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Abstract

The DANE algorithm is an approximate Newton method popularly used for communication-
efficient distributed machine learning. Reasons for the interest in DANE include scalability
and efficiency. Convergence of DANE, however, can be tricky; its appealing convergence
rate is only rigorous for quadratic objective function, and for more general convex functions
the known results are no stronger than those of the classic first-order methods. To remedy
these drawbacks, we propose in this paper some new alternatives of DANE which are more
suitable for analysis. We first introduce a simple variant of DANE equipped with backtrack-
ing line search, for which global asymptotic convergence and sharper local non-asymptotic
convergence rate guarantees can be proved for both quadratic and non-quadratic strongly
convex functions. Then we propose a heavy-ball method to accelerate the convergence of
DANE, showing that nearly tight local rate of convergence can be established for strongly
convex functions, and with proper modification of algorithm the same result applies glob-
ally to linear prediction models. Numerical evidence is provided to confirm the theoretical
and practical advantages of our methods.

Keywords: Communication-efficient distributed learning, Approximate Newton method,
Global convergence, Heavy-Ball acceleration.

1. Introduction

Distributed learning is a promising tool for alleviating the pressure of ever-increasing data
and/or model scale in modern machine learning systems. In this paper, we study the
distributed optimization algorithms for solving the following empirical risk minimization
(ERM) problem

min
w∈Rp

F (w) :=
1

N

N∑
i=1

f(w;xi, yi), (1)
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where {xi, yi}Ni=1 are training samples, f is a smooth convex loss function. Such a finite-
sum formulation encapsulates a large body of statistical learning problems including least
square regression, logistic regression and support vector machines, to name a few. We
assume without loss of generality that the training data D = {D1, ..., Dm} with N = mn
samples is evenly and randomly distributed over m different machines; each machine j
locally stores and accesses n training samples Dj = {xji, yji}ni=1. Let us denote Fj(w) :=
1
n

∑n
i=1 f(w;xji, yji) the local empirical risk evaluated on Dj . The global objective is then

to minimize the average of these local empirical risk functions:

min
w∈Rp

F (w) =
1

m

m∑
j=1

Fj(w). (2)

Recently, significant interest has been dedicated to designing distributed algorithms and
systems that have flexibility to adapt to the communication-computation tradeoffs, e.g., for
parameter estimation (Jaggi et al., 2014; Shamir et al., 2014) and statistical inference (Jor-
dan et al., 2018; Wang et al., 2017a). A common spirit of these communication-efficient
methods is trying to quickly optimize the objective value (or estimation accuracy) to certain
precision using a minimal number of inter-machine communication rounds.

In this paper we revisit the Distributed Approximate NEwton (DANE) algorithm pro-
posed by Shamir et al. (2014) for solving (2), which is now one of the most popular second-
order methods for communication-efficient distributed machine learning. We analyze its
convergence behavior, expose problems and issues, and propose alternative algorithms more
suitable for the task. We contribute to derive some new results, insights and algorithms,
using a unified and more elementary framework of Lyapunov analysis.

1.1 Review of the DANE algorithm

For the distributed ERM problem (2), the iteration (communication) complexity of first-
order distributed approaches including (accelerated) gradient descent and ADMM (alternat-
ing direction method of multipliers) (Boyd et al., 2011) tend to suffer from the unsatisfactory
polynomial dependence on condition number. To tackle this problem, Shamir et al. (2014)
proposed the DANE method that takes advantage of the stochastic nature of problem: the
i.i.d. data samples {xi, yi} are uniformly distributed and each local subproblem should be
close to the global problem when data size becomes sufficiently large. At the t-th iteration
loop of DANE, in parallel each individual worker machine j optimizes a local subproblem

w
(t)
j = arg minw P

(t−1)
j (w) in which

P
(t−1)
j (w) :=〈η∇F (w(t−1))−∇Fj(w(t−1)), w〉+

γ

2
‖w − w(t−1)‖2 + Fj(w). (3)

Then the master machine computes and broadcasts the averaged model w(t) = 1
m

∑m
j=1w

(t)
j

and its full gradient ∇F (w(t)) = 1
m

∑m
j=1∇Fj(w(t)) in a map-reduce fashion.

The construction of the local objective (3) is inspired by the idea of leveraging the global
first-order information and local higher-order information for local processing. If F (w) is
quadratic with condition number κ = L/µ (see Table 2 for notation), then the commu-
nication complexity (with high probability) of DANE to reach ε-precision was shown to
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(a) Quadratic loss: communication complexity (b) Logistic loss: global convergence

Figure 1: (a) The number of communication rounds (y-axis) versus number of machines (x-
axis) curves of DANE on a synthetic ridge regression task (N = 2000, p = 200).
Here we set µ = O(1/

√
mn), γ = O(1/

√
n) and precision ε = 10−5. Roughly

speaking, the communication complexity scales linearly with respect to
√
m. (b)

Illustration of the global convergence behavior of DANE-LS and InexactDane
on in a synthetic logistic regression task (N = 1000, p = 200,m = 4) with γ =
O(1/

√
n). Each experiment is randomly replicated 10 times.

be O
(
κ2n−1 log(1/ε)

)
which has a much improved dependency on the condition number κ

that could scale as large as O(
√
mn) in statistical learning problems. The InexactDane

(Reddi et al., 2016) method is an inexact implementation of DANE that allows the local
sub-problem to be solved inexactly but still possess the above improved communication
complexity bounds for quadratic problems. By applying Nesterov’s acceleration technique,
AIDE (Reddi et al., 2016) and MP-DANE (Wang et al., 2017b) further reduce the commu-
nication complexity to O

(√
κn−1/4 log(1/ε)

)
in the quadratic case, which is nearly tight in

view of the lower bound established by Arjevani and Shamir (2015).

On top of the high-efficiency in communication, another practically appealing aspect
of DANE lies in its versatility. This is because by nature DANE is an algorithm-agnostic
optimization framework, in the sense that the local subproblems can be solved by applying
virtually any algorithms designed for the global problem. From the perspective of imple-
mentation, this enables fast adaptation of the available single-machine algorithm code to
distributed software platform. This contrasts DANE from those algorithm-specific meth-
ods such as DiSCO (Zhang and Xiao, 2015) (rooted from conjugate gradient method) and
DSVRG (Lee et al., 2017; Shamir, 2016) (rooted from SVRG). What’s more, DANE does
not require to access a second-order oracle for its execution, nor does it restrict to any
specific problem structure such as the linear prediction models focused by DSCOVR (Xiao
et al., 2019) and GIANT (Wang et al., 2018).
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Open issues and motivation. Despite the above-mentioned advantages of DANE
and its variants, this family of algorithms still exhibits several issues regarding convergence
properties that are left open to explore, which are raised below.

• Question 1. Is the convergence bound of plain DANE tight even for quadratic prob-
lems? The communication complexity of plain (exact or inexact) DANE is known to
be O

(
κ2n−1 log(1/ε)

)
for stochastic quadratic problems (Reddi et al., 2016; Shamir

et al., 2014). Since for outer-loop communication DANE only needs to access a first-
order oracle of the global problem, we have strong reason to conjecture that the
factor on condition number matching this mechanism should be as sharp as κn−1/2,
even without any momentum acceleration. As visualized in Figure 1(a) for a ridge
regression example with κ = O(

√
mn), it is roughly the case that the number of

communication rounds scales linearly with respect to
√
m. This leaves a potential

theoretical gap between m and
√
m for closing.

• Question 2. Can the strong guarantees of DANE be extended to non-quadratic prob-
lems? The strong communication complexity bounds of DANE-type methods, with
or without acceleration, are so far only rigorous for quadratic problems (Shamir et al.,
2014; Reddi et al., 2016; Wang et al., 2017b). For more generic convex loss functions,
the related bounds are obtained under γ = O(L) which are as slow as those of the
ordinary first-order methods and thus are less informative for theoretical justification
of performance. It is not clear if DANE-type methods can be guaranteed to converge
in the regime γ � L of interest. In Figure 1(b), we plot the convergence curves
of InexactDane under γ = O(Ln−1/2) on a synthetic logistic regression task, from
which we can observe that apparent zigzag effect occurs in the early stage of communi-
cation. Therefore, a natural question to ask is whether the desirable strong guarantees
of DANE can be extended to a wider problem spectrum beyond ridge regression.

The primary goal of this work is to answer Question 1 and Question 2 affirmatively so as
to gain deeper understanding of the convergence behavior of DANE in theory and practice.

1.2 Overview of our contribution

We address the above questions regarding the convergence of DANE and make progress
towards fully understanding DANE both for quadratic and non-quadratic convex functions.
To achieve this goal, we propose two new alternatives which are more suitable for con-
vergence analysis as well as for algorithm acceleration. We first propose the DANE-LS
algorithm as a slight modification of DANE equipped with backtracking line search. The
motivation of introducing the line search step is to ensure global asymptotic convergence
and facilitate local non-asymptotic analysis for non-quadratic convex problems, which is
key to answering Question 2. As another notable difference, DANE-LS only requires the
master machine (say F1) to solve its local subproblem to obtain the next iterate, while the
worker machines (say Fj , j = 2, ...,m) wait. Such a modification turns out to be beneficial
for improving the convergence analysis for quadratic loss, which answers Question 1.

We then show that DANE can be readily accelerated via applying the heavy-ball accel-
eration technique (Polyak, 1964; Qian, 1999). To this end, we modify the iteration of DANE
by adding a small momentum term β(w(t−1)−w(t−2)) for some β > 0 to the current iterate
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Method Quadratic Problem Non-quadratic Problem

Without
momentum
acceleration

DANE O
(
κ2

n log
(

1
ε

))
O
(
κ log

(
1
ε

))
InexactDane O

(
κ2

n log
(

1
ε

))
O
(
κ log

(
1
ε

))
DANE-LS (ours) O

(
κ√
n

log
(

1
ε

)) Globally convergent with

local rate O
(
p1/2κ√

n
log
(

1
ε

))
With

momentum
acceleration

AIDE O
( √

κ

n1/4 log
(

1
ε

))
O
(√
κ log

(
1
ε

))
MP-DANE O

( √
κ

n1/4 log
(

1
ε

))
7

DANE-HB (ours) O
( √

κ

n1/4 log
(

1
ε

))
Local rate: O

(
p1/4
√
κ

n1/4 log
(

1
ε

))
D2ANE (ours) O

( √
κ

n1/4 log
(

1
ε

))
O
( √

κ

n1/4 log2
(

1
ε

))
Table 1: Comparison of communication complexity bounds of different DANE-type meth-

ods without (top panel) or with (bottom panel) momentum acceleration. All the
bounds for quadratic problem and our results for non-quadratic problem hold with
high probability over the random draw of local i.i.d. data. The other results are
deterministic. The x-mark “7” indicates that the related result was not available
in the corresponding reference. Best viewed in color.

w(t). We call this alternative as DANE-HB. For quadratic problems, we prove that such a
simple momentum strategy boosts the communication complexity of DANE to match those
of AIDE and MP-DANE but with more elementary analysis. As a perhaps more interesting
contribution, DANE-HB can also be shown to exhibit the same sharp bound for strongly
convex and twice differentiable objectives in a vicinity of the minimizer, which has not been
covered by the previous analysis. For the widely used linear prediction models, we further
develop D2ANE as a nested approximated Newton extension of DANE-HB for which we
can showcase that such a sharp convergence bound holds globally.

Highlight of results: Table 1 summarizes our main results on communication com-
plexity of DANE-LS and DANE-HB in stochastic setting and compares them against prior
DANE-type methods. These results are divided into two groups respectively for quadratic
and non-quadratic strongly convex problems. We use the big o notation O to hide the
logarithmic factors involving quantities other than ε. As highlighted in the colored cells of
Table 1, we contribute several new theoretical insights into DANE, which are elaborated in
details below.

• The bound highlighted in light red shade gives a positive answer to Question 1. That is,
in the quadratic case, DANE-LS attains a tighter communication complexity bound
O
(
κn−1/2 log(1/ε)

)
than the already known O

(
κ2n−1 log(1/ε)

)
bound for DANE.

Such an improvement is achieved by applying a minimal modification of algorithm
with model averaging removed on the master machine (note that the line search
option of DANE-LS is not activated for quadratic problems). This implies that even
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without any momentum acceleration, DANE actually can converge faster than already
recognized in theory.

• The result highlighted in light blue shade answers Question 2 affirmatively. More
specifically, blessed by the backtracking line search, DANE-LS with arbitrary values
of γ > 0 can be proved to converge globally to the unique minimizer when the objec-
tive function is strongly convex and twice differentiable. In Figure 1(b) we illustrate
the global convergence of DANE-LS when applied to a synthetic logistic regression
task. The benefit of line search to DANE-type methods has also been numerically ob-
served in (Wang et al., 2018), but without theoretical justification. In the late stage
of iteration when the iterate is sufficiently close to the minimizer, the communication
complexity of DANE-LS is upper bounded by O

(
p1/2κn−1/2 log(1/ε)

)
. Here the addi-

tional factor p1/2 arises from invoking uniform concentration analysis to the spectral
norm ‖∇2F1 −∇2F‖ over a bounded domain of interest.

• From the third column of Table 1 we can see that DANE-HB matches AIDE and
MP-DANE in communication complexity for quadratic problem. For non-quadratic
strongly convex loss functions, the results highlighted in light brown shade shows that
DANE-HB possesses a O

(
p1/4√κn−1/4 log(1/ε)

)
communication complexity bound in

a local area around the minimizer. Specially for linear prediction models, by integrat-
ing DANE-HB into an inexact Newton-type quadratic approximation framework, we
can show that an improved near-tight bound O

(√
κn−1/4 log2(1/ε)

)
holds globally

for D2ANE, hence answers Question 2 when algorithm acceleration is considered. In
contrast, the global convergence bound is as slow as O (

√
κ log (1/ε)) for AIDE, while

for MP-DANE such a bound is not available. See Figure 1(b) for an illustration of
the global convergence of D2ANE and Table 3 for additional comparison with some
other relevant distributed learning methods.

1.3 Other related work

Driven by the ever-increasing demand on scaling up machine learning models in modern
distributed computing environment, a vast body of distributed optimization algorithms has
been developed in literature. A substantial number of these works, including the DANE-
type algorithms we work on in this paper, focus on communication-efficient distributed
learning which is preferable when the network has severely limited bandwidth and high
latency (Jaggi et al., 2014; Jordan et al., 2018; Richtárik and Takáč, 2016; Lee et al.,
2017; Wang et al., 2018). For a special class of self-concordant empirical risk functions,
(Zhang and Xiao, 2015) proposed DiSCO as a distributed inexact damped Newton method
attaining the nearly tight communication complexity bound O

(√
κn−1/4 log(1/ε)

)
which

was soon after matched by AIDE for quadratic problems. For large-scale convex linear
models, CoCoA (Jaggi et al., 2014) and CoCoA+ (Ma et al., 2015; Smith et al., 2018)
were developed inside the framework of block coordinate descent/ascent to perform ex-
pensive local computations with the aim of reducing the overall communications across
the network. In the same setting, DSCOVR (Xiao et al., 2019) was proposed as a family
of randomized primal-dual block coordinate algorithms for asynchronous distributed opti-
mization with roughly O (m log(1/ε)) communication complexity. With additional memory
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and preprocessing at each machine, Lee et al. (2017) showed that SVRG (Johnson and
Zhang, 2013) can be adapted for distributed optimization to attain O(1) communication
complexity, and nearly linear speed-up in first-order oracle computation complexity can be
achieved in the regime where sample size dominates condition number. Specifically for lin-
ear models, a more efficient implementation of distributed SVRG method was proposed and
analyzed by Shamir (2016) under the without replacement sampling strategy. By combining
DSVRG with minibatch passive-aggressive updates, the MP-DSVRG method was shown to
have provable better tradeoff in communication-memory efficiency for quadratic loss func-
tion (Wang et al., 2017b). The equivalence between a distributed implementation of SVRG
and InexactDane has been revealed in the framework of Federated SVRG (Konečnỳ et al.,
2016) for distributed machine learning with extremely large number of nodes. Recently, the
GIANT method (Wang et al., 2018) improves over DANE for linear prediction models under
the assumption that sample size should be sufficiently larger than feature dimensionality.
For sparse statistical estimation, EDSL (Wang et al., 2017a) and DINPS (Liu et al., 2019)
respectively extend DANE to solving `1-regularized and `0-constrained ERM problems, ob-
taining analogous improvement in communication bounds. Last but not least, the well
designed distributed learning platforms such as MapReduce (Dean and Ghemawat, 2008),
Apache Spark (Zaharia et al., 2016), Petuum (Xing et al., 2015) and Parameter Server (Li
et al., 2014) have significantly facilitated the system implementation of these algorithms.

1.4 Organization and notation

Paper organization. The rest of this paper is organized as follows: In §2 we introduce
DANE-LS as a new alternative of DANE with backtracking line search and analyze its
convergence rate for quadratic and non-quadratic convex functions. In §3, we propose
DANE-HB to accelerate DANE using heavy-ball approach, along with a variant specifically
designed for linear prediction models. The numerical evaluation results are presented and
discussed in §4. Finally, we conclude this paper in §5. All the technical proofs of theoretical
results are deferred to the appendix section.

Notation. The key quantities and notations that commonly used in our analysis are
summarized in Table 2. In stochastic setting, unless otherwise stated, we use the big o
notation O that hides inside the logarithmic factors involving quantities other than ε.

2. Globalization of DANE with Sharper Analysis

In this section, we provide a global and sharper analysis of the plain version of DANE
method without applying any momentum acceleration. The analysis is actually conducted
on a modified version of DANE augmented with backtracking line search, while only a
master machine is allocated to do local computation in an inexact manner. Such simple
modifications turn out to be beneficial for the global asymptotic and local non-asymptotic
analysis of DANE.

2.1 Leveraging backtracking line search

Since DANE is essentially an approximated second-order method, it is a natural idea to
leverage an additional line search operation to hopefully guarantee global convergence while
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Notation Definition

m number of worker machines
n number of training samples distributed on each individual worker machine

N = mn total number of training samples
p number of features

F (w) the global risk function
F1(w) the local risk function on the master machine
L Lipschitz smoothness parameter of the gradient vector ∇F (w)
ν Lipschitz smoothness parameter of the Hessian matrix ∇2F (w)
µ The strong convexity parameter of F (w)

κ = L/µ the condition number of F (w)
β momentum strength coefficient for heavy-ball acceleration
ε sub-optimality of the global problem
ε sub-optimality of the local subproblem
γ the regularization strength parameter of the local subproblem
δ the failure probability bound in stochastic setting

[N ] the abbreviation of the index set {1, ..., N}
‖x‖ =

√
x>x the Euclidean norm of a vector x

λmax(A) the largest eigenvalue of a matrix A
λmin(A) the smallest eigenvalue of a matrix A
A � B A−B is symmetric, positive semi-definite
A � B A−B is symmetric, positive definite
‖A‖ the spectral norm of matrix A
ρ(A) the spectral radius of A, i.e., its largest (in magnitude) eigenvalue

Table 2: Table of notation.

preserving the appealing local non-asymptotic convergence rate. In practice, the numerical
evidence in (Wang et al., 2018) has already demonstrated, although without any theoretical
support, that backtracking line search does help to improve the convergence performance
of DANE-type methods. Inspired by these, we propose the DANE-LS (DANE with Line
Search) method which is outlined in Algorithm 1. The notable differences between DANE-
LS and DANE/InexactDane at each iterate round are summarized in below:

• For non-quadratic problems, two optional backtracking line search steps (as high-
lighted in light blue shade) are conducted on the master machine. The Option-I
needs to evaluate the global objective value and hence requires additional communi-
cation cost. By only accessing the locally available information, the Option-II is free
of evaluating the global objective value but at the price of introducing an additional
hyper-parameter ν representing the smoothness of Hessian.

• As another notable difference, only a master machine is in charge of solving a local
subproblem associated with F1(w) to obtain the next iterate, during which time the
other worker machines stay idle. Such a master-slave architecture has been widely
adopted and investigated in many distributed machine learning and statistical infer-
ence approaches (Jordan et al., 2018; Lee et al., 2017; Shamir, 2016; Wang et al.,
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Algorithm 1: DANE with backtracking Line Search: DANE-LS(γ, ρ, ν)

Input : Parameters γ, ν > 0, ρ ∈ (0, 1/3).
Output: w(t).
Initialization Set w(0) = 0 or w(0) ≈ arg minw F1(w).
for t = 1, 2, ... do

/* Global computation on master machine associated with F1(w) */

Compute ∇F (w(t−1)) = 1
m

∑m
j=1∇Fj(w(t−1));

Estimate w̃(t) such that ‖∇P (t−1)(w̃(t))‖ ≤ εt, where

P (t−1)(w) := 〈∇F (w(t−1))−∇F1(w(t−1)), w〉+
γ

2
‖w − w(t−1)‖2 + F1(w); (4)

if The objective function F is not quadratic then
/* Backtracking line search for non-quadratic objectives */

Update w(t) = (1− ηt)w(t−1) + ηtw̃
(t) with proper ηt ∈ (0, 1] which satisfies either

of the following sufficient descent condition for the provided ρ:
(Option-I) /* Line-search with global value evaluation. */

F (w(t)) ≤ F (w(t−1))− ψ(w̃(t), w(t−1)), (5)

where

ψ(w̃(t), w(t−1)) :=ηtρ〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉
− ηtεt‖w̃(t) − w(t−1)‖;

(Option-II) /* Line-search without global value evaluation. */

〈∇F (w(t−1)), w(t) − w(t−1)〉+ (w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3 ≤ −ψ(w̃(t), w(t−1)).

(6)

end
else

w(t) = w̃(t);
end
/* Local gradient evaluation on worker machines */

For each machine j, compute ∇Fj(w(t)) and send it to the master machine;

end

2017a). Allowing only master to do the heavy lifting is certainly more energy efficient
and less sensitive to network latency.

As the consequence of these modifications, DANE-LS can be shown to improve over
DANE not only for non-quadratic convex objectives (see Section 2.3) but also for the well
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studied quadratic case (see Section 2.2). Moreover, the master-slave computing architec-
ture eases the generalization of analysis to the heavy-ball acceleration presented in the next
section. It is noteworthy that the local subproblem is allowed to be solved inexactly with
sub-optimality ‖∇P (t−1)(w̃(t))‖ ≤ εt. Such a local sub-optimality condition is computation-
ally more tractable for verification than those of InexactDane and AIDE with unknown
local minimizers involved, and hence is more practical from the perspective of algorithm
implementation.

2.2 Sharper bounds for quadratic function

We start by analyzing DANE-LS in a simple yet informative regime where the loss functions
are quadratic. In this setting, the line search options will not be activated throughout
algorithm execution.

Preliminary. Our analysis relies on the conditions of strong convexity and Lipschitz
smoothness which are conventionally used in the previous analysis of distributed optimiza-
tion methods.

Definition 1 (Strong Convexity/Smoothness) A differentiable function g is µ-strongly-
convex and L-smooth if ∀w,w′,

µ

2
‖w − w′‖2 ≤ g(w)− g(w′)− 〈∇g(w′), w − w′〉 ≤ L

2
‖w − w′‖2.

The ratio value κ = L/µ is the condition number. We further introduce the concept of
Lipschitz continuous Hessian which characterizes the smoothness of gradient.

Definition 2 (Lipschitz Continuous Hessian) We say a twice continuously differen-
tiable function g has Lipschitz continuous Hessian with constant ν ≥ 0 (ν-LH) if ∀w,w′,∥∥∇2g(w)−∇2g(w′)

∥∥ ≤ ν‖w − w′‖.
Let w∗ = arg minw F (w). The following is our main result on the convergence rate of
DANE-LS for quadratic functions in terms of parameter estimation error.

Theorem 3 (Convergence rate of DANE-LS for quadratic loss) Assume that the loss
function is quadratic. Let H and H1 be the Hessian matrices of the global objective F
and local objective F1, respectively. Assume that µI � H � LI. Given precision ε > 0,

if ‖H1 − H‖ ≤ γ and εt ≤ µ2‖∇F (w(t−1))‖
2(µ+2γ)L , then Algorithm 1 will output w(t) satisfying

‖w(t) − w∗‖ ≤ ε after

t ≥ 2(µ+ 2γ)

µ
log

(√
κ‖w(0) − w∗‖

ε

)
rounds of iteration.

As a comparison, the communication complexity bounds established for DANE (Shamir
et al., 2014, Lemma 1) and InexactDane (Reddi et al., 2016, Corollary 1) are both of
the order O

(
γ2/µ2 log(1/ε)

)
, which are clearly inferior to the O (γ/µ log(1/ε)) bound es-

tablished in Theorem 3. After a careful inspection of the technical proofs in (Reddi et al.,
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2016; Shamir et al., 2014), we note that the looseness of the former bounds essentially comes
from the reduce operation conducted by master machine for aggregating models from local
workers, and such an issue is seemingly difficult to be remedied inside the original architec-
ture of DANE. After applying the modifications as mentioned in the previous subsection,
the tighter bound in Theorem 3 can be attained based on a fairly elementary analysis. This
answers Question 1 affirmatively.

To more clearly illustrate the improvement, we derive the following result which is an
implication of Theorem 3 to the stochastic setting where the samples are uniformly randomly
distributed over machines.

Corollary 4 Assume the conditions in Theorem 3 hold and ‖∇2f(w;xi, yi)‖ ≤ L for all
i ∈ [N ]. Then for any δ ∈ (0, 1), with probability at least 1 − δ over the samples drawn to

construct F1, Algorithm 1 with γ = L

√
32 log(p/δ)

n will output w(t) satisfying ‖w(t)−w∗‖ ≤ ε
after

t ≥

(
1 + 2κ

√
32 log(p/δ)

n

)
log

(
2
√
κ‖w(0) − w∗‖

ε

)
rounds of iteration.

Remark 5 In statistical learning problems, the condition number κ could scale as large
as O(

√
mn) (Shalev-Shwartz et al., 2009). If this is the case, then Corollary 4 implies

an O (
√
m log(1/ε)) communication complexity bound for stochastic quadratic problems,

which contrasts itself from the O (m log(1/ε)) bound previously known for vanilla DANE and
InexactDane methods. Notice, such improvement is of particular interest in the regime
of federated learning where the number of computing nodes m could be huge (Konečnỳ et al.,
2016; McMahan et al., 2017).

We comment that in the quadratic case, DANE-LS shares an identical spirit of precondi-
tioning to the distributed preconditioned conjugate gradient (DPCG) method developed for
computing the inexact Newton step of DiSCO (Zhang and Xiao, 2015). Actually, based on
the similarity between local and global Hessian matrices, F1 essentially serves as a precon-
ditioner which is effective in significantly reducing the condition number of local objective
P (t) when local data is sufficiently correlated to the global one. As we will show very
shortly that such a preconditioning effect of F1 is also beneficial for improving the com-
munication efficiency of DANE-LS for non-quadratic strongly convex problems. From the
viewpoint of implementation, in contrast to DPCG that is implemented based on PCG,
the local preconditioned subproblems in our method can be more flexibly optimized via a
wider rang of algorithms including the stochastic variance reduction methods to gain better
computational efficiency.

2.3 Global analysis for strongly convex functions

We now move to consider the more general regime in which the objective function is strongly
convex and twice differentiable with Lipschitz continuous Hessian. First, we show in the
following lemma that the proposed global and local backtracking line search steps are always
feasible under proper conditions.

11
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Lemma 6 (Feasibility of line search) Assume that F is L-smooth and F1 is µ-strongly
convex. For any given ρ ∈ (0, 1),

(a) if

0 < ηt ≤ min

{
1,

2(γ + µ)(1− ρ)

L

}
,

then the global backtracking line search (Option-I) is feasible, i.e.,

F (w(t)) ≤ F (w(t−1))− ψ(w̃(t), w(t−1)),

where ψ(w̃(t), w(t−1)) := ηtρ〈∇F1(w̃(t))−∇F1(w(t−1))+γ(w̃(t)−w(t−1)), w̃(t)−w(t−1)〉−
ηtεt‖w̃(t) − w(t−1)‖.

(b) Moreover, assume that F1(w) has ν-LH and ∃D > 0 such that ‖w̃(t) − w(t−1)‖ ≤ D
for all t ≥ 0. If

ηt ≤ min

{
1,
−(3νD + 6(γ + µ)) +

√
(3νD + 6(γ + µ))2 + 96(1− ρ)νD(γ + µ)

4νD

}
,

then the local backtracking line search (Option-II) is feasible, i.e.,

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3 ≤ −ψ(w̃(t), w(t−1)).

Remark 7 The bound D in the part (b) of Lemma 6 is reasonable if we focus on an `2-norm
bounded domain of interest Ω such that D = maxw,w′∈Ω ‖w−w′‖. The result also implies that
if the global line search of Option-I is used under Armijo rule, then the additional rounds of

communication for global objective evaluation is roughly of the order O
(

log
(

L
(γ+µ)(1−ρ)

))
.

The following theorem is our main result on the global convergence of DANE-LS.

Theorem 8 (Global convergence of DANE-LS) Assume that F (w) and F1(w) are L-

smooth, µ-strongly-convex and have ν-LH. Suppose that εt ≤ ρ(µ+γ)
2(L+γ)+ρ(µ+γ)‖∇F (w(t−1))‖.

(a) Then the objective value sequence {F (w(t))} generated by Algorithm 1 with the global
line search step (Option-I) converges and the difference norm sequence {‖w̃(t)−w(t−1)‖}
converges to zero.

(b) Assume in addition that supw ‖∇2F1(w)−∇2F (w)‖ ≤ γ and ‖w̃(t)−w(t−1)‖ is bounded
from above for all t ≥ 0. Then the objective value sequence {F (w(t))} generated by
Algorithm 1 with local line search step (Option-II) converges and the difference norm
sequence {‖w̃(t) − w(t−1)‖} converges to zero.

Remark 9 Theorem 8 suggests a natural way of controlling the termination of Algorithm 1
by monitoring either the difference of adjacent objective values F (w(t)) − F (w(t−1)) or the
norm of vector difference ‖w̃(t) − w(t−1)‖.

12
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Local non-asymptotic convergence. We further study the local convergence be-
havior of DANE-LS. The starting point is to show, via the following lemma, that the unit
length eventually satisfies the sufficient descent condition in (5).

Lemma 10 (Acceptability of unit length for line search) Assume that the conditions
in Theorem 8 hold. Then for sufficiently large t, the unit length satisfies the sufficient de-
scent condition (5) with ρ ∈ (0, 1/3).

The following lemma establishes the local convergence rate of Algorithm 1 when ηt ≡ 1,
i.e., when the unit length is always accepted by the backtracking line search.

Lemma 11 (Local convergence rate of DANE-LS) Assume that F and F1 are µ-strongly-
convex, L-smooth and have ν-LH. Assume that supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ. Let

τ =
⌈
µ+2γ

2µ log (4κ)
⌉

. Suppose that εt ≤ min
{

(γ + µ)2, ‖∇F (w(t−1))‖2
L2

}
. Given precision

ε > 0, if max0≤i≤τ−1 ‖w(i) − w∗‖ ≤ (γ+µ)
4(6ν+1)

√
κτ

, then Algorithm 1 with ηt ≡ 1 will attain

estimation error ‖w(t) − w∗‖ ≤ ε after

t ≥ 4τ log

(
γ + µ

4(6ν + 1)
√
κτνε

)
rounds of iteration.

Remark 12 Lemma 11 essentially shows that up to the logarithmic factors on κ and τ , the
local communication complexity of DANE-LS is bounded as O(γ/µ log (1/ε)), which exactly
matches the bound for the quadratic function.

We are now ready to present our main result on the local non-asymptotic convergence
of DANE-LS for strongly convex functions.

Theorem 13 (Non-asymptotic convergence of DANE-LS) Assume that F and F1

are µ-strongly-convex, L-smooth and have ν-LH. Assume that supw ‖∇2F1(w)−∇2F (w)‖ ≤
γ. Suppose that ρ ∈ (0, 1/3) and

εt ≤ min

{
(γ + µ)2,

‖∇F (w(t−1))‖2

L2
,

ρ(µ+ γ)

2(L+ γ) + ρ(µ+ γ)
‖∇F (w(t−1))‖

}
.

Then there exists a time stamp t0, which is invariant to ε, such that Algorithm 1 will output
solution w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ t0 +O
(
γ

µ
log

(
1

ε

))
rounds of iteration.

Remark 14 Theorem 13 reveals that DANE-LS converges globally towards w∗ and in a
local area around w∗ it enjoys a linear rate of convergence with complexity O(γ/µ log(1/ε)).
We comment on the choice of γ in the stochastic setting. For the considered L-smooth
objective functions, the uniform concentration theory in (Zhang and Xiao, 2015; Mei et al.,

13
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Algorithm 2: DANE with Heavy-Ball acceleration: DANE-HB(γ, β)

Input : Parameters γ, β > 0.
Output: w(t).
Initialization Set w(0) = 0 or w(0) ≈ arg minw F1(w). Let w(−1) = w(0).
for t = 1, 2, ... do

/* Global computation on master */

Compute ∇F (w(t−1)) = 1
m

∑m
j=1∇Fj(w(t−1));

Estimate w̃(t) such that ‖∇P (t−1)(w̃(t))‖ ≤ εt, where P (t−1) is defined by (4);
Compute w(t) = w̃(t) + β(w(t−1) − w(t−2));
(Optionally) Conduct backtracking line search.
/* Local gradient evaluation on workers */

For each machine j, compute ∇Fj(w(t)) and send it to the master machine;

end

2018) suggests that the concentration bound supw ‖∇2F1(w)−∇2F (w)‖ ≤ γ = O
(
L
√
p/n

)
holds with high probability over a bounded domain of interest. Then with such a choice of γ
the local communication complexity of DANE-LS is bounded as O

(
p1/2κn−1/2 log(1/ε)

)
with

high probability, which shows the benefit of statistical correlation of local problems for global
optimization when n� p. This result partially answers Question 2 raised in Section 1.1.

3. Heavy-Ball Acceleration of DANE

We further introduce a simple yet effective momentum acceleration method for DANE
based on the classic heavy-ball approach (Polyak, 1964), which has long been acknowledged
to work favorably for accelerating first-order methods (Ghadimi et al., 2015; Loizou and
Richtárik, 2017; Wilson et al., 2016; Zhou et al., 2018).

3.1 The DANE-HB Algorithm

As outlined in Algorithm 2, the proposed DANE-HB method shares an almost identical
centralized computing architecture to DANE-LS. The key difference is that for local sub-
problem optimization in the master machine, we first estimate w̃(t) ≈ arg minw P

(t−1)(w),
and then compute w(t) = w̃(t) + β(w(t−1) − w(t−2)) as a linear combination of w̃(t) and the
previous two iterates, where β > 0 is the momentum strength coefficient. It is optional to
implement the backtracking line search steps as proposed in Algorithm 1 which work well in
our numerical study to obtain global convergence, although there is no theoretical guaran-
tee that the difference vector w(t) −w(t−1) should point to a descent direction. Concerning
initialization, the simplest way is to set w(−1) = w(0) = 0, i.e., starting the iteration from
scratch. Since F1(w) tends to be close to F (w) in stochastic setting, another reasonable
option of initialization is to set w(−1) = w(0) ≈ arg minw F1(w) which is also expected to be
close to the global solution w∗.

14
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3.2 Convergence results for quadratic function

The following result confirms that the heavy-ball acceleration strategy can improve the
communication efficiency of DANE for quadratic problems.

Theorem 15 (Convergence rate of DANE-HB for quadratic function) Assume that
the loss function is quadratic. Let H and H1 be the Hessian matrices of the global objective

F and local objective F1, respectively. Assume that µI � H � LI. Set β =
(

1−
√

µ
µ+2γ

)2

and εt =
√

2(µ+γ)‖∇F (w(0))‖
2L(t+1)2

(
1− 1

2

√
µ

µ+2γ

)t+1
. Given precision ε > 0, if ‖H1 − H‖ ≤ γ,

then Algorithm 2 will output w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ 2

√
µ+ 2γ

µ
log

(
2
√

2c‖w(0) − w∗‖
ε

)

rounds of iteration, where c is a constant relying on
√
µ/(µ+ 2γ).

The following corollary is the implication of Theorem 15 in stochastic setting.

Corollary 16 Assume the conditions in Theorem 15 hold and ‖∇2f(w;xi, yi)‖ ≤ L for all
i ∈ [N ]. Then for any δ ∈ (0, 1), with probability at least 1 − δ over the random samples

drawn to construct F1, Algorithm 2 with γ = L

√
32 log(p/δ)

n will attain estimation error

‖w(t) − w∗‖ ≤ ε after

t ≥ O
( √

κ

n1/4
log1/4

(p
δ

)
log

(
1

ε

))
rounds of iteration.

Remark 17 The result shows that in the quadratic case, DANE-HB matches the communi-
cation complexity lower bounds (up to logarithmic factors) proved in (Arjevani and Shamir,
2015). Similar guarantees for quadratic function have also been proved for AIDE and MP-
DANE based on the catalyst acceleration technique (Lin et al., 2015), and for DiSCO based
on preconditioned conjugate gradient methods.

3.3 Convergence results for strongly convex functions

For a broad class of strongly convex functions with Lipschitz continuous Hessian, we show
in the following theorem that in a vicinity of the global minimizer, DANE-HB enjoys the
same appealing rate of convergence as established for the ridge regression problems.

Theorem 18 (Local convergence rate of DANE-HB) Assume that F and F1 are µ-
strongly-convex and has ν-LH. Assume that supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ. Choose β =(

1−
√
µ/(µ+ 2γ)

)2
. Let τ =

⌈
2
√

(µ+ 2γ)/µ log(2c)
⌉

in which c is a constant dependent

on
√
µ/(µ+ 2γ). Assume that εt ≤ min

{
(γ + µ)2, ‖∇F (w(t−1))‖2/L2

}
. Given precision

ε > 0, if max−1≤i≤τ−1 ‖w(i)−w∗‖ ≤ γ+µ

4(6ν+1)
√

2cτ
, then Algorithm 2 will output w(t) satisfying

‖w(t) − w∗‖ ≤ ε after

t ≥ 4τ log

(
γ + µ

4(6ν + 1)cτ

(
1

ε

))
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rounds of iteration.

Remark 19 It was proved in (Reddi et al., 2016, Theorem 6) that AIDE converges at the
rate of O (

√
κ log (1/ε)) for non-quadratic strongly convex functions with γ = O(L), and that

result is global. In a local area around the global minimizer, we obtain the O
(√

γ/µ log (1/ε)
)

rounds of communication bound in Theorem 18 for an arbitrary γ > 0 as long as the γ-
related condition supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ holds. Particularly, with the choice of

γ = O
(
L
√
p/n

)
as suggested by (Zhang and Xiao, 2015, Lemma 5), the local communi-

cation complexity of DANE-HB scales as O
(
p1/4√κn−1/4 log(1/ε)

)
with high probability,

which matches DiSCO and outperforms AIDE when n� p in large-scale learning problems.

3.4 Extension for learning with linear models

So far, DANE-HB has been shown to converge globally for the quadratic objective, whilst
for non-quadratic problems it can merely be shown to converge in a vicinity of the global
minimizer. In this section, we move to study a special class of learning problems with linear
regression or prediction models. More specifically, we consider the loss function of the form

f(w;xi, yi) = l(w>xi, yi) +
µ

2
‖w‖2,

where l(w>xi; yi) is a convex function that measures the linear regression/prediction loss of
w at data point (xi, yi) and µ > 0 controls the strength of `2-regularization. For example,
the quadratic loss l(w>xi, yi) = 1

2(yi − w>xi)2 is used in least squares regression and the
logistic loss l(w>xi, yi) = log

(
1 + exp(−yiw>xi)

)
in logistic binary classification. Then we

can reexpress problem (1)

min
w∈Rp

F (w) = F̃ (w) +
µ

2
‖w‖2,

where F̃ (w) := 1
N

∑N
i=1 l(w

>xi, yi). For such a special problem with strongly convex loss
functions, we propose a double-loop extension of DANE-HB and showcase that the proposed
method enjoys a global near-optimal communication complexity bound.

3.4.1 The D2ANE algorithm

The D2ANE (Distributed Doubly Approximate NEwton) is formally stated in Algorithm 3.
The algorithm contains an outer-loop iteration for constructing an approximate Newton-
type quadratic approximation to the global empirical risk, which is then optimized via an
inner-loop DANE-HB method. More specifically, at each iterate w(t−1), we first construct in
the step S1 a quadratic approximation function Q(t−1)(w) to the original problem around
w(t−1) as expressed by (7). Then in the step S2 we apply DANE-HB as an inner-loop
iterative procedure to (inexactly) optimize Q(t−1) in a distributed fashion. Suppose that the
loss function l(·, ·) is twice differentiable with respect to its first argument and |l′′(a, ·)| ≤ `
for all a. Then we can verify that for any w, the Hessian matrix of F can be upper bounded
as ∇2F (w) = 1

N

∑N
i=1 l

′′(w>xi, yi)xix
>
i + µI � `XX>

N + µI = H. This implies that Q(t−1)

is an upper bound of the second-order Taylor expansion of F at w(t−1), which justifies our
calling Q(t−1) as an approximate Newton-type quadratic approximation to F .
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Algorithm 3: Distributed Doubly Approximate Newton: D2ANE(γ, β, `)

Input : Hyper-parameters γ, β, ` > 0. Typically γ = O(1/
√
n).

Output: w(t).
Initialization Set w(0) = 0 or w(0) ≈ arg minw F1(w).
for t = 1, 2, ... do

(S1) Construct a quadratic approximation function to F at w(t−1) which is
expressed as Q(t−1)(w) :=

F (w(t−1)) + 〈∇F (w(t−1)), w − w(t−1)〉+
1

2
(w − w(t−1))>H(w − w(t−1)), (7)

where H = `XX>

N + µI.

(S2) Estimate w(t) = DANE-HB(γ, β) by applying DANE-HB (Algorithm 2) to
Q(t−1)(w) with a warm-start initialization w(t−1) such that

Q(t−1)(w(t)) ≤ min
w
Q(t−1)(w) + εt.

end

An alternative way for constructing the outer-loop quadratic approximation in Algo-
rithm 3 is to replace H with the exact Hessian matrix ∇2F (w(t)) in Q(t). For DiSCO,
such an exact Newton approximation step has been shown to work favorably for optimizing
self-concordant functions via damped Newton method (Zhang and Xiao, 2015). Though it
is prospective to adapt D2ANE to that framework with quadratic subproblems solved by
DANE-HB rather than PCG, we still choose to work on the inexact Newton step (7) with
a fixed Hessian H which turns out to imply stronger communication bound than its exact
counter part in terms of the dependence on feature dimension.

3.4.2 Convergence analysis

Let us denote X1 the subset of data samples associated with F1 that stored on the master
machine. The following is our main result on the convergence rate of D2ANE.

Theorem 20 (Convergence of D2ANE) Assume that the univariate functions li are `-
smooth and σ-strongly convex. Assume without loss of generality that ‖xi‖ ≤ 1. Let

H = `
NXX

> + µI and H1 = `
nX1X

>
1 + µI. Choose β =

(
1−

√
µ

µ+2γ

)2
and εt =

σ
2` exp

{
−σ(t−1)

2`

}
. If ‖H1 − H‖ ≤ γ, then Algorithm 3 will output solution w(t) with sub-

optimality F (w(t))− F (w∗) ≤ ε after

t ≥ 2`

σ
log

(
max

{
1, F (w(0))− F (w∗)

}
ε

)
rounds of outer-loop iteration and

O
(
`

σ

√
γ

µ
log2

(
1

ε

))
17
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rounds of inner-loop iteration of DANE-HB.

Remark 21 When the univariate function li is second-order differentiable, the condition
of li being `-smooth and σ-strongly convex is identical to σ ≤ l′′i (·) ≤ `. For the quadratic
loss function l(w>xi, yi) = 1

2(yi − w>xi)
2, we have ` = σ = 1. For the binary logistic

loss l(w>xi, yi) = log
(
1 + exp(−yiw>xi)

)
, let us consider without loss of generality that ∀i,

‖xi‖ ≤ 1 and the domain of interest 1 is bounded such that ‖w‖ ≤ B for some B > 0. Then
we can verify that ` = 1/4 and σ = exp(B)/(1 + exp(B))2 which usually does not scale with
feature dimension.

We also have the following stochastic variant of Theorem 20 which is a direct consequence
of applying Lemma 29 to the theorem.

Corollary 22 Assume the conditions in Theorem 20 hold. Then for any δ ∈ (0, 1), with
probability at least 1 − δ over the samples drawn to construct F1(w), Algorithm 3 with

γ = (`+ µ)

√
32 log(p/δ)

n will attain sub-optimality F (w(t))− F (w∗) ≤ ε after

t = O
(
`
√
κ

σn1/4
log1/4

(p
δ

)
log2

(
1

ε

))
.

rounds of inner-loop iteration of DANE-HB.

Remark 23 To our best knowledge, this is the first provable near-optimal (up to logarithmic
factors) communication complexity bound of DANE-type methods for non-quadratic loss
functions.

3.5 Comparison against prior methods

In Table 1, we have listed the communication complexity bounds of DANE-LS and DANE-
HB and highlighted their advantages over prior DANE-type methods. To further compare
our methods against other distributed learning algorithms beyond DANE, we list in Table 3
the amount of communication required by DANE-HB/D2ANE and several representative
sample-distributed learning algorithms for solving ridge regression and logistic regression
problems. The amount of communication is measured by the number of vectors of size
p transmitted among the networked machines. Here we do not count the communication
cost spent for distributing data to machines which is required virtually by all the sample-
distributed methods. The only exception is DSVRG which, in addition to data allocation,
also requires to distribute a random subset of data in order to guarantee unbiased estimation
of batch gradient for local optimization. In the following elaboration, we highlight the key
observations that can be made from Table 3.

1. Concerning the domain of interest for D2ANE, let us consider the initialization w(0) = argminw F1(w)+
γ
2
‖w‖2 with γ = O(1/

√
n). Then in view of the stability arguments (see, e.g. Zhang and Xiao,

2015, Lemma 5) we can verify that E[F (w(0))] ≤ F (w∗) + O(1/
√
n) holds under mild conditions.

It can be seen from the proof of Theorem 20 that F (w(t)) ≤ F (w(t−1)) for all t ≥ 1, and thus
W := {w : F (w) ≤ F (w∗) +O(1/

√
n)} is a domain of interest which is expected to be well bounded

around w∗, e.g., in view of the strong convexity of F such that W ⊆
{
w : ‖w − w∗‖ ≤ µ−1/2n−1/4

}
.
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Method Ridge regression Logistic regression

GIANT O
(
log
(
κ
ε

))
7

DSVRG O
(
κ
n log

(
1
ε

)
+ κ2

mn log2
(

1
ε

))
O
(
κ
n log

(
1
ε

)
+ κ2

mn log2
(

1
ε

))
DiSCO O

( √
κ

n1/4 log
(

1
ε

))
O
(
p1/4

( √
κ

n1/4 log
(

1
ε

)
+ κ3/2

n3/4

))
DANE-HB (ours) O

( √
κ

n1/4 log
(

1
ε

))
Local rate: O

(
p1/4

√
κ

n1/4 log
(

1
ε

))
D2ANE (ours) O

( √
κ

n1/4 log
(

1
ε

))
O
( √

κ

n1/4 log2
(

1
ε

))
Table 3: Comparison of communication complexity for different distributed learning meth-

ods. The x-mark “7” indicates that the related result was not explicitly reported
in the corresponding reference.

• Results for ridge regression problem. In this quadratic loss setting, GIANT (Wang
et al., 2018) has logarithmic dependence on the condition number κ and hence is
superior to the other methods that have polynomial bounds on κ. However, such
an improvement of GIANT is only valid in the well-conditioned regime where the
sample size N should be sufficiently larger than feature dimension p. In contrast,
without assuming N � p, DiSCO (Zhang and Xiao, 2015), DANE-HB and D2ANE
require O

(√
κn−1/4 log(1/ε)

)
rounds of communications with O(p) bits communi-

cated per round. The amount required by DSVRG (Lee et al., 2017; Shamir, 2016) is
O
(
κn−1 log(1/ε) + κ2(mn)−1 log2(1/ε)

)
in which the additional term κ2(mn)−1 log2(1/ε)

arises from distributing a multi-set sampled with replacement from the entire data,
and it certainly dominates the bound when κ = Ω(m). If this is the case, then DSVRG
will be comparable or superior to DiSCO/DANE-HB/D2ANE when κ = O(n1/2m2/3),
and otherwise the former will be inferior to the latter in communication efficiency.

• Results for logistic regression problem. For general smooth loss functions such as
logistic loss, GIANT exhibits linear-quadratic local convergence behavior but without
any communication complexity bound explicitly provided. The amount of communica-
tion required by DSVRG is still O

(
κn−1 log(1/ε) + κ2(mn)−1 log2(1/ε)

)
. For DiSCO,

the communication complexity becomes O
(
p1/4

(√
κ/n−1/4 log(1/ε) + κ3/2n−3/4

))
in

which the factor p1/4 comes from applying uniform concentration bounds to the time
varying Hessian matrices. This bound tends to be inferior to DSVRG in high dimen-
sional settings. DANE-HB has a slightly betterO

(
p1/4

(√
κ/n−1/4 log(1/ε)

))
bound in

a local area around the minimizer. For D2ANE, the bound is O
(√
κn−1/4 log2(1/ε)

)
which has no polynomial dependence on p thanks to the shared Hessian H among
the approximate Newton approximation steps. In view of the previous discussions
on quadratic case, given that κ = Ω(m), DSVRG will be comparable or superior to
D2ANE when κ = O(n1/2m2/3), and otherwise D2ANE performs better.

To summarize the above discussions, DANE-HB and D2ANE are able to offer competitive
or superior communication efficiency to the considered distributed learning algorithms in
high-dimensional and ill-conditioned (e.g., κ = Ω(n1/2m2/3)) problem regimes.
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4. Experiments

In this section, we present a numerical study for theory verification and algorithm eval-
uation. In the theory verification part, we conduct simulations on linear regression and
binary logistic regression problems to verify the strong convergence guarantees established
for DANE-LS, DANE-HB and D2ANE. Then in the algorithm evaluation part, we run exper-
iments on synthetic and real data binary logistic regression tasks to evaluate the numerical
performance of these alternatives with comparison to several state-of-the-art distributed
learning methods. We simulate the distributed environment on a single server powered by
dual Intel(R) Xeon(R) E5-2630V4@2.2GHz CPU with multiple logic processors simulating
multiple machines. All the considered methods are implemented in Matlab R2018b on Mi-
crosoft Windows 10. The local subproblems on the master machine are solved by an SVRG
solver from SGDLibrary (Kasai, 2017), and the momentum coefficient β in DANE-HB is
set according to Theorem 15. We replicate each experiment 10 times over random split
of data and report the results in mean-value along with error bar. We initialize w(0) = 0
throughout our numerical study.

4.1 Theory verification

The following experimental protocol is considered for theory verification study.

• To verify the bounds established in Theorem 3 for DANE-LS and in Theorem 15 for
DANE-HB for quadratic problems, we consider the ridge regression model with loss
function f(w;xi, yi) = 1

2(yi−w>xi)2 + µ
2‖w‖

2. The feature points {xi}Ni=1 are sampled
from standard multivariate normal distribution. The responses {yi}Ni=1 are generated
according to a linear model yi = w̄>xi + ei with a random Gaussian vector w̄ ∈ Rp
and random Gaussian noise ei ∼ N (0, σ2).

• For D2ANE, we verify its communication complexity bounds as presented in The-
orem 20 by applying it to the binary logistic regression model with loss function
f(w;xi, yi) = log

(
1 + exp(−yiw>xi)

)
+ µ

2‖w‖
2. We consider a simulation task in

which each data feature xi is sampled from standard multivariate normal distribu-
tion and its binary label yi ∈ {−1,+1} is determined by the conditional probability
P(yi|xi; w̄) = exp(2yiw̄

>x)/(1 + exp(2yiw̄
>xi)) with a Gaussian vector w̄.

For our simulation study, we test with feature dimensions p ∈ {200, 500}. We fix N =
10p, µ = 1/

√
N , and study the impact of varying number of machines m and regularization

γ = O(1/
√
n) on the needed rounds of communication to reach sub-optimality ε = 10−6.

We replicate the experiment 10 times over random split of data.

Figure 2 shows the evolving curves (error bar shaded in color) of the needed commu-
nication rounds as functions of number of machines achieved by DANE-LS (left panel),
DANE-HB (middle panel) and D2ANE (right panel)in the considered setting. Visually
speaking, the number of communication rounds scales roughly linearly with respect to

√
m

for DANE-LS and to m1/4 for DANE-HB and D2ANE, under varying values of γ. We can
also observe that smaller γ leads to fewer rounds of communication. These results confirm
the theoretical predictions in Theorem 3, Theorem 15 and Theorem 20.
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(a) p = 200

(b) p = 500

Figure 2: Theory verification: the number of communication rounds (y-axis) versus number
of machines (x-axis) curves of DANE-LS (left panels) and DANE-HB (middle
panels) on a synthetic ridge regression task, and of D2ANE (right panels) on a
synthetic logistic regression task.

4.2 Algorithm evaluation

We further compare the convergence performance of our methods with several representative
communication-efficient distributed learning methods. For the sake of presentation clarity,
we divide the numerical study into two categories using the DANE-type methods and other
type of methods as baselines, respectively.

4.2.1 Comparison against DANE-type methods

In this part, we carry out experiments to compare our methods with InexactDane and
AIDE, both are developed by Reddi et al. (2016), for binary logistic regression problems. We
begin with a simulation study using the same data generation protocol as in the previous
theory verification study. We test with p = 200, N = 10p, γ = 40/

√
n, µ = 1/

√
N

and m ∈ {4, 16, 32}. Figure 3(a) shows the objective value convergence curves (w.r.t.
communication rounds) of the considered algorithms. From these curves we can see that
DANE-LS, DANE-HB and D2ANE are stable in convergence while InexactDane and
AIDE exhibit zigzag effect in the early stage of iteration when m = 4, 16. The convergence
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(a) Synthetic

(b) gisette

(c) rcv1.binary

Figure 3: Algorithm evaluation with comparison to DANE-type methods: the objective
value evolving curves on synthetic and real logistic regression tasks with m = 4
(left panels), m = 16 (middle panels) and m = 32 (right panels). Best viewed in
color.

instability of the plain DANE method has also been observed in (Shamir et al., 2014). The
stability of our proposed methods shows the benefit of line search (in DANE-LS and DANE-
HB) and double-loop Newton approximation (in D2ANE) for improving the convergence
behavior of DANE-type methods. In terms of communication efficiency, it can be seen
that: i) DANE-LS is superior or comparable to InexactDane and AIDE in decreasing
the global objective value after the same rounds of communication; and ii) DANE-HB and
D2ANE converge considerably faster than the other methods. These observations confirm
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the effectiveness of heavy-ball approach for accelerating the communication efficiency of
DANE.

Next, we evaluate the convergence performance of the considered algorithms on two real
data sets gisette (Guyon et al., 2005) (p = 5000, N = 6000) and rcv1.binary (Lewis
et al., 2004) (p = 47236, N = 20242). For each data set, we fix the regularization parameter
µ = 10−5 and test with m ∈ {4, 16, 32}. The results are shown in the middle and bottom
rows of Figure 3 from which we have the following observations:

• For gisette, it can be observed from Figure 3(b) that DANE-LS, DANE-HB and
D2ANE converge more stably than InexactDane and AIDE. In terms of commu-
nication efficiency, D2ANE outperforms the other considered methods with a clear
margin and DANE-HB is the runner-up. DANE-LS converges slightly faster than
InexactDane and AIDE when m = 4, 16, while the former is comparable to the
latter ones when m = 32.

• For rcv1.binary, Figure 3(c) shows that all the considered algorithms converge
smoothly. In most cases, DANE-HB and D2ANE are superior to DANE-LS, InexactDane
and AIDE which exhibit very close performance on this data.

To summarize this group of experiments, our proposed algorithms are stabler than the
prior DANE-type methods which matches the global convergence theory established for
our algorithms. Particularly, DANE-HB and D2ANE tend to substantially outperform the
other methods in communication efficiency.

4.2.2 Comparison against other methods than DANE

In this group of evaluation, we compare the performance of D2ANE with DSVRG (Lee et al.,
2017) and DiSCO (Zhang and Xiao, 2015) which are among others two representative first-
order and second-order algorithms for communication-efficient distributed learning. The
evaluation is conducted on the same data sets as used in the previous experiment, and the
results are shown in Figure 4. Here we omit the results of DANE-LS and DANE-HB in
order to avoid redundancy of presentation because in most cases both methods are inferior
or comparable to D2ANE as previously shown. Below we summarize the main observations
that can be made from these results:

• Results on synthetic data: D2ANE ≥ DiSCO ≥ DSVRG. As shown in Figure 4(a),
DiSCO outperforms the other considered algorithms when relatively small m = 4
number of machines is used. For relatively large m = 16, 32, D2ANE and DiSCO
converge faster than DSVRG.

• Results on gisette: D2ANE > DiSCO ≥ DSVRG. From the curves in Figure 4(b)
we can see that D2ANE outperforms DiSCO and DSVRG with a clear margin.

• Results on rcv1.binary: D2ANE > DiSCO > DSVRG. Figure 4(c) shows that our
D2ANE outperforms DiSCO and DSVRG with a clear margin on this data set.

Overall, D2ANE performs the best in communication efficiency among all the considered
algorithms. DiSCO is found to be competitive or superior to DSVRG in many places.
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(a) Synthetic

(b) gisette

(c) rcv1.binary

Figure 4: Algorithm evaluation with comparison to other type of methods beyond DANE:
the objective value sub-optimality evolving curves on synthetic and real logistic
regression tasks with m = 4 (left panels), m = 16 (middle panels) and m = 32
(right panels). Best viewed in color.

5. Conclusions

In this paper, we made progress towards deeply understanding the mysterious convergence
behavior of DANE for both quadratic and non-quadratic convex functions. To this end, we
proposed two new alternatives, DANE-LS and DANE-HB, which are more suitable for global
asymptotic and local non-asymptotic analysis, and yet effective for momentum acceleration.
The core messages conveyed by our study are:

24



On Convergence of Distributed Approximate Newton Methods

(1) The plain DANE method can actually converge faster than already known.
For quadratic problems, even without any momentum acceleration, DANE-LS at-
tains a tighter communication complexity bound than the already discovered for plain
DANE;

(2) Line search is beneficial to DANE. For non-quadratic strongly convex func-
tions, with the blessing of backtracking line search under Armijo rule, DANE-LS
converges globally under a wider spectrum of γ than DANE, with an appealing local
non-asymptotic convergence rate;

(3) Heavy-ball acceleration is effective for DANE. DANE-HB possesses a near-
tight communication complexity bound for quadratic objective functions. Whilst for
non-quadratic convex functions, DANE-HB exhibits an identical performance in the
vicinity of minimizer. For learning with linear models, as a double-loop approximate
Newton extension of DANE-HB, D2ANE has been shown to have global convergence
with favorable communication complexity bounds.

Numerical results support our theoretical findings and confirm that DANE-LS, DANE-HB
and D2ANE are safe and in many cases more attractive alternatives to the prior DANE-
type methods for communication-efficient distributed machine learning. We expect that the
theory and algorithms developed in this article will fuel future investigation on non-convex
distributed optimization problems such as distributed training of deep neural nets. Also, we
believe our improved DANE-type methods should have practical implications in large-scale
federated optimization for privacy-preserving collaborative machine learning.
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Appendix A. Some Auxiliary Lemmas

Here we introduce auxiliary lemmas which will be used for proving the results in the
manuscript. For the sake of readability, we defer the proofs of some lemmas into Ap-
pendix D. The following elementary lemma will be used frequently throughout our analysis.

Lemma 24 Let A and B be two symmetric and positive definite matrices and B � µI for
some µ > 0. If ‖A−B‖ ≤ γ, then (A+ γI)−1B is diagonalizable and

λmax(A+ γI)−1B ≤ 1, λmin((A+ γI)−1B) ≥ µ

µ+ 2γ
.

Moreover, the following spectral norm bound holds:

‖I − (A+ γI)−1/2B(A+ γI)−1/2‖ ≤ 2γ

µ+ 2γ
, ‖I −B1/2(A+ γI)−1B1/2‖ ≤ 2γ

µ+ 2γ
.
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Let us denote ρ(A) the spectral radius of A, i.e., the largest (in magnitude) eigenvalue
of a square matrix A.

Lemma 25 Let A ∈ Rd×d be a square matrix with positive real eigenvalues such that 0 <
µ ≤ λmin(A) ≤ λmax(A) ≤ L. Assume that A is diagonalizable. Then

ρ

([
(1 + β)I − ηA −βI

I 0

])
≤ max{|1−√ηµ|, |1−

√
ηL|},

where β = max{|1−√ηµ|, |1−
√
ηL|}2.

An important relationship between the spectral norm ‖A‖ and spectral radius ρ(A) is
given by the equality ρ(A) = limt→∞ ‖At‖1/t, which implies the following classic lemma.

Lemma 26 For limt→∞A
t = 0 it is necessary and sufficient that ρ(A) < 1 and for every

δ > 0 there exists a constant c = c(δ) such that

‖At‖ ≤ c(ρ(A) + δ)t

for all integers t.

The following lemma is standard and will be used in many places of analysis.

Lemma 27 Assume that function g has ν-LH. Then∥∥∆g(w,w′)
∥∥ ≤ ν

2
‖w − w′‖2,

where ∆g(w,w′) := ∇g(w)−∇g(w′)−∇2g(w′)(w − w′).

The following lemma is useful in our analysis.

Lemma 28 Assume that F and F1 have Lipschitz continuous Hessian. If supw ‖∇2F1(w)−
∇2F (w)‖ ≤ γ, then at any time instant t it is true that

‖∇F (w̃(t))‖ ≤ 2γ‖w̃(t) − w(t−1)‖+ εt, ‖w̃(t) − w∗‖ ≤ 2γ

µ
‖w̃(t) − w(t−1)‖+

εt
µ
.

The next lemma, which is based on a matrix concentration bound (Tropp, 2012), shows
that the Hessian of F1(w) is close to that of F (w) when the sample size is sufficiently large.
The same result appears in (Shamir et al., 2014).

Lemma 29 Assume that ‖∇2f(w>xi, yi)‖ ≤ L holds for all i ∈ [N ]. Let H(w) = ∇2F (w)
and H1(w) = ∇2F1(w). Then for each fixed w, with probability at least 1 − δ over the
samples drawn to construct F1(w), the following bound holds:

‖H1(w)−H(w)‖ ≤
√

32L2 log(p/δ)

n
.

Appendix B. Proofs for Section 2

We collect in this appendix section the technical proofs of the results in Section 2 of the
main paper, including Theorems 3, Theorem 8 and Theorem 13, and their corollaries.
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B.1 Proof of Theorem 3

In this appendix subsection, we prove Theorem 3 as restated in below.

Theorem 3 (Convergence rate of DANE-LS for quadratic loss) Assume that the loss
function is quadratic. Let H and H1 be the Hessian matrices of the global objective F
and local objective F1, respectively. Assume that µI � H � LI. Given precision ε > 0,

if ‖H1 − H‖ ≤ γ and εt ≤ µ2‖∇F (w(t−1))‖
2(µ+2γ)L , then Algorithm 1 will output w(t) satisfying

‖w(t) − w∗‖ ≤ ε after

t ≥ 2(µ+ 2γ)

µ
log

(√
κ‖w(0) − w∗‖

ε

)
rounds of iteration.

Proof [of Theorem 3] Since the objective is quadratic, for any w(t−1) the optimal solution
w∗ = arg minw F (w) can always be expressed as

w∗ = w(t−1) −H−1∇F (w(t−1)).

Since H
(t)
1 ≡ H1 holds in the quadratic case, from the definition of w(t) and the gradient

equation of P (t−1) we have

w(t) = w(t−1) − (H1 + γI)−1∇F (w(t−1)) + (H1 + γI)−1∇P (t−1)(w(t)).

By combining the above two inequalities we obtain

w(t) − w∗ = (I − η(H1 + γI)−1H)(w(t−1) − w∗) + (H1 + γI)−1∇P (t−1)(w(t)). (A.1)

By multiplying H1/2 on both sides of the above recurrent form we have

H1/2(w(t)−w∗) = (I−H1/2(H1+γI)−1H1/2)H1/2(w(t−1)−w∗)+H1/2(H1+γI)−1∇P (t−1)(w(t))

Let u(t) = H1/2(w(t) − w∗). Based on the basic inequality ‖Tx‖ ≤ ‖T‖‖x‖ we obtain

‖u(t)‖
≤‖I −H1/2(H1 + γI)−1H1/2‖‖u(t−1)‖+ ‖H1/2(H1 + γI)−1H1/2‖‖H−1/2∇P (t−1)(w(t))‖
ζ1
≤ 2γ

µ+ 2γ
‖u(t−1)‖+

εt√
µ

ζ2
≤
(

1− µ

µ+ 2γ

)
‖u(t−1)‖+

µ

2(µ+ 2γ)
‖u(t−1)‖ =

(
1− µ

2(µ+ 2γ)

)
‖u(t−1)‖,

where in the inequality “ζ1” we have used Lemma 24 and ‖H1/2(H1 + γI)−1H1/2‖ ≤ 1
which are valid in view of ‖H1 − H‖ ≤ γ and H � µI, “ζ2” follows from the condition

εt ≤ µ2‖∇F (w(t−1))‖
2(µ+2γ)L which implies εt√

µ ≤
µ
√
µ‖w(t−1)−w∗‖

2(µ+2γ) ≤ µ‖u(t−1)‖
2(µ+2γ) . The above inequality

then leads to

‖w(t) − w∗‖ ≤ 1
√
µ
‖u(t)‖ ≤ 1

√
µ

(
1− µ

2(µ+ 2γ)

)t
‖u(0)‖ ≤

√
L

µ

(
1− µ

2(µ+ 2γ)

)t
‖w(0) − w∗‖.
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By applying the basic fact (1− x)t ≤ exp {−xt} we can show that ‖w(t) − w∗‖ ≤ ε is valid
when

t ≥ 2(µ+ 2γ)

µ
log

(√
L‖w(0) − w∗‖
√
µε

)
.

This concludes the proof.

We further prove Corollary 4 as restated in below.

Corollary 4 Assume the conditions in Theorem 3 hold and ‖∇2f(w;xi, yi)‖ ≤ L for all
i ∈ [N ]. Then for any δ ∈ (0, 1), with probability at least 1 − δ over the samples drawn to

construct F1, Algorithm 1 with γ = L

√
32 log(p/δ)

n will output w(t) satisfying ‖w(t)−w∗‖ ≤ ε
after

t ≥

(
1 + 2κ

√
32 log(p/δ)

n

)
log

(
2
√
κ‖w(0) − w∗‖

ε

)
rounds of iteration.

Proof Since H(w) ≡ H and H1(w) ≡ H1 in the quadratic case, we know from Lemma 29

that ‖H1 − H‖ ≤ γ = L

√
32 log(p/δ)

n holds with probability at least 1 − δ. By invoking
Theorem 3 we obtain the desired bound.

B.2 Proof of Theorem 8

We provide in this appendix subsection a detailed proof of Theorem 8 as restated below.

Theorem 8 (Global convergence of DANE-LS) Assume that F (w) and F1(w) are L-

smooth, µ-strongly-convex and have ν-LH. Suppose that εt ≤ ρ(µ+γ)
2(L+γ)+ρ(µ+γ)‖∇F (w(t−1))‖.

(a) Then the objective value sequence {F (w(t))} generated by Algorithm 1 with the global
line search step (Option-I) converges and the difference norm sequence {‖w̃(t)−w(t−1)‖}
converges to zero.

(b) Assume in addition that supw ‖∇2F1(w)−∇2F (w)‖ ≤ γ and ‖w̃(t)−w(t−1)‖ is bounded
from above for all t ≥ 0. Then the objective value sequence {F (w(t))} generated by
Algorithm 1 with local line search step (Option-II) converges and the difference norm
sequence {‖w̃(t) − w(t−1)‖} converges to zero.

As a key step, we first need to prove the following restated Lemma 6.

Lemma 6 (Feasibility of line search) Assume that F is L-smooth and F1 is µ-strongly
convex. For any given ρ ∈ (0, 1),

(a) if

0 < ηt ≤ min

{
1,

2(γ + µ)(1− ρ)

L

}
,
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then the global backtracking line search (Option-I) is feasible, i.e.,

F (w(t)) ≤ F (w(t−1))− ψ(w̃(t), w(t−1)),

where ψ(w̃(t), w(t−1)) := ηtρ〈∇F1(w̃(t))−∇F1(w(t−1))+γ(w̃(t)−w(t−1)), w̃(t)−w(t−1)〉−
ηtεt‖w̃(t) − w(t−1)‖.

(b) Moreover, assume that F1(w) has ν-LH and ∃D > 0 such that ‖w̃(t) − w(t−1)‖ ≤ D
for all t ≥ 0. If

ηt ≤ min

{
1,
−(3νD + 6(γ + µ)) +

√
(3νD + 6(γ + µ))2 + 96(1− ρ)νD(γ + µ)

4νD

}
,

then the local backtracking line search (Option-II) is feasible, i.e.,

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3 ≤ −ψ(w̃(t), w(t−1)).

Proof Let us define

r(t) = ∇P (t−1)(w̃(t)) = ∇F1(w̃(t)) +∇F (w(t−1))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)). (A.2)

From the definition of w̃(t) we have that ‖r(t)‖ ≤ εt. Since F (w) is L-smooth, we have

F (w(t)) ≤ F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉+
L

2
‖w(t) − w(t−1)‖2

=F (w(t−1)) + ηt〈∇F (w(t−1)), w̃(t) − w(t−1)〉+
Lη2

t

2
‖w̃(t) − w(t−1)‖2

ζ1
≤F (w(t−1))− ηt〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+ ηt〈r(t), w̃(t) − w(t−1)〉+
Lη2

t

2
‖w̃(t) − w(t−1)‖2

ζ2
≤F (w(t−1))−

(
ηt −

Lη2
t

2(γ + µ)

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+ ηtεt‖w̃(t) − w(t−1)‖,

where “ζ1” follows from (A.2) and “ζ2” is due to the µ-strong-convexity of F1 which implies
〈∇F1(w̃(t))−∇F1(w(t−1))+γ(w̃(t)−w(t−1)), w̃(t)−w(t−1)〉 ≥ (µ+γ)‖w̃(t)−w(t−1)‖2. To make

a successful global line search, we simply require −
(
ηt − Lη2t

2(γ+µ)

)
≤ −ηtρ, which obviously

can be guaranteed by setting

0 < ηt ≤ min

{
1,

2(γ + µ)(1− ρ)

L

}
.

This prove the result in Part(a).
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To prove the result in Part(b), we note that the equality (A.2) is identical to

∇F (w(t−1)) = −(∇2F1(w(t−1)) + γI)(w̃(t) − w(t−1))−∆F1(w̃(t), w(t−1)) + r(t). (A.3)

Then based on the definition of w(t) we can derive that

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

=ηt〈∇F (w(t−1)), w̃(t) − w(t−1)〉+
η2
t

2
(w̃(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w̃(t) − w(t−1))

+
νη3

t

6
‖w̃(t) − w(t−1)‖3

ζ1
=ηt〈∇F (w(t−1)), w̃(t) − w(t−1)〉 − η2

t

2
〈∇F (w(t−1)), w̃(t) − w(t−1)〉+

νη3
t

6
‖w̃(t) − w(t−1)‖3

− η2
t

2
〈∆F1(w̃(t), w(t−1)), w̃(t) − w(t−1)〉+

η2
t

2
〈r(t), w̃(t) − w(t−1)〉

ζ2
≤
(
ηt −

η2
t

2

)
〈∇F (w(t−1)), w̃(t) − w(t−1)〉+

(
νη2

t

4
+
νη3

t

6

)
‖w̃(t) − w(t−1)‖3

+
η2
t

2
〈r(t), w̃(t) − w(t−1)〉

ζ3
=−

(
ηt −

η2
t

2

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+

(
νη2

t

4
+
νη3

t

6

)
‖w̃(t) − w(t−1)‖3 + ηt〈r(t), w̃(t) − w(t−1)〉

≤ −
(
ηt −

η2
t

2

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+

(
νη2

t

4
+
νη3

t

6

)
D‖w̃(t) − w(t−1)‖2 + ηtεt‖w̃(t) − w(t−1)‖

ζ4
≤
(
−
(
ηt −

η2
t

2

)
+

(
νη2

t

4
+
νη3

t

6

)
D

γ + µ

)
×

〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ ηtεt‖w̃(t) − w(t−1)‖,

where “ζ1” follows from (A.3), “ζ2” uses ‖∆F̃ (w(t−1), w̃(t))‖ ≤ ν
2‖w̃

(t) − w(t−1)‖2, “ζ3”

follows from (A.2) and “ζ4” is due to the µ-strong-convexity of F1 which implies 〈∇F1(w̃(t))−
∇F1(w(t−1))+γ(w̃(t)−w(t−1)), w̃(t)−w(t−1)〉 ≥ (µ+γ)‖w̃(t)−w(t−1)‖2. To make a successful
line search, we simply require the following bound to hold:

−
(
ηt −

η2
t

2

)
+

(
νη2

t

4
+
νη3

t

6

)
D

γ + µ
≤ −ηtρ

which indeed can be guaranteed by setting

0 < ηt ≤ min

{
1,
−(3νD + 6(γ + µ)) +

√
(3νD + 6(γ + µ))2 + 96(1− ρ)νD(γ + µ)

4νD

}
.
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This completes the proof of the result in Part(b).

Now we are in the position to prove the main result in Theorem 8.

Proof [of Theorem 8] Part (a): We first prove the convergence of the objective value se-

quence. Based on (A.2), the smoothness of F1 and the condition εt ≤ ρ(µ+γ)
2(L+γ)+ρ(µ+γ)‖∇F (w(t−1))‖

we can show that

εt ≥‖rt‖
≥‖∇F (w(t−1))‖ − ‖∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1))‖

≥
(

2(L+ γ)

ρ(µ+ γ)
+ 1

)
εt − (L+ γ)‖w̃(t) − w(t−1)‖,

which then implies the following bound

εt ≤
ρ(γ + µ)

2
‖w̃(t) − w(t−1)‖. (A.4)

Since F (w) is L-smooth and F1(w) is µ-strongly convex, from the first part of Lemma 6 we
know that the global line search is feasible at each step of iteration and thus

F (w(t))

≤F (w(t−1))− ηtρ〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉
+ ηtεt‖w̃(t) − w(t−1)‖

ζ1
≤F (w(t−1))− ηtρ(γ + µ)‖w̃(t) − w(t−1)‖2 +

ηtρ(γ + µ)

2
‖w̃(t) − w(t−1)‖2

=F (w(t−1))− ηtρ(γ + µ)

2
‖w̃(t) − w(t−1)‖2,

where in “ζ1” we have used the bound (A.4). From Lemma 28 we know that ‖w̃(t) −
w(t−1)‖ 6= 0 uncles w̃(t) admits a global minimizer of F . Then based on the above inequality
the sequence {F (w(t))} is decreasing. Since F (w(t)) ≥ F (w∗) > −∞, it must hold that
{F (w(t))} converges. Also from the above inequality we have

ηtρ(γ + µ)‖w̃(t) − w(t−1)‖2 ≤ 2(F (w(t−1))− F (w(t))),

which implies ‖w̃(t) − w(t−1)‖ → 0 as t→∞.

31



Xiao-Tong Yuan and Ping Li

Proof of part(b): Since F (w) has ν-smooth, we have

F (w(t))

≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>∇2F (w(t−1))(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

ζ1
≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉

+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1)) +

ν

6
‖w(t) − w(t−1)‖3

ζ2
≤F (w(t−1))− ηtρ〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+ ηtεt‖w̃(t) − w(t−1)‖
ζ3
≤F (w(t−1))− ηtρ(γ + µ)‖w̃(t) − w(t−1)‖2 +

ηtρ(γ + µ)

2
‖w̃(t) − w(t−1)‖2

=F (w(t−1))− ηtρ(γ + µ)

2
‖w̃(t) − w(t−1)‖2,

where “ζ1” follows from ‖∇2F1(w(t−1)) − ∇2F (w(t−1))‖ ≤ γ such that ∇2F1(w(t−1)) −
∇2F (w(t−1)) + γI � 0, in “ζ2” we have used the second part of Lemma 6, and “ζ3” is due
to the bound (A.4). By using the same argument as in the part(a) we can show that the se-
quence {F (w(t))} converges and ‖w̃(t)−w(t−1)‖ → 0 as t→∞. This completes the proof.

B.3 Proof of Theorem 13

This appendix subsection is devoted to providing a detailed proof of Theorem 13 as restated
in below.

Theorem 13 (Non-asymptotic convergence of DANE-LS) Assume that F and F1

are µ-strongly-convex, L-smooth and have ν-LH. Assume that supw ‖∇2F1(w)−∇2F (w)‖ ≤
γ. Suppose that ρ ∈ (0, 1/3) and

εt ≤ min

{
(γ + µ)2,

‖∇F (w(t−1))‖2

L2
,

ρ(µ+ γ)

2(L+ γ) + ρ(µ+ γ)
‖∇F (w(t−1))‖

}
.

Then there exists a time stamp t0, which is invariant to ε, such that Algorithm 1 will output
solution w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ t0 +O
(
γ

µ
log

(
1

ε

))
rounds of iteration.

To prove the theorem, we first need to prove the following restated Lemma 10.

Lemma 10 (Acceptability of unit length for line search) Assume that the conditions
in Theorem 8 hold. Then for sufficiently large t, the unit length satisfies the sufficient de-
scent condition (5) with ρ ∈ (0, 1/3).
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Proof Since F (w) has ν-LH, it holds that

F (w(t))

≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>∇2F (w(t−1))(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉

+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1)) +

ν

6
‖w(t) − w(t−1)‖3,

where in the last inequality we have used ‖∇2F1(w(t−1))−∇2F (w(t−1))‖ ≤ γ. Based on the
above inequality, it is sufficient to prove

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3 ≤ −1

3
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉,

To this end, by mimicking the arguments in the proof of Lemma 6 we can show that

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

≤−
(
ηt −

η2
t

2

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+

(
νη2

t

4
+
νη3

t

6

)
‖w̃(t) − w(t−1)‖3 + ηtεt‖w̃(t) − w(t−1)‖

ζ1
≤−

(
ηt −

η2
t

2

)
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉

+
1

µ+ γ

(
νη2

t

4
+
νη3

t

6

)
‖w̃(t) − w(t−1)‖〈∇F1(w̃(t))−∇F1(w(t−1))

+ γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ ηtεt‖w̃(t) − w(t−1)‖(
−
(
ηt −

η2
t

2

)
+

5ν‖w̃(t) − w(t−1)‖
12(γ + µ)

)
〈∇F1(w̃(t))−∇F1(w(t−1))

+ γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ ηtεt‖w̃(t) − w(t−1)‖,

where “ζ1” is due to 〈∇F1(w̃(t)) − ∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉 ≥ (µ +
γ)‖w̃(t) − w(t−1)‖2 and in the last inequality we have used ηt ≤ 1. When t is sufficiently
large, from Theorem 8 we know that ‖w̃(t)−w(t−1)‖ will be sufficiently close to zero so that
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5ν‖w̃(t)−w(t−1)‖
12(γ+µ) ≤ 1

6 . Consider ηt = 1 in the above inequality. Then

〈∇F (w(t−1)), w(t) − w(t−1)〉+
1

2
(w(t) − w(t−1))>(∇2F1(w(t−1)) + γI)(w(t) − w(t−1))

+
ν

6
‖w(t) − w(t−1)‖3

≤− 1

3
〈∇F1(w̃(t))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1)), w̃(t) − w(t−1)〉+ εt‖w̃(t) − w(t−1)‖,

which implies that unit length is acceptable for any ρ ∈ (0, 1/3).

We also need the following restated Lemma 11 which establishes the local convergence
rate of Algorithm 1 when ηt ≡ 1, i.e., the unit length is always accepted by the backtracking
line search.

Lemma 11 (Local convergence rate of DANE-LS) Assume that F and F1 are µ-strongly-
convex, L-smooth and have ν-LH. Assume that supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ. Let

τ =
⌈
µ+2γ

2µ log (4κ)
⌉

. Suppose that εt ≤ min
{

(γ + µ)2, ‖∇F (w(t−1))‖2
L2

}
. Given precision

ε > 0, if max0≤i≤τ−1 ‖w(i) − w∗‖ ≤ (γ+µ)
4(6ν+1)

√
κτ

, then Algorithm 1 with ηt ≡ 1 will attain

estimation error ‖w(t) − w∗‖ ≤ ε after

t ≥ 4τ log

(
γ + µ

4(6ν + 1)
√
κτνε

)
rounds of iteration.

Proof Since ηt = 1, we have w(t) = w̃(t). By using the first-order optimality condition
∇F (w∗) = 0. We can show that

∇P (t−1)(w(t))

=∇F1(w(t))−∇F1(w(t−1)) +∇F (w(t−1)) + γ(w(t) − w(t−1))

=∇F1(w(t))−∇F1(w∗) +∇F1(w∗)−∇F1(w(t−1)) +∇F (w(t−1))−∇F (w∗) + γ(w(t) − w(t−1))

=∆F1(w(t), w∗) +∇2F1(w∗)(w(t) − w∗)−∆F1(w(t−1), w∗)−∇2F1(w∗)(w(t−1) − w∗)
+ ∆F (w(t−1), w∗) +∇2F (w∗)(w(t−1) − w∗) + γ(w(t) − w(t−1))

=∆F1(w(t), w∗) + (∇2F1(w∗) + γI)(w(t) − w∗)−∆F1(w(t−1), w∗)− (∇2F1(w∗) + γI)(w(t−1) − w∗)
+ ∆F (w(t−1), w∗) +∇2F (w∗)(w(t−1) − w∗).

By multiplying (∇2F1(w∗)+γI)−1 on both sides of the above and after proper rearrangement
we obtain

w(t) − w∗ =
(
I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)

+ (∇2F1(w∗) + γI)−1
(
∇P (t−1)(w(t))−∆F1(w(t), w∗) + ∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)

)
=
(
I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)

+ (∇2F1(w∗) + γI)−1
(

∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w(t), w∗) +∇P (t−1)(w(t))
)
.

34



On Convergence of Distributed Approximate Newton Methods

Let H∗ = ∇2F (w∗) and H∗1 = ∇2F1(w∗). Similar to the previous analysis, we work on the
three term recurrence in matrix form

u(t) = Au(t−1) + r(t−1) (A.5)

where u(t) := w(t) − w∗, A := I − (H∗1 + γI)−1H∗ and

r(t−1) := (H∗1 +γI)−1
(

∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w(t), w∗) +∇P (t−1)(w(t))
)
.

We next bound ‖r(t−1)‖ with respect to ‖u(t−1)‖ and the local optimization precision εt.

‖r(t−1)‖ ≤
∥∥(H∗1 + γI)−1

∥∥∥∥∥∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w(t), w∗)
∥∥∥

+
∥∥(H∗1 + γI)−1

∥∥ ‖∇P (t−1)(w(t))‖

≤ ν

2(γ + µ)
‖w(t) − w∗‖2 +

ν

γ + µ
‖w(t−1) − w∗‖2 +

εt
γ + µ

,

(A.6)

where we have used H∗1 = ∇2F1(w∗) � µI and the Lipschitz Hessian assumption such that
‖∆F1(w(t), w∗)‖ ≤ ν

2‖w
(t)−w∗‖2, ‖∆F1(w(t−1), w∗)‖ ≤ ν

2‖w
(t−1)−w∗‖2 and ‖∆F (w(t−1), w∗)‖ ≤

ν
2‖w

(t−1)−w∗‖2, and also ‖∇P (t−1)(w(t))‖ ≤ εt. In the following step we bound ‖w(t)−w∗‖
with respect to ‖w(t−1) − w∗‖. Since F̃ (w) is µ-strongly-convex, P (t−1)(w) is obviously
(γ + µ)-strongly-convex. Therefore

‖w(t) − w∗‖

≤ 1

γ + µ
‖∇P (t−1)(w(t))−∇P (t−1)(w∗)‖

ζ1
≤ 1

γ + µ
‖∇P (t−1)(w∗)‖+

εt
γ + µ

=
1

γ + µ
‖∇F (w(t−1))−∇F1(w(t−1)) + γ(w∗ − w(t−1)) +∇F1(w∗)‖+

εt
γ + µ

=
1

γ + µ

∥∥∥(∇F (w(t−1))−∇F1(w(t−1))
)
− (∇F (w∗)−∇F1(w∗)) + γ(w∗ − w(t−1))

∥∥∥
+

εt
γ + µ

≤ 2γ

γ + µ
‖w(t−1) − w∗‖+

εt
γ + µ

≤ 2‖w(t−1) − w∗‖+
εt

γ + µ
,

(A.7)

where “ζ1” follows from the optimality of w(t) = w̃(t) with respect to P (t−1) and the last
inequality is implied by the assumption ‖∇2F (w)−∇2F1(w)‖ ≤ γ for all w over a bonded
domain of interest. By combining (A.6) and (A.7), and using the basic inequality (a+b)2 ≤
2a2 + 2b2 we arrive at

‖r(t−1)‖ ≤ 4ν

γ + µ
‖w(t−1) − w∗‖2 +

νε2
t

(γ + µ)3
+

ν

γ + µ
‖w(t−1) − w∗‖2 +

εt
γ + µ

ζ1
≤ 5ν

γ + µ
‖u(t−1)‖2 +

(ν + 1)εt
γ + µ

ζ2
≤ 6ν + 1

γ + µ
‖u(t−1)‖2,

(A.8)

where in the inequality “ζ1” we have used the assumption on εt which implies εt ≤ (γ+µ)2,

and ζ2 follows from εt ≤ ‖∇F (w(t−1))‖2
L2 ≤ ‖w(t−1) −w∗‖2 = ‖u(t−1)‖2. Since ‖H∗1 −H∗‖ ≤ γ
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and H∗ � µI, by applying Lemma 24 we obtain that

‖At‖ =‖(I − (H∗1 + γI)−1H∗)t‖

=

∥∥∥∥((H∗)−1/2(I − (H∗)1/2(H∗1 + γI)−1(H∗)1/2)(H∗)1/2
)t∥∥∥∥

=
∥∥∥(H∗)−1/2(I − (H∗)1/2(H∗1 + γI)−1(H∗)1/2)t(H∗)1/2

∥∥∥
≤

√
L

µ
‖I − (H∗)1/2(H∗1 + γI)−1(H∗)1/2‖t ≤

√
L

µ

(
1− µ

µ+ 2γ

)t
.

(A.9)

In the following argument, to simplify notation, we abbreviate

c =

√
L

µ
, ϑ =

6ν + 1

γ + µ
, ρ = 1− µ

µ+ 2γ

such that ‖At‖ ≤ cρt and ‖r(t)‖ ≤ ϑ‖u(t)‖2. Let us consider the following defined integer

τ =

⌈
µ+ 2γ

2µ
log

(
4L

µ

)⌉
such that ‖Aτ‖ ≤ 1

2 . We now prove by induction that for any integer k ≥ 0, max0≤i≤τ−1 ‖u(kτ+i)‖ ≤
1

4cτϑ

(
3
4

)k
. The assumption max0≤i≤τ−1 ‖w(i) − w∗‖ ≤ 1

4cτϑ guarantees that the bound is

valid for the case k = 0, i.e., max0≤i≤τ−1 ‖u(i)‖ ≤ 1
4cτϑ . Now assume that max0≤i≤τ−1 ‖u(kτ+i)‖ ≤(

3
4

)k 1
4cτϑ for some k ≥ 0. By recursively applying (A.5) we obtain

‖u((k+1)τ)‖

=

∥∥∥∥∥Aτu(kτ) +
τ−1∑
i=0

Air(kτ+τ−1−i)

∥∥∥∥∥ ≤ ‖Aτ‖‖u(kτ)‖+
τ−1∑
i=0

‖Ai‖‖r(kτ+τ−1−i)‖

ζ1
≤1

2
‖u(kτ)‖+ ϑc

τ−1∑
i=0

‖u(kτ+τ−1−i)‖2
ζ2
≤ 1

2

(
3

4

)k 1

4cτϑ
+

1

4τ

τ−1∑
i=0

‖ukτ+i‖

ζ3
≤1

2

(
3

4

)k 1

4cτϑ
+

1

4

(
3

4

)k 1

4cτϑ
=

(
3

4

)k+1 1

4cτϑ
,

where “ζ1” is due to (A.9) which implies ‖Ai‖ ≤ c for all i ≥ 1 and it also has used
‖r(t)‖ ≤ ϑ‖u(t)‖2, “ζ2” and “ζ3” are based on the induction step and ‖ukτ+i‖ ≤ 1

4cτϑ for all

0 ≤ i ≤ τ − 1. By using the same argument as the above, we can show that ‖u((k+1)τ+i)‖ ≤
1

4cτϑ

(
3
4

)k+1
for all 0 ≤ i ≤ τ − 1. This proves that max0≤i≤τ−1 ‖u(kτ+i)‖ ≤ 1

4cτϑ

(
3
4

)k
holds

for all k ≥ 0. In particularly,

‖w(kτ) − w∗‖ = ‖ukτ‖ ≤ 1

4cτϑ

(
3

4

)k
.

Therefore, we need t ≥ 4τ log
(

1
4cτϑε

)
to guarantee the estimation bound ‖w(t) − w∗‖ ≤ ε.

This completes the proof.
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We are now ready to prove the main theorem.
Proof [of Theorem 13] Under the given conditions, from Theorem 8 and Lemma 10 we
know that there exists a sufficiently large t0 such that for all t ≥ t0, the unit length ηt = 1
is acceptable with ρ ∈ (0, 1/3) and the following holds:

‖w̃(t) − w(t−1)‖ ≤ 6µ

13γ + µ

(
γ + µ

4(6ν + 1)
√
κτ

)
. (A.10)

Since εt ≤ ρ(µ+γ)
2(L+γ)+ρ(µ+γ)‖∇F (w(t−1))‖, we have that the bound (A.4) holds and thus

εt ≤
ρ(γ + µ)

2
‖w̃(t) − w(t−1)‖ ≤ γ + µ

6
‖w̃(t) − w(t−1)‖,

where we have used ρ ≤ 1/3. Then based on Lemma 28 and (A.10), the following holds for
all t ≥ t0,

‖w(t) − w∗‖ =‖w̃(t) − w∗‖ ≤ 2γ

µ
‖w̃(t) − w(t−1)‖+

εt
µ

≤
(

2γ

µ
+
γ + µ

6µ

)
‖w̃(t) − w(t−1)‖ ≤ γ + µ

4(6ν + 1)
√
κτ
.

Given the condition on εt, by invoking Lemma 11 we obtain ‖w(t0+t1) − w∗‖ ≤ ε after

t1 ≥ 4τ log

(
γ + µ

4(6ν + 1)
√
κτ

(
1

ε

))
,

where τ =
⌈
µ+2γ

2µ log (4κ)
⌉
. This proves the desired bound.

Appendix C. Proofs for Section 3

We collect in this appendix section the technical proofs of the results in Section 3 of the
main paper, including Theorems 15, Theorem 18, Theorem 13 and their corollaries.

C.1 Proof of Theorem 15

We now prove Theorem 15 which is restated as follows.

Theorem 15 (Convergence rate of DANE-HB for quadratic function) Assume that
the loss function is quadratic. Let H and H1 be the Hessian matrices of the global objective

F and local objective F1, respectively. Assume that µI � H � LI. Set β =
(

1−
√

µ
µ+2γ

)2

and εt =
√

2(µ+γ)‖∇F (w(0))‖
2L(t+1)2

(
1− 1

2

√
µ

µ+2γ

)t+1
. Given precision ε > 0, if ‖H1 − H‖ ≤ γ,

then Algorithm 2 will output w(t) satisfying ‖w(t) − w∗‖ ≤ ε after

t ≥ 2

√
µ+ 2γ

µ
log

(
2
√

2c‖w(0) − w∗‖
ε

)
rounds of iteration, where c is a constant relying on

√
µ/(µ+ 2γ).
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Proof [of Theorem 15] Since the objective is quadratic, for any w(t−1) the optimal solution
w∗ = arg minw F (w) can always be expressed as

w∗ = w(t−1) −H−1∇F (w(t−1)).

Since H
(t)
1 ≡ H1 holds in the quadratic case, from the definition of w(t) and the gradient

equation of P (t−1) we have

w(t) = w(t−1) − η(H1 + γI)−1∇F (w(t−1)) + β(w(t−1) − w(t−2)) + r(t−1),

where the residual term r(t−1) is given by

r(t−1) = (H1 + γI)−1∇P (t−1)(w̃(t)).

By combining the above two inequalities we obtain

w(t) − w∗ = ((1 + β)I − (H1 + γI)−1H)(w(t−1) − w∗)− β(w(t−2) − w∗) + r(t−1). (A.11)

Now let us study the three term recurrence in matrix form[
w(t) − w∗
w(t−1) − w∗

]
=

[
(1 + β)I − (H1 + γI)−1H −βI

I 0

] [
w(t−1) − w∗
w(t−2) − w∗

]
+ r(t−1)

=

[
(1 + β)I − (H1 + γI)−1H −βI

I 0

]t [
w(0) − w∗
w(−1) − w∗

]
+

t−1∑
τ=0

[
(1 + β)I − (H1 + γI)−1H −βI

I 0

]τ
r(t−1−τ).

Let us abbreviate u(t) :=

[
w(t) − w∗
w(t−1) − w∗

]
and A :=

[
(1 + β)I − (H1 + γI)−1H −βI

I 0

]
.

Based on the basic fact ‖Tx‖ ≤ ‖T‖‖x‖ we obtain

‖u(t)‖ ≤ ‖At‖‖u(0)‖+
t−1∑
τ=0

‖Aτ‖‖r(t−1−τ)‖. (A.12)

Let us now temporarily assume that ρ(A) < 1 and consider δ = 1−ρ(A)
2 . From Lemma 26

we know that there exists a constant c = c(δ) such that for all t ≥ 0:

‖At‖ ≤ c(ρ(A) + δ)t = c

(
1 + ρ(A)

2

)t
. (A.13)

Next we show that ρ(A) < 1 is indeed the case under the conditions of the theorem. Since
‖H1 − H‖ ≤ γ and H � µI, by applying Lemma 24 we obtain that (H1 + γI)−1H is
diagonalizable and

µ

µ+ 2γ
≤ λmin((H1 + γI)−1H) ≤ λmax((H1 + γI)−1H) ≤ 1.
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Given the setting of β =
(

1−
√

µ
µ+2γ

)2
, it is known from Lemma 25 (with η = 1) that

ρ(A) ≤ 1−
√

µ

µ+ 2γ
.

Note that ‖r(t)‖ ≤ εt/(µ+γ) holds for all t which follows immediately from ‖∇P (t−1)(w̃(t))‖ ≤
εt and H1 � µI. Then combining the above bound with (A.12) and (A.13) we obtain

‖w(t) − w∗‖

≤‖u(t)‖ ≤ c
(

1− 1

2

√
µ

µ+ 2γ

)t
‖u(0)‖+

c

µ+ γ

t−1∑
τ=0

εt−1−τ

(
1− 1

2

√
µ

µ+ 2γ

)τ
ζ1
≤
√

2c

(
1− 1

2

√
µ

µ+ 2γ

)t
‖w(0) − w∗‖+

c
√

2

2

t−1∑
τ=0

1

(t− τ)2

(
1− 1

2

√
µ

µ+ 2γ

)t
‖w(0) − w∗‖

≤2
√

2c

(
1− 1

2

√
µ

µ+ 2γ

)t
‖w(0) − w∗‖,

where in the inequality “ζ1” we have used w(0) = w(−1) and the condition

εt ≤
√

2(µ+ γ)‖∇F (w(0))‖
2L(t+ 1)2

(
1− 1

2

√
µ

µ+ 2γ

)t+1

≤
√

2(µ+ γ)‖w(0) − w∗‖
2(t+ 1)2

(
1− 1

2

√
µ

µ+ 2γ

)t+1

,

and in the last inequality we have used
∑t−1

τ=0
1

(t−τ)2
≤ 1 +

∫∞
1

1
x2
dx ≤ 2. By using the fact

1− a ≤ exp {−a} we can show that ‖w(t) − w∗‖ ≤ ε is valid when

t ≥ 2

√
µ+ 2γ

µ
log

(
2
√

2c‖w(0) − w∗‖
ε

)
.

This concludes the proof.

Corollary 16 Assume the conditions in Theorem 15 hold and ‖∇2f(w;xi, yi)‖ ≤ L for all
i ∈ [N ]. Then for any δ ∈ (0, 1), with probability at least 1 − δ over the random samples

drawn to construct F1, Algorithm 2 with γ = L

√
32 log(p/δ)

n will attain estimation error

‖w(t) − w∗‖ ≤ ε after

t ≥ O
( √

κ

n1/4
log1/4

(p
δ

)
log

(
1

ε

))
rounds of iteration.

Proof Since H(w) ≡ H and H1(w) ≡ H1 in the quadratic case, we know from Lemma 29

that ‖H1 − H‖ ≤ γ = L

√
32 log(p/δ)

n holds with probability at least 1 − δ. By invoking
Theorem 15 we obtain the desired bound.
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C.2 Proof of Theorem 18

Here we give a detailed proof of Theorem 18 which is restated as in the following.

Theorem 18 (Local convergence rate of DANE-HB) Assume that F and F1 are µ-
strongly-convex and has ν-LH. Assume that supw ‖∇2F1(w) − ∇2F (w)‖ ≤ γ. Choose β =(

1−
√
µ/(µ+ 2γ)

)2
. Let τ =

⌈
2
√

(µ+ 2γ)/µ log(2c)
⌉

in which c is a constant dependent

on
√
µ/(µ+ 2γ). Assume that εt ≤ min

{
(γ + µ)2, ‖∇F (w(t−1))‖2/L2

}
. Given precision

ε > 0, if max−1≤i≤τ−1 ‖w(i)−w∗‖ ≤ γ+µ

4(6ν+1)
√

2cτ
, then Algorithm 2 will output w(t) satisfying

‖w(t) − w∗‖ ≤ ε after

t ≥ 4τ log

(
γ + µ

4(6ν + 1)cτ

(
1

ε

))
rounds of iteration.

Proof [of Theorem 18] The proof mimics that of Lemma 11 with proper adaptation to the
heave-ball momentum formulation. For the sake of completeness, here we provide the full
details of proof. Since ∇F (w∗) = 0, we can show the following:

∇P (t−1)(w̃(t))

=∇F1(w̃(t))−∇F1(w(t−1)) +∇F (w(t−1)) + γ(w̃(t) − w(t−1))

=∇F1(w̃(t))−∇F1(w∗) +∇F1(w∗)−∇F1(w(t−1)) +∇F (w(t−1))−∇F (w∗) + γ(w̃(t) − w(t−1))

=∆F1(w̃(t), w∗) +∇2F1(w∗)(w̃(t) − w∗)−∆F1(w(t−1), w∗)−∇2F1(w∗)(w(t−1) − w∗)
+ ∆F (w(t−1), w∗) +∇2F (w∗)(w(t−1) − w∗) + γ(w̃(t) − w(t−1))

=∆F1(w̃(t), w∗) + (∇2F1(w∗) + γI)(w̃(t) − w∗)−∆F1(w(t−1), w∗)

− (∇2F1(w∗) + γI)(w(t−1) − w∗) + ∆F (w(t−1), w∗) +∇2F (w∗)(w(t−1) − w∗).

Then by multiplying (∇2F1(w∗) + γI)−1 on both sides of the above and after proper rear-
rangement we obtain

w̃(t) − w∗

=
(
I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)

+ (∇2F1(w∗) + γI)−1
(
∇P (t−1)(w̃(t))−∆F1(w̃(t), w∗) + ∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)

)
=
(
I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)

+ (∇2F1(w∗) + γI)−1
(

∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w̃(t), w∗) +∇P (t−1)(w̃(t))
)
.

Recall the update w(t) = w̃(t) + β(w(t−1) − w(t−2)). It follows that

w(t) − w∗

=
(
(1 + β)I − (∇2F1(w∗) + γI)−1∇2F (w∗)

)
(w(t−1) − w∗)− β(w(t−2) − w∗)

+ (∇2F1(w∗) + γI)−1
(

∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w̃(t), w∗) +∇P (t−1)(w̃(t))
)
.
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Let H∗ = ∇2F (w∗) and H∗1 = ∇2F1(w∗). Similar to the previous analysis, we work on the
three term recurrence in matrix form

u(t) = Au(t−1) + r(t−1) (A.14)

where u(t) :=

[
w(t) − w∗
w(t−1) − w∗

]
, A :=

[
(1 + β)I − (H∗1 + γI)−1H∗ −βI

I 0

]
and

r(t−1) :=

[
(H∗1 + γI)−1

(
∆F1(w(t−1), w∗)−∆F (w(t−1), w∗)−∆F1(w̃(t), w∗) +∇P (t−1)(w̃(t))

)
0

]
.

Under the condition εt ≤ min
{

(γ + µ)2, ‖∇F (w(t−1))‖2/L2
}

, using the similar argument

as in the proof of Lemma 11, we can bound ‖r(t−1)‖ with respect to ‖u(t−1)‖ as

‖r(t−1)‖ ≤ 6ν + 1

γ + µ
‖u(t−1)‖2.

Since ‖H∗1 −H∗‖ ≤ γ and H∗ � µI, by applying Lemma 24 we obtain that (H∗1 + γI)−1H∗

is diagonalizable and

µ

µ+ 2γ
≤ λmin((H∗1 + γI)−1H∗) ≤ λmax((H∗1 + γI)−1H∗) ≤ 1.

Given β =
(

1−
√

µ
µ+2γ

)2
, it is known from Lemma 25 (with η = 1) that

ρ(A) ≤ 1−
√

µ

µ+ 2γ
.

Let δ = 1−ρ(A)
2 . From Lemma 26 we know that there exists a constant c = c(δ) such that

for all t ≥ 0:

‖At‖ ≤ c(ρ(A) + δ)t = c

(
1 + ρ(A)

2

)t
≤ c

(
1− 1

2

√
µ

µ+ 2γ

)t
. (A.15)

Without loss of generality we assume c ≥ 1. In the following argument, to simplify notation,

we abbreviate ϑ = 6ν+1
γ+µ and ρ = 1− 1

2

√
µ

µ+2γ . Let us consider the following defined integer

τ =

⌈
2

√
µ+ 2γ

µ
log(2c)

⌉

such that ‖Aτ‖ ≤ 1
2 . We now prove by induction that for any integer k ≥ 0, max0≤i≤τ−1 ‖u(kτ+i)‖ ≤

1
4cτϑ

(
3
4

)k
. The assumption max−1≤i≤τ−1 ‖w(i)−w∗‖ ≤ 1

4
√

2cτϑ
guarantees that the bound is

valid for the case k = 0, i.e., max0≤i≤τ−1 ‖u(i)‖ ≤ 1
4cτϑ . Now assume that max0≤i≤τ−1 ‖u(kτ+i)‖ ≤
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(
3
4

)k 1
4cτϑ for some k ≥ 0. By recursively applying (A.14) we obtain

‖u((k+1)τ)‖

=

∥∥∥∥∥Aτu(kτ) +
τ−1∑
i=0

Air(kτ+τ−1−i)

∥∥∥∥∥ ≤ ‖Aτ‖‖u(kτ)‖+
τ−1∑
i=0

‖Ai‖‖r(kτ+τ−1−i)‖

ζ1
≤1

2
‖u(kτ)‖+ ϑc

τ−1∑
i=0

‖u(kτ+τ−1−i)‖2
ζ2
≤ 1

2

(
3

4

)k 1

4cτϑ
+

1

4τ

τ−1∑
i=0

‖ukτ+i‖

ζ3
≤1

2

(
3

4

)k 1

4cτϑ
+

1

4

(
3

4

)k 1

4cτϑ
=

(
3

4

)k+1 1

4cτϑ
,

where “ζ1” is due to (A.15) which implies ‖Ai‖ ≤ c for all i ≥ 1 and it also has used
‖r(t)‖ ≤ ϑ‖u(t)‖2, “ζ2” and “ζ3” are based on the induction step and ‖ukτ+i‖ ≤ 1

4cτϑ for all

0 ≤ i ≤ τ − 1. By using the same argument as the above, we can show that ‖u((k+1)τ+i)‖ ≤
1

4cτϑ

(
3
4

)k+1
for all 0 ≤ i ≤ τ − 1. This proves that max0≤i≤τ−1 ‖u(kτ+i)‖ ≤ 1

4cτϑ

(
3
4

)k
holds

for all k ≥ 0. Particularly, we obtain

‖w(kτ) − w∗‖ ≤ ‖ukτ‖ ≤ 1

4cτϑ

(
3

4

)k
.

Therefore, to reach ‖w(t)−w∗‖ ≤ ε we need t ≥ 4τ log
(

1
4cτϑε

)
. This completes the proof.

C.3 Proof of Theorem 20

In this subsection, we prove Theorem 20 as restated below.

Theorem 20 (Convergence of D2ANE) Assume that the univariate functions li are `-
smooth and σ-strongly convex. Assume without loss of generality that ‖xi‖ ≤ 1. Let

H = `
NXX

> + µI and H1 = `
nX1X

>
1 + µI. Choose β =

(
1−

√
µ

µ+2γ

)2
and εt =

σ
2` exp

{
−σ(t−1)

2`

}
. If ‖H1 − H‖ ≤ γ, then Algorithm 3 will output solution w(t) with sub-

optimality F (w(t))− F (w∗) ≤ ε after

t ≥ 2`

σ
log

(
max

{
1, F (w(0))− F (w∗)

}
ε

)
rounds of outer-loop iteration and

O
(
`

σ

√
γ

µ
log2

(
1

ε

))
rounds of inner-loop iteration of DANE-HB.

Proof We first analyze the outer-loop iteration complexity. As defined in Algorithm 3 that
at each time instance t the quadratic subproblem is optimized to certain εt-sub-optimality,
i.e.,

Q(t−1)(w(t)) ≤ min
w
Q(t−1)(w) + εt.
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The value of εt will be specified shortly in the following analysis. Let us abbreviate
li(w

>xi) = l(w>xi, yi) with li being a univariate function. For any η ∈ [0, 1], the smoothness
of li and the suboptimality of w(t) lead to

F (w(t)) = F̃ (w(t)) +
µ

2
‖w(t)‖2 =

1

N

N∑
i=1

li(x
>
i w

(t)) +
µ

2
‖w(t)‖2

≤ 1

N

N∑
i=1

{
li(x

>
i w

(t−1)) + l′i(x
>
i w

(t−1))x>i (w(t) − w(t−1))

+
`

2
(w(t) − w(t−1))>xix

>
i (w(t) − w(t−1))

}
+
µ

2
‖w(t)‖2

=F̃ (w(t−1)) + 〈∇F̃ (w(t−1)), w(t) − w(t−1)〉+
`

2N
(w(t) − w(t−1))>XX>(w(t) − w(t−1))

+
µ

2
‖w(t)‖2 = Q(t−1)(w(t)) ≤ Q(t−1)((1− η)w(t−1) + ηw∗) + εt

=F̃ (w(t−1)) + η〈∇F̃ (w(t−1)), w∗ − w(t−1)〉+
η2`

2N
(w∗ − w(t−1))>XX>(w∗ − w(t−1))

+
µ

2

(
(1− η)w(t−1) + ηw∗

)2
+ εt

=F̃ (w(t−1)) + η〈∇F̃ (w(t−1)), w∗ − w(t−1)〉+
η2`

2N
(w∗ − w(t−1))>XX>(w∗ − w(t−1))

+
µ

2
‖w(t−1)‖2 + µη〈w(t−1), w∗ − w(t−1)〉+

µη2

2
‖w(t−1) − w∗‖2 + εt

=F (w(t−1)) + η〈∇F (w(t−1)), w∗ − w(t−1)〉

+
η2`

2
(w∗ − w(t−1))>

(
XX>

N
+
µ

`
I

)
(w∗ − w(t−1)) + εt.

On the other side, from the strong-convexity of li(·) we can show that

F (w∗) =
1

N

N∑
i=1

li(x
>
i w
∗) +

µ

2
‖w∗‖2

≥ 1

N

N∑
i=1

{
fi(x

>
i w

(t−1)) + f ′i(x
>
i w

(t−1))x>i (w∗ − w(t−1))> +
σ

2
(w∗ − w(t−1))>xix

>
i (w∗ − w(t−1))

}
+
µ

2
‖w(t−1)‖2 + µ〈w(t−1), w∗ − w(t−1)〉+

µ

2
‖w∗ − w(t−1)‖2

=F (w(t−1)) + 〈∇F (w(t−1)), w∗ − w(t−1)〉+
σ

2
(w∗ − w(t−1))>

(
XX>

N
+
µ

σ
I

)
(w∗ − w(t−1))

≥F (w(t−1)) + 〈∇F (w(t−1)), w∗ − w(t−1)〉+
σ

2
(w∗ − w(t−1))>

(
XX>

N
+
µ

`
I

)
(w∗ − w(t−1)),

where in the last inequality we have used ` ≥ σ. By setting η = σ/` ∈ (0, 1] and combining
the above two inequalities we arrive at

F (w(t))− F (w∗) ≤
(

1− σ

`

)
(F (w(t−1))− F (w∗)) + εt.
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Since li is `-smooth and ‖xi‖ ≤ 1, we can verify that F is (` + µ)-smooth. In view of the
condition

εt =
σ

2`
exp

{
−σ(t− 1)

2`

}
(A.16)

we can show by induction that

F (w(t))− F (w∗) ≤ exp

{
−σt

2`

}
max

{
1, F (w(0))− F (w∗)

}
.

Then for any desired precision ε > 0, the sub-optimality F (w(t))−F (w∗) ≤ ε holds provided
that

t ≥ T =
2`

σ
log

(
max

{
1, F (w(0))− F (w∗)

}
ε

)
.

From Theorem 15 and (A.16) we know that the condition Q(t−1)(w(t)) ≤ minwQ
(t−1)(w) +

εt is valid when the inner loop is sufficiently executed with O
(√

γ
µ log

(
1
εt

))
rounds of

iteration. Therefore, the overall inner-loop iteration complexity to attain F (w(t))−F (w∗) ≤
ε is bounded by

O

(
T∑
t=1

{√
γ

µ

(
log

(
`

σ

)
+ (t− 1)

σ

`

)})

=O
(√

γ

µ

(
T log

(
`

σ

)
+ T 2σ

`

))
≤ O

(
`

σ

√
γ

µ
log2

(
1

ε

))
.

This proves the desired bound.

Appendix D. Proof of Auxiliary Lemmas

D.1 Proof of Lemma 24

Proof Since both A + γI and B are symmetric and positive definite, it is known that
the eigenvalues of (A + γI)−1B are positive real numbers and identical to those of (A +
γI)−1/2B(A + γI)−1/2. Let us consider the following eigenvalue decomposition of (A +
γI)−1/2B(A+ γI)−1/2:

(A+ γI)−1/2B(A+ γI)−1/2 = Q>ΛQ,

where Q>Q = I and Λ is a diagonal matrix with eigenvalues as diagonal entries. It is then
implied that

(A+ γI)−1B = (A+ γI)−1/2Q>ΛQ(A+ γI)1/2,

which is a diagonal eigenvalue decomposition of (A+ γI)−1B. Thus (A+ γI)−1B is diago-
nalizable.

To prove the eigenvalue bounds of (A + γI)−1B, it suffices to prove the same bounds
for (A + γI)−1/2B(A + γI)−1/2. Since ‖A − B‖ ≤ γ, we have B � A + γI which im-
plies (A + γI)−1/2B(A + γI)−1/2 � I and hence λmax((A + γI)−1/2B(A + γI)−1/2) ≤ 1.
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Moreover, since B � µI, it holds that 2γ
µ B − γI � γI � A − B. Then we obtain

(A+γI)−1/2B(A+γI)−1/2 � µ
µ+2γ I which implies λmin((A+γI)−1/2B(A+γI)−1/2) ≥ µ

µ+2γ .

Therefore it must hold ‖I−(A+γI)−1/2B(A+γI)−1/2‖ ≤ 1− µ
µ+2γ = 2γ

µ+2γ . Similarly, we can

show that µ
µ+2γ I � B

1/2(A+γI)−1B1/2 � I, and thus ‖I−B1/2(A+γI)−1B1/2‖ ≤ 2γ
µ+2γ .

D.2 Proof of Lemma 25

Proof Let 0 < µ ≤ λ1 ≤ λ2 ≤ · · · ≤ λd ≤ L be the eigenvalues of A and Λ be a diagonal
matrix whose diagonal entries are {λi} in a non-decreasing order. Since A is diagonalizable,
it can be verified that the eigenvalues of the following two 2d× 2d matrices coincide:

T1 =

[
(1 + β)I − ηA −βI

I 0

]
, T2 =

[
(1 + β)I − ηΛ −βI

I 0

]
.

It is possible to permute the matrix T2 to a block diagonal matrix with 2× 2 blocks of the
form [

1 + β − ηλi −β
1 0

]
.

Therefore we have

ρ

([
(1 + β)I − ηA −βI

I 0

])
=ρ

([
(1 + β)I − ηΛ −βI

I 0

])
= max

i∈[d]
ρ

([
1 + β − ηλi −β

1 0

])
.

For each i ∈ [d], the eigenvalues of the 2× 2 block matrices are given by the roots of

λ2 − (1 + β − ηλi)λ+ β = 0.

Given that β ≥ |1 −
√
ηλi|2, the roots of the above equation are imaginary and both have

magnitude
√
β. Since β = max{|1 −√ηµ|2, |1 −

√
ηL|2}, the magnitude of each root is at

most max{|1−√ηµ|, |1−
√
ηL|}. This proves the desired spectral radius bound.

D.3 Proof of Lemma 28

Proof From the local sub-optimality condition we have

‖∇P (t−1)(w̃(t))‖ = ‖∇F1(w̃(t)) +∇F (w(t−1))−∇F1(w(t−1)) + γ(w̃(t) − w(t−1))‖ ≤ εt.

Then we can show that

‖∇F (w̃(t))‖
=‖∇F (w̃(t))−∇P (t−1)(w̃(t)) +∇P (t−1)(w̃(t))‖
≤‖∇F (w̃(t))−∇F1(w̃(t))−∇F (w(t−1)) +∇F1(w(t−1))− γ(w̃(t) − w(t−1))‖+ εt

≤‖(∇2(F − F1)(w′) + γI)(w̃(t) − w(t−1))‖+ εt ≤ 2γ‖w̃(t) − w(t−1)‖+ εt,
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where in the last inequality we have used supw ‖∇2F (w)−∇2F1(w)‖ ≤ γ. This proves the
first inequality. The second inequality follows readily from the strong convexity of F such
that µ‖w̃(t) − w∗‖ ≤ ‖∇F (w̃(t))−∇F (w∗)‖ = ‖∇F (w̃(t))‖.

Appendix E. Computational complexity of DANE-HB and D2ANE

In addition to communication complexity, here we further provide a computational complex-
ity analysis for DANE-HB in order to gain better understanding of its overall computational
efficiency. We first restrict our attention to the quadratic setting in which the global con-
vergence of DANE-HB is guaranteed. At each communication round t, the master machine
needs to solve the local subproblem w̃(t) ≈ arg minw P

(t−1)(w) to certain desired precision.
Inspired by Federated SVRG (Konečnỳ et al., 2016) which essentially applies SVRG (John-
son and Zhang, 2013) to the local optimization of InexactDane , we specify that the local
minimization of DANE-HB is implemented with the SVRG solver. Clearly such a specifi-
cation of DANE-HB only needs to access the first-order information of the loss functions.
Following (Johnson and Zhang, 2013; Zhang and Xiao, 2017), we employ the incremental
first order oracle (IFO) complexity as the computational complexity metric for solving the
finite-sum minimization problem (1).

Definition 30 An IFO takes an index i ∈ [N ] and a point (xi, yi) ∈ {xj , yj}Nj=1, and
returns the pair (f(w;xi, yi),∇f(w;xi, yi)).

As a consequence of Corollary 16, the following result summaries the computational
complexity of DANE-HB in the considered setting.

Corollary 31 (Computational complexity of DANE-HB for quadratic objective)
Assume the conditions in Corollary 16 hold and the local subproblems are solved by SVRG.
Then with high probability over the random samples drawn to construct F1, the IFO com-
plexity of DANE-HB for attaining estimation error ‖w(t)−w∗‖ ≤ ε is bounded in expectation
(w.r.t. stochastic gradient estimation) by

O
(√

κ
(
n3/4 + n1/4

)
log2

(
1

ε

)
+
√
κn3/4 log

(
1

ε

))
.

Proof Recollect that γ = L

√
32 log(p/δ)

n in Corollary 16. From Corollary 16 we know that

with probability at least 1− δ over the random choice of F1, ‖w(t) − w∗‖ ≤ ε after

T = O
( √

κ

n1/4
log1/4

(p
δ

)
log

(
1

ε

))
rounds of outer-loop communication. For each communication round, each machine needs
to compute the local batch gradient, which can be done in parallel with IFO complexity

O
(√

κn3/4 log1/4
(p
δ

)
log

(
1

ε

))
.
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It is standard to know that the IFO complexity of the inner-loop SVRG computation can
be bounded in expectation by

O
((

n+
L+ γ

γ + µ

)
log

(
1

εt

))
≤ O

((
n+

√
n

log(p/δ)

)
log

(
1

ε

))
,

where we have used log
(

1
εt

)
≤ O

(
log
(

1
ε

))
for all t ≤ T . Combing the above inner-

loop and outer-loop IFO bounds yields the following overall in expectation (w.r.t. SVRG)
computation complexity bound

O
(√

κ
(
n3/4 + n1/4

)
log2

(
1

ε

)
+
√
κn3/4 log

(
1

ε

))
,

which holds with high probability over the randomness of F1.

For an instance, let us consider the conventional regularized learning problems in which the
condition number κ scales as large as O(

√
N) = O(

√
mn). In this case, the above result

implies that the expected IFO complexity bound of DANE-HB is dominated by

O
((

m1/4n+m1/4n1/2
)

log2

(
1

ε

)
+m1/4n log

(
1

ε

))
.

For comparison, the expected IFO complexity bound of the classic single-machine SVRG is
given by

O
((
mn+

√
mn
)

log

(
1

ε

))
.

Since the sample size mn dominates the condition number
√
mn in this example, up to the

logarithm factors, DANE-HB is roughly ×m3/4 cheaper than SVRG in computational cost,
which also matches the result established for MP-DANE (Wang et al., 2017b).

By combining Theorem 20 and Corollary 31, we can similarly establish the following
result on the overall IFO complexity bound of D2ANE for linear models.

Corollary 32 (Computation complexity of D2ANE) Assume the conditions in Corol-
lary 22 hold and the local subproblems are solved by SVRG. Then with high probability over
the random samples drawn to construct F1, the IFO complexity of D2ANE for attaining
sub-optimality F (w(t)) − F (w∗) ≤ ε is bounded in expectation (w.r.t. stochastic gradient
estimation) by

O
(
`
√
κ

σ

(
n3/4 + n1/4

)
log3

(
1

ε

)
+
`
√
κ

σ
n3/4 log2

(
1

ε

))
.

When the condition number κ = O(
√
N) = O(

√
mn) as in regularized statistical learning

problems, the above result implies that the expected IFO complexity of D2ANE is upper
bounded by

O
(
`

σ

(
m1/4n+m1/4n1/2

)
log3

(
1

ε

)
+
`

σ
m1/4n log2

(
1

ε

))
.
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