearest neighbors. The trends of the compared
algorithms are consistent when K increases—the lines in the
figure shifts to the left. Intuitively, finding 99% of top-1 is
easier than obtaining 99% of the correct candidates of all top-
10 data points. By exploring the same searching space, the
recall drops when the problem becomes more difficult.

SIFT GloVe200 NYTimes GIST UQ V
SONG 123 MB 145 MB 36 MB 123 MB 403 MB
Faiss 32 MB 38 MB 10 MB 32 MB 106 MB

TABLE III: Index memory size.

Index memory size. Table III presents the index memory
size comparison. Due to the complex structure of the graph,
the graph index of SONG consumes more memory than the
inverted index of Faiss. This (relatively small) difference is
acceptable for the GPU memory capacity.

Speedup over HNSW. We list the SONG speedup ratio to
HNSW in Fig. 6 for top-10 and top-100 results. For SIFT and
GloVe200, the speedup ranges from 50 to 100 for most recall
values. NYTimes is an interesting case: with our optimizations
that let SONG use less memory, the Query Per Second of
SONG drops slower than HNSW in NYTimes dataset and thus
the speedup of SONG keeps increasing when having larger
recalls. The speedup of GIST is more significant than SIFT
and GloVe200 because GIST has more dimensions—SONG
has more chances to parallel the distance computations.
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Fig. 6: Speedup over HNSW.

B. Selected Insertion and Visited Deletion Optimizations

Fig. 7 depicts the behaviors of the proposed selected
insertion and visited deletion optimizations over the hash
table and its alternatives. We compare performance among
the basic hash table (SONG-hashtable), hash table with se-
lected insertion (SONG-hashtable-sel), hash table with both
selected insertion and visited deletion (SONG-hashtable-sel-
del), and two probabilistic data structure alternatives (SONG-
bloomfilter and SONG-cuckoofilter).
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Fig. 7: Performance comparison for multiple hash table alter-
natives at top-100 on SIFT and NYTimes. The right column
is the zoomed-in view of the first column.

For SIFT, the hash table enabled both selected insertion
and visited deletion optimizations has the best performance.
Selected insertion does not make a significant difference from
the basic hash table solution, because we only need a small
priority queue size to achieve high recall in SIFT. The visited
deletion optimization works well in SIFT. The Bloom filter
and Cuckoo filter solution reside between basic hashtable and
hashtable-sel-del. Although they are inferior to hashtable-sel-
del, they consume less GPU memory—both of them can be an
alternative solution when we are short-hand of GPU memory.

When the data distribution is “unfriendly” in NYTimes, we
have to enlarge the priority queue size to a few thousand to
obtain high recalls. We can observe a similar trends. In addi-

tion, because of the overhead of hash table deletion operations,
hashtable-sel outperforms others in the beginning. However, it
runs out of memory after the recall reaches around 81%—its
performance drops dramatically. At the same time, hashtable-
sel-del uses much less memory. Therefore, hashtable-sel-del
becomes the fastest solution among other methods. The two
probabilistic data structures have competitive performance in
the high recall region because they consume less memory.

C. Searching Parameter

We investigate the effectiveness of multiple searching pa-
rameters of the candidate locating stage in this section. We
vary one searching parameter, setting other parameters as 1
and fix the hash table alternative as hashtable-sel-del. Due to
the page limitation, we only show a subset of the experiment
results. The omitted experiments tell similar trends.
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Fig. 8: The effect of multi-query in a warp.
Multi-query in a warp. As depicted in Fig. 8, we vary

the number of queries in a warp among 1, 2 and 4. Although
the number of active threads increases when we process more
queries in a warp, the query performance goes down. The
major time spent in the candidate locating stage is to loads
the graph data from the global memory—it is bounded by
the memory instead of the computation. Therefore, having
more active threads does not improve performance. Accessing
multiple parts of the graph makes the memory access pattern
more unpredictable. Meanwhile, processing multiple queries in
a warp also constructs multiple copies of priority queues and
hash tables—it consumes more GPU memory. Thus, inferior
performance is observed when solving multi-queries in a warp.
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Fig. 9: The effect of multi-step probing.

Multi-step probing. The effect of multi-step probing is
presented in Fig. 9. As a common parallel solution in GPU
BFS, multi-step probing does not improve the performance
in ANN graph searching. The reason is that the neighbors
of the current processing vertex are likely to be the head of
the priority queue. The multi-step probing wastes the probing



memory access and distance computations on unrelated can-
didates. In high recall ranges, the performance gap is much
smaller because we have to probe a lot of steps to find very
accurate nearest neighbor candidates—in this case, multi-step
probing does not waste the operations.

D. Where Does The Time Go?

We analyze the time percentage consumed by each compo-
nent on GloVe200 and GIST in Fig. 10.

Data transfer overhead. In order to use a GPU to process
queries, we have to first transfer the query data from the CPU
memory (host) to the GPU card (device). After the queries are
completed on the GPU, we have to copy the result stored on
GPU back to the CPU memory. These two memory transfer
are referred as HtoD and DtoH, respectively. The left part of
Fig. 10 shows the time distribution of data transfers and kernel
execution. We can observe that the kernel execution takes the
major execution time (more than 96% on GloVe200 and more
than 89% on GIST). Since the HtoD memory transfer cost
a constant time, the percentage HtoD takes decreases when
the kernel execution becomes more time-consuming—we use
larger priority queue size. On the other hand, more candidates
are returned when we set a larger K. Thus, the DtoH time
percentage slightly increases.
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Fig. 10: Time distributions for GPU memory transfer/kernel
execution and for each stage inside a kernel.

Time distribution over 3 stages. The right part of
Fig. 10 depicts the time distribution of candidate locating,
bulk distance computation and data structure maintenance. For
both GloVe200 and GIST, data structure maintenance takes the
major execution time. Since GloVe200 has 200 dimensions and
GIST has 960 dimensions, the distance computation on GIST
takes 8%-20% more time than the one on GloVe200. However,
the maintenance time occupies a larger ratio on GIST. The
selected insertion filters more vertices on GloVe200—more
distance computations are required to save the GPU memory
and data structure maintenance cost.

E. Query Batch Size

Fig. 11 illustrates the searching performance on different
batch sizes. We sample 100 and 1k queries from the SIFT
queries to construct small query batches. On the other hand, in
order to investigate the searching performance on large batch
sizes, we duplicate SIFT query dataset to 100k and 1m queries.
As expected, the Query Per Second increases when we have
a larger batch. The data transferring overhead within CPU
memory and GPU is not negligible when we have a small
batch. In addition, we cannot fully use the thousands of cores
on GPU with a small number of queries. The performance gets
better with larger batch since the overhead is amortized to the
number of queries in the batch and there are sufficient queries
for the massive parallelism on GPU. The Query Per Second
reaches the top after having a batch with 100k. Even larger
batch (1m) does not improve the performance anymore. The
query batch size is 10k in previous experiments—the speedup
to HNSW can be larger when we use larger query batches.
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Fig. 11: Batch size impacts.
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Fig. 12: SONG for NSG.

F. Generalization to Other Graph Methods

SONG is a general GPU framework for graph-based meth-
ods that accelerates the graph searching algorithm. Besides
HNSW, SONG can be applied to other graph-based methods.
Here we show the generalization to Navigating Spreading-out
Graph [19] (NSG) as an example. We extract the graph index
built by NSG and employ SONG to answer the queries on the
extracted NSG index. The result is depicted in Fig. 12. For
high recalls (>0.8), SONG has a 30-37x speedup to NSG.

G. Performance on Various GPUs
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Fig. 13: SONG on different GPUs: V100, P40 and TITAN X.

Fig. 13 demonstrates the performance of SONG on various
GPUs. We include 3 GPUs in the comparison: NVIDIA
TESLA V100 (5,120 cores, 32 GB memory), NVIDIA TESLA



P40 (3,840 cores, 24 GB memory) and NVIDIA TITAN X
(3,584 cores, 12 GB memory). The performance of SONG
follows the same trend on different GPUs—the same trends
are shown in the figure. The gaps of these lines are consistent
with the computation power of the GPUs.

H. Out-of-GPU-Memory Dataset
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Fig. 14: Hashing on MNIST8m. We sample 1,000,000 data
(MNIST1m) to demonstrate the hashing effectiveness.

We investigate the effect of hashing dimension reduction
in Fig. 14. We perform the experiment on TITAN X to
show the out-of-GPU memory scenario—TITAN X has the
smallest memory (12 GB) among our 3 GPUs. MNIST8m (24
GB) cannot fit in the GPU memory of TITAN X. We first
sample 1 million data points from MNIST8m to verify the
performance of the hashing method. As illustrated in the left
part of Fig. 14, we can observe that the searching performance
on the 128-bit hashed dataset is comparable to the original
full 784 dimensional data. For the recall ranges less than
0.9, the performance of the hashed dataset is better than the
original one because distance computations of hashed datasets
are faster—the distance is computed in much lower dimensions
than the original 784 dimensions.

Hash bits 32 64 128 256 512 Original
Size (MB) 31 62 124 247 494 2.4× 104

TABLE IV: Hashed dataset size of MNIST8M.

Table IV presents the hashed dataset size. With hashing,
the size of the dataset becomes hundreds of times smaller and
fit in the GPU memory. For example, 128-bit hashing makes
the original dataset more than 190 times smaller while having
comparable query performance to the original dataset. After
applying the hash technique on MNIST8m, it can fit in the
GPU memory. The performance on hashed MNIST8m has a
consistent trend with MNIST1m, as shown in Fig. 14.

I. CPU Implementation of SONG

Besides the GPU optimizations, we implement a CPU
version of SONG that is heavily engineered to improve the
performance. As shown in Fig. 15, our CPU implementation
outperforms HNSW on NYTimes and UQ V.

IX. RELATED WORK

ANN methods. Flann [51] is an ANN library based on
composite tree algorithm. Annoy is based on a binary search
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Fig. 15: SONG on CPU vs. HNSW (on CPU).

forest. FALCONN [1] is a multi-probe hashing ANN method.
As the representative implementations in the tree-based and
hash-based algorithms, their performance is inferior to graph-
based methods [19]. For graph-based methods, HNSW [47]
is based on a hierarchical graph and DPG [42] is based on
an undirected graph selected from a kNN graph. NSG [19]
contains only one graph with a navigating node where the
search always starts. They share the same ANN graph search-
ing. SONG can accelerate most of the algorithms in the graph-
based ANN family. Faiss [36] is the fastest GPU quantization-
based ANN library. Our GPU ANN system is graph-based.

GPU graph searching. Data layouts in GPU graph search-
ing is investigated in [37], [38], [48], [53]–[55]. They par-
tition or stream the graph to fit into the GPU memory. In
our ANN searching applications, we consider the case that
there is sufficient GPU memory. iBFS [44], GunRock [62],
Enterprise [45], in-cache query [28] and GTS [38] constructs
multiple frontiers and search them concurrently. Our ANN
graph searching is different from the normal BFS—we extract
the vertex from the priority queue for the next iteration. Virtual
Warp [29], CuSha [37], Fine Par [65] and MapGraph [20] pro-
pose algorithm to schedule tasks and reduce warp divergence.
In our ANN application, the searching architecture has to be
re-designed to compute high-dimensional distances.

Maximum inner product search (MIPS). The MIPS
problem has attracted a lot of attentions these days as re-
searchers and practitioners have identified a wide range of
related applications, for example, matching users with ads in
sponsored search using ANN by considering a weight (such as
the bid value for an ad) to each vector [15]. The recent MIPS
method [67] has adopted SONG as the underlying algorithm.

X. CONCLUSION

In this paper, we introduce SONG—an ANN search system
that performs graph-based ANN searching on GPUs. We show
a novel framework that decouples the searching on graph al-
gorithm into 3 stages to parallel the high-dimensional distance
computation. We propose a combination of data structures
and optimizations for GPU ANN graph searching. We present
selected insertion and visited deletion optimizations to reduce
the GPU memory consumption. We evaluate experimentally
SONG and compare it against HNSW and Faiss on 6 real-
world datasets. The results confirm the effectiveness of SONG,
which has 50-180x speedup compared with single-thread
HNSW, while it substantially outperforms Faiss.
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product search on graph. In NeurIPS 2019.


