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Abstract: The de facto standard approach of promoting sparsity by means of `1-

regularization becomes ineffective in the presence of simplex constraints, that is,

when the target is known to have non-negative entries summing to a given con-

stant. The situation is analogous for the use of nuclear norm regularization for the

low-rank recovery of Hermitian positive semidefinite matrices with a given trace.

In the present paper, we discuss several strategies to deal with this situation, from

simple to more complex. First, we consider empirical risk minimization (ERM),

which has similar theoretical properties w.r.t. prediction and `2-estimation error

as `1-regularization. In light of this, we argue that ERM combined with a sub-

sequent sparsification step (e.g., thresholding) represents a sound alternative to

the heuristic of using `1-regularization after dropping the sum constraint and the

subsequent normalization. Next, we show that any sparsity-promoting regularizer

under simplex constraints cannot be convex. A novel sparsity-promoting regular-

ization scheme based on the inverse or negative of the squared `2-norm is proposed,

which avoids the shortcomings of various alternative methods from the literature.

Our approach naturally extends to Hermitian positive semidefinite matrices with a

given trace.

Key words and phrases: D.C. programming, density matrices of quantum systems,

estimation of mixture proportions, simplex constraints, sparsity.

1. Introduction

In this paper, we study the case in which the parameter of interest β∗ is

sparse and non-negative with a known sum, i.e., β∗ ∈ c∆p ∩ Bp0(s), where, for

c > 0 and 1 ≤ s ≤ p, c∆p = {β ∈ Rp+ : 1>β = c} is the (scaled) canonical

simplex in Rp, Bp0(s) = {β ∈ Rp : ‖β‖0 ≤ s}, and ‖β‖0 = |S(β)| = |{j : βj 6= 0}|
is referred to as the `0-norm (the cardinality of the support S(β)). Unlike the

constant c, the sparsity level s is regarded as unknown. The specific value of

c is not essential; in the sequel, we shall work with c = 1, as for all problem

instances studied herein, the data can be re-scaled accordingly. The elements of

∆p = {β ∈ Rp+ : 1>β = 1} can represent probability distributions over p items,

proportions, or normalized weights. The following are examples of quantities
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that arise frequently in contemporary data analyses:

• Estimation of proportions. Specific examples include determining the pro-

portions of chemical constituents in a given sample and endmember com-

position of pixels in hyperspectral imaging (Keshava (2003)).

• Probability density estimation, cf. Bunea et al. (2010). Let (Z,A, P ) be

a probability space, with P having a density f w.r.t. some dominating

measure ν. Given a sample {Zi}ni=1
i.i.d.∼ P and a dictionary {φj}pj=1 of

densities (w.r.t. ν), the goal is to find a mixture density φβ =
∑p

j=1 βjφj
that well approximates f , where β ∈ ∆p.

• Convex aggregation/ensemble learning. The following problem has attracted

much interest in the field of non-parametric estimation; see Nemirovski

(2000). Let f be the target in a regression/classification problem, and let

{φj}pj=1 be an ensemble of regressors/classifiers. The goal is to approximate

f by a convex combination of {φj}pj=1.

• Markowitz portfolios (Markowitz (1952)) without short positions. Given

assets with expected returns r = (rj)
p
j=1 and covariance Σ, the goal is to

invest according to proportions β ∈ ∆p s.t. the variance β>Σβ is minimized,

subject to a lower bound on the expected return β>r.

Sparsity is often prevalent or desired in these applications.

• In hyperspectral imaging, a single pixel usually contains few endmembers.

• In density estimation, the underlying density may be concentrated in certain

regions of the sample space.

• In aggregation, it is common to work with a large ensemble to improve the

approximation capacity, although specific functions may be well approxi-

mated by just a few members of the ensemble.

• Portfolios involving only few assets incur less transaction costs and are easier

to manage.

At the same time, promoting sparsity in the presence of the constraint β ∈ ∆p

appears to be more difficult, as `1-regularization no longer serves this purpose.

As clarified in §2, the naive approach of employing `1-regularization and drop-

ping the sum constraint results in discarded information. The situation is sim-

ilar for nuclear norm regularization and low-rank matrices that are Hermitian



SPARSE AND LOW-RANK RECOVERY UNDER SIMPLEX CONSTRAINTS 559

positive semidefinite, with a fixed trace. For example, this arises in quan-

tum state tomography (Gross et al. (2010)) when the constraint set results as

∆m = {B ∈ Cm×m : B = BH , B � 0, tr(B) = 1}, with H denoting conju-

gate transposition. Thus, the presence of simplex constraints and their matrix

counterparts require that we use different strategies to deal with sparsity and

low-rankedness. Here, we propose strategies that are statistically sound, straight-

forward to implement, adaptive, in the sense that the sparsity level s (resp., the

rank in the matrix case) is not required to be known, and work with a minimum

amount of hyperparameter tuning.

Related work. The problem outlined above is discussed well by Kyrillidis et al.

(2013). They consider the sparsity level s to be known, and suggest dealing with

the constraint set ∆p
0(s) = ∆p ∩ Bp0(s) by projected gradient descent based on a

near-linear time algorithm used to compute the projection. This approach can be

viewed as a natural extension of iterative hard thresholding (IHT, Blumensath

and Davies (2009); Shen and Li (2018)).

Pilanci, Ghaoui and Chandrasekaran (2012) suggest using the regularizer

β 7→ 1/ ‖β‖∞ to promote sparsity on ∆p. In addition, they show that in the case

of squared loss, the resulting nonconvex optimization problem can be reduced

to p second-order cone programs. In practice, however, the computational cost

quickly becomes prohibitive, particularly when combined with the tuning of the

regularization parameter.

Relevant prior studies include the works of Larsson and Ugander (2011) and

Shashanka, Raj and Smaragdis (2008), who discuss the aforementioned problem

in the context of latent variable models for image and bag-of-words data. Larsson

and Ugander (2011) propose a so-called pseudo-Dirichlet prior, akin to the log-

penalty in Candes, Wakin and Boyd (2007). Shashanka, Raj and Smaragdis

(2008) suggest using Shannon entropy as a regularizer. A conceptually different

approach is pursued in Jojic, Saria and Koller (2011). Instead of the usual loss

+ `1-norm formulation with the `1-norm arising as the convex envelope of the

`0-norm on the unit `∞-ball, the authors work with the convex envelope of the

loss + `0-norm.

Finally, it is worth mentioning a line of research on sparse regression under

linear inequality or equality constraints. Here, relevant works include those of

James, Paulson and Rusmevichientong (2015), Lin et al. (2014), and Shi, Zhang

and Li (2016). Meinshausen (2013) and Slawski and Hein (2013) study the case

in which the constraint set is the non-negative orthant. It is shown that, under

specific conditions, this constraint has similar effects to those of `1-regularization.
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With simplex constraints, this effect applies more broadly, as discussed in §2.

Outline and contributions. As a preliminary step, we provide a brief analysis

of high-dimensional estimations under simplex constraints in §2. Such analyses

provide valuable insights when designing sparsity-promoting schemes. Note that

empirical risk minimization (ERM) and the elements of ∆p contained in a “high

confidence set” for β∗ (a construction inspired by the Dantzig selector of Candes

and Tao (2007)) already enjoy nice statistical guarantees, including adaptation

to sparsity under a restricted strong convexity condition that is weaker than

that in Negahban et al. (2012). Next, we discuss strategies to improve on ERM,

particularly with respect to the sparsity of the solution and support recovery.

As a basic strategy, we consider simple two-stage procedures, thresholding and

reweighted `1-regularization on top of ERM (see §3).

As an alternative, we propose a novel regularization-based scheme in §4, in

which β 7→ 1/ ‖β‖22 serves as a relaxation of the `0-norm on ∆p. This regularizer

naturally extends to the case of positive semidefinite Hermitian matrices of unit

trace, as discussed in §5. On the optimization side, the approach can be imple-

mented using difference-of-convex (DC) programming (Pham Dinh and Le Thi

(1997)). Unlike other forms of concave regularization, such as the SCAD, capped

`1, or MCP penalties (Zhang and Zhang (2013)) no parameter other than the reg-

ularization parameter needs to be specified. For this purpose, we employ a generic

BIC-type criterion (Schwarz (1978); Kim, Kwon and Choi (2012)) with the aim

of selecting the correct model (resp., rank, in the matrix case). The Supplemen-

tary Material (Li, Rangapuram and Slawski (2018)) contains all proofs, as well

as numerical experiments on compressed sensing, density estimation, portfolio

optimization and quantum state tomography that demonstrate the effectiveness

of both the two-stage procedures and the regularization-based approach. The

following orgchart provides a quick overview of the organization of the paper.

§2-§4 Sparse vectors

§2 Empirical Risk Minimization

§3 Two-stage procedures §4 Regularization with the negative ℓ2-norm

Optimization

§5 Low-rank matrices
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Notation. For the convenience of readers, we first present the essential notation.

We denote ‖·‖q for q ∈ [0,∞], as the usual `q-norm or the Schatten `q-norm,

depending on the context, and 〈·, ·〉 as the usual Euclidean inner product. We

use | · | for the cardinality of a set. The support of v ∈ Rd is denoted by S(v) =

{j : vj 6= 0}. For J ⊆ {1, . . . , d}, we let vJ = (vj)j∈J . We write I(·) for the

indicator function. We denote {e1, . . . , ed} as the canonical basis of Rd. For

A ⊆ Rd, ΠA : Rd → A denotes the Euclidean projection on A. For the functions

f(n) and g(n), we write f(n) & g(n) and f(n) . g(n) if f(n) ≥ Cg(n) and

f(n) ≤ Cg(n), respectively, for some constant C > 0. We write f(n) � g(n) if

both f(n) & g(n) and f(n) . g(n). We also use the Landau symbols O(·) and

o(·).

2. Simplex Constraint in High-dimensional Problems: Basic Analysis

Before designing schemes that promote sparsity under the constraint β ∈ ∆p,

it is worth deriving basic performance bounds and establishing adaptivity to

underlying sparsity when only simplex constraints are used for the estimation,

without explicitly enforcing sparse solutions. Note that the constraint β ∈ ∆p

is stronger than the `1-ball constraint, ‖β‖1 ≤ 1. As a result, ERM enjoys

properties known from analyses of (unconstrained) `1-regularized estimations,

including the adaptivity to sparsity under certain conditions. This already sets

a substantial limit on what can be achieved by sparsity-promoting schemes.

Let {Zi}ni=1 be independently and identically distributed (i.i.d.) copies of

a random variable Z following a distribution P on a sample space Z ⊆ Rd.
Let L : Rp × Z → R be a loss function, such that ∀z ∈ Z, L(·, z) is convex

and differentiable. For β ∈ Rp, R(β) = E[L(β, Z)] denotes the expected risk,

and Rn(β) = n−1
∑n

i=1 L(β, Zi) denotes its empirical counterpart. The goal is to

recover β∗ = argminβ∈∆p E[L(β, Z)]. ERM yields β̂ ∈ argminβ∈∆p Rn(β). Figure

1 provides an overview of the key quantities and their relationships.

In addition to ERM, our analysis simultaneously covers all elements of the

set

D(λ) = {β ∈ ∆p : ‖∇Rn(β)‖∞ ≤ λ}, (2.1)

for suitably chosen λ ≥ 0, as discussed below. The construction of D(λ) is in-

spired by the constraint set of the Dantzig selector (Candes and Tao (2007)),

which is extended to general loss functions by Lounici (2008); James and Rad-

chenko (2009); Fan (2013). Elements of D(λ) are shown to have performance

comparable to β̂. The set D(λ) need not be convex, in general. For squared loss,
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∇Rn(β) Rn(β) R(β)

D(λ) ⊆ ∆p

β̃λ β̂ β∗

defines

E[·]

∈

minimizes minimizes

Figure 1. Diagram summarizing the relationships between the quantities employed in
this study.

it becomes a convex polyhedron, which is nonempty as long as λ ≥ λ∗, where

λ∗ = ‖∇Rn(β∗)‖∞. In many settings of interest (cf., Lounici (2008); Negahban

et al. (2012)), it can be shown that

P

(
λ∗ &

√
log(p)

n

)
= o(1) as n→∞. (2.2)

2.1. Excess risk

The first result bounds the excess risk of β̂ and β̃λ, where in what follows,

β̃λ represents an arbitrary element of D(λ) in (2.1).

Proposition 1. For β ∈ Rp, let ψn(β) = Rn(β) − R(β) and ψn(β) = ψn(β) −
ψn(β∗). For r > 0, let Bp1(r;β∗) = {β ∈ Rp : ‖β − β∗‖1 ≤ r} denote the `1-ball

of radius r centered at β∗ and Ψn(r) = sup{|ψn(β)| : β ∈ Bp1(r;β∗)}. We then

have

R(β̂)−R(β∗) ≤ Ψn(‖β̂ − β∗‖1) ≤ Ψn(2),

R(β̃λ)−R(β∗) ≤ Ψn(‖β̃λ − β∗‖1) + λ‖β̃λ − β∗‖1 ≤ Ψn(2) + 2λ.

The excess risk of ERM and points in D(λ) can thus be bounded by con-

trolling Ψn(r), the supremum of the empirical process ψn(β) over all β, with

`1-distance at most r from β∗. This supremum is well studied in the literature

on `1-regularization. For example, for linear regression with a fixed or ran-

dom sub-Gaussian design and sub-Gaussian errors, as well as for a Lipschitz loss

(e.g., logistic loss), it can be shown that (van de Geer (2008))

P

(
Ψn(r) & r

√
log(p)

n

)
= o(1) as n→∞. (2.3)

Using β̂ ∈ ∆p and β̃λ ∈ ∆p, choosing λ � λ∗, and invoking (2.2), Proposition 1
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yields that the excess risk of ERM and points in D(λ) scale as O(
√

log(p)/n).

As a result, ERM and finding a point in D(λ) constitute persistent procedures,

in the sense of Greenshtein and Ritov (2004).

2.2. Adaptation to sparsity

Proposition 1 does not entail further assumptions on β∗ or Rn. In this

subsection, we suppose that β∗ ∈ ∆p
0(s) and that Rn obeys a restricted strong

convexity (RSC) condition, defined as follows. Consider the set

C∆(s) = {δ ∈ Rp : ∃J ⊆ {1, . . . , p}, |J | ≤ s s.t. 1>δJc = −1>δJ , δJc � 0}.
(2.4)

Observe that {β − β∗ : β ∈ ∆p} ⊆ C∆(s). For the next result, we require Rn to

be strongly convex over C∆(s).

Condition 1. We say that the ∆-RSC condition is satisfied for sparsity level

1 ≤ s ≤ p and constant κ > 0 if, for all β ∈ ∆p
0(s) and δ ∈ C∆(s),

Rn(β + δ)−Rn(β)−∇Rn(β)>δ ≥ κ‖δ‖22.
Condition 1 is an adaptation of a condition employed in Negahban et al.

(2012) for the analysis of (unconstrained) `1-regularized ERM. Note that for

squared loss, Condition 1 becomes the restricted eigenvalue condition in Bickel,

Ritov and Tsybakov (2009), the range of validity of which has been investigated

by, among others, Raskutti, Wainwright and Yu (2010); Rudelson and Zhou

(2013); Lecue and Mendelson (2017). Our condition here is weaker, because the

RSC condition in Negahban et al. (2012) is over the larger set

C(α, s) = {δ ∈ Rp : ∃J ⊆ {1, . . . , p}, |J | ≤ s s.t. ‖δJc‖1 ≤ α‖δJ‖1},
for α ≥ 1. We can now state a second set of bounds.

Proposition 2. Let the ∆-RSC condition hold for sparsity level s and κ > 0.

We then have

‖β̂ − β∗‖22 ≤
4sλ2
∗

κ2
, ‖β̃λ − β∗‖22 ≤

4s(λ+ λ∗)
2

κ2
,

‖β̂ − β∗‖1 ≤
4sλ∗
κ

, ‖β̃λ − β∗‖1 ≤
4s(λ+ λ∗)

κ
.

Invoking (2.2) and choosing λ � λ∗, we recover the rates O(s log(p)/n) for

the squared `2-error and O(s
√

log(p)/n) for the `1-error, respectively. Combining

the bounds on the `1-error with (2.3) and Proposition 1, we obtain

R(β̂)−R(β∗) .
s log p

n
, R(β̃λ)−R(β∗) .

s log p

n
.
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The above rates are known to be minimax optimal for the parameter set Bp0(s)

and squared loss (Ye and Zhang (2010)). Thus under the ∆-RSC condition, there

does not seem to be much room for improving over β̂ and β̃λ as far as the `1-error,

`2-error, and excess risk are concerned. An additional advantage of β̂ is that it

does not depend on any hyperparameters.

3. Two-stage Procedures

While β̂ has appealing adaptation properties with regard to underlying spar-

sity, ‖β̂‖0 may be significantly larger than the sparsity level s. Note that the `2-

bound of Proposition 2 yields that S(β̂) ⊇ S(β∗) as long as b∗min & λ∗
√
s, where

b∗min = min{β∗j : j ∈ S(β∗)}. If the aim is an estimator θ̂ that achieves support

recovery, that is, S(θ̂) = S(β∗), β̂ needs to be further sparsified by a suitable

form of post-processing. Here, we consider two schemes, namely thresholding

and weighted `1-regularization:

Stage 1 Stage 2

Compute β̂ thresholding: β̂τ = (β̂j · I(β̂j ≥ τ))1≤j≤p (3.1)

or weighted `1: β̂wλ ∈ argmin
β∈∆p

Rn(β) + λ 〈w, β〉 , (3.2)

where I(·) denotes the indicator function and w = (wj)
p
j=1 are non-negative

weights. We restrict ourselves to the common choice wj = 1/β̂j if β̂j > 0, and

wj = +∞ otherwise (s.t. (β̂wλ )j = 0), for j = 1, . . . , p. Note that weighted `1-

regularization is often referred to as the “adaptive lasso” method (Zou (2006)).

While its primary purpose is model selection, thresholding (3.1) can option-

ally be complemented by a refitting step with fixed support, that is, ERM with

the additional constraints βj = 0 ∀j /∈ S(β̂τ ).

A third approach is to ignore the unit sum constraint first, such that `1-

regularization has a sparsity-promoting effect, and then to divide the output by

its sum as a simple way to satisfy the following constraint:

Stage 1 Stage 2

β̂`1λ ∈ argmin
β∈Rp

+

Rn(β) + λ1>β Normalize: β̂`1λ /(1
>β̂`1λ ). (3.3)

From the point of view of optimization, (3.3) offers several advantages. Non-

negativity constraints alone tend to be easier to handle than simplex constraints.

For projected gradient-type algorithms, the projection on the constraint set be-

comes trivial. Moreover, coordinate descent is applicable because non-negativity
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constraints do not couple several variables (whereas simplex constraints do). Co-

ordinate descent is one of the fastest algorithms for sparse estimation (Friedman,

Hastie and Tibshirani (2010); Mazumder, Friedman and Hastie (2011)), partic-

ularly for large values of λ. On the other hand, from a statistical perspective,

(3.3) is an ad hoc rather than a well-grounded approach. It is advisable to prefer

β̂ because it incorporates all given constraints into the optimization problem,

which leads to a weaker RSC condition and eliminates the need to specify λ ap-

propriately. Indeed, taking a large value of λ in (3.3) in order to obtain a highly

sparse solution increases the bias and may lead to false negatives. In addition,

(3.3) may also lead to false positives if the “irrepresentable condition” (Zhao and

Yu (2006)) is violated. Our experimental results (cf., Supplementary Material,

Li, Rangapuram and Slawski (2018)) confirm that (3.3) has a considerably larger

estimation error than that of ERM.

Model selection. In this paragraph, we briefly discuss a data-driven approach

for selecting the parameters τ and λ in (3.1) and (3.2) when the aim is support

recovery. It suffices to pick τ from T = {β̂j}pj=1, whereas for (3.2), we consider

a finite set Λ ⊂ R+. We first obtain {β̂τ , τ ∈ T} or {β̂wλ , λ ∈ Λ}, and then

select one of the candidate models induced by the support set {S(β̂τ ), τ ∈ T} or

{S(β̂wλ ), λ ∈ Λ}, respectively. Model selection can be performed using a hold-out

data set or an appropriate model selection criterion, such as the RIC in the case

of squared loss (Foster and George (1994)). Specifically, let Zi = (Xi, Yi), for

i = 1, . . . , n, and suppose that

Yi = X>i β
∗ + εi, εi ∼ N(0, σ2), i = 1, . . . , n. (3.4)

Then, for S ⊆ {1, . . . , p}, the RIC is defined as

RIC(S) = min
β∈Rp:βSc=0

1

n

n∑

i=1

(Yi −X>i β)2 +
2σ2 log p

n
|S|. (3.5)

While computationally intractable in general, minimizing (3.5) has been shown to

be model-selection consistent in high-dimensional regimes (Kim, Kwon and Choi

(2012); Zhang and Zhang (2013)). Here, we minimize (3.5) over {S(β̂τ )}τ∈T
or {S(β̂wλ )}λ∈Λ only. The rationale is that support recovery is still achieved

whenever the RIC is satisfied, provided that

S(β∗) ∈ {S(β̂τ )}τ∈T (3.6)

or S(β∗) ∈ {S(β̂wλ )}λ∈Λ. (3.7)
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Condition (3.6) is met if minj∈S(β∗) β̂j > maxj∈S(β∗)c β̂j , which can in turn

be deduced from a bound on ‖β̂ − β∗‖2 (cf., Proposition 2) and a corresponding

lower bound on b∗min = min{β∗j : j ∈ S(β∗)}. For weighted `1-regularization,

(3.7) is implied by a similar, albeit slightly more stringent condition.

Proposition 3. Consider model (3.4) with {Xi}ni=1 deterministic, such that

(1/n)
∑n

i=1X
2
ij = 1 for all j, and β̂wλ in (3.2) with Rn(β) = (1/2n)

∑n
i=1(Yi −

X>i β)2. Then, (3.7) is satisfied with probability at least 1−O(p−1) if

i) min
j∈S(β∗)

β̂j & max
j∈S(β∗)c

β̂j ,

ii) Λ 3 λ s.t. λ = min
j∈S(β∗)

β̂jλ0 with σ

√
log(p)

n
. λ0 . b∗min.

The constants hidden in & and O(·) are provided in the proof of the above

statement.

On a practical note, we point out that consistent model selection based on

the RIC (3.5) presumes knowledge of σ, or an estimator σ̂ obeying at least σ̂ � σ
(Kim, Kwon and Choi (2012)). We refer to Sun and Zhang (2012); Fan, Guo

and Hao (2012); Dicker (2014); Reid, Tibshirani and Friedman (2016) for specific

estimators σ̂.

4. Regularization with the Negative `2-norm

A concern with ERM (optionally followed by a sparsification step) is that

potential prior knowledge about sparsity is not incorporated into the estimation.

The hope is that by taking sparsity into account, the guarantees of §2 can be

improved. In particular, it may be possible to weaken Condition 1.

It turns out that any sparsity-promoting regularizer Ω on ∆p cannot be

convex. To see this, note that if Ω is sparsity-promoting and homogeneous across

coordinates, it should assign strictly smaller values to any of the vertices {ej}pj=1

of ∆p (which are maximally sparse) than to its barycentre (which is maximally

dense); that is,

Ω(ej) < Ω

({e1 + · · ·+ ep}
p

)
, j = 1, . . . , p. (4.1)

However, (4.1) contradicts the convexity of Ω, because by Jensen’s inequality,

Ω

({e1 + · · ·+ ep}
p

)
≤ {Ω(e1) + · · ·+ Ω(ep)}

p
.
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Figure 2. Contours of β 7→ ‖β‖22 (left) and β 7→ ‖β‖∞ (right) on ∆3.

4.1. Approach

For 0 6= β ∈ Rp, consider Ω(β) = ‖β‖21/‖β‖22. Here, Ω can be viewed as

a “robust” measure of sparsity. We have ‖β‖0 ≥ Ω(β), with equality holding

iff {|βj |, j ∈ S(β)} is constant. By “robustness” we mean that Ω is small for

vectors that have few entries of large magnitude, whereas the number of nonzero

elements may be as large as p. From ‖β‖22 ≤ ‖β‖∞‖β‖1, we have the alternative,

Ω(β) = ‖β‖1/‖β‖∞. As ‖β‖1 = 1 ∀β ∈ ∆p, we have

1

‖β‖∞
≤ 1

‖β‖22
≤ ‖β‖0 ∀β ∈ ∆p. (4.2)

The map β 7→ 1/‖β‖∞ is proposed as a sparsity-promoting regularizer on ∆p

by Pilanci, Ghaoui and Chandrasekaran (2012). It yields a looser lower bound

on β 7→ ‖β‖0 than that of the map β 7→ 1/‖β‖22 advocated in the present work.

Both lower bounds are sparsity-promoting on ∆p as indicated by Figure 2.

This lets us propose the following modifications of β̂ and β̃λ, respectively,

β̂`2λ ∈ argmin
β∈∆p

Rn(β)− λ‖β‖22, (4.3)

β̃`2λ ∈ argmin
β∈D(λ)

−‖β‖22, with D(λ) as in (2.1). (4.4)

Note the correspondence of (4.3) / (4.4) on the one hand, and the lasso (resp.,

Dantzig selector) on the other hand.

For (4.3), it appears to be better to use 1/‖β‖22 rather than of −‖β‖22,

given (4.2). Eventually, this becomes a matter of parameterization. Although

β 7→ ‖β‖0 is the canonical measure of sparsity, β 7→ −1/‖β‖0 provides another

measure. It is lower bounded by β 7→ −1/‖β‖22. We prefer the negative over

the inverse, for computational reasons: the optimization problem in (4.3) is a

DC program (Pham Dinh and Le Thi (1997)) and, hence, is more amenable to

optimization. The problem in (4.4) is also a DC program if D(λ) is convex. Note

that for (4.4), minimizing the negative `2-norm is equivalent to minimizing the

inverse `2-norm.
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4.2. Least squares denoising

In order to show that the negative `2-norm combined with simplex con-

straints promotes exactly sparse solutions, we elaborate on (4.3) in the simple

setup of denoising. Let Zi = β∗i + εi, for i = 1, . . . , n = p, where β∗ ∈ ∆n
0 (s)

and {εi}ni=1 represents random noise. We consider squared loss, i.e., L(β, Zi) =

(Zi − β)2, i = 1, . . . , n. This yields the optimization problem

min
β∈∆n

1

n
‖Z− β‖22 − λ‖β‖22, Z = (Zi)

n
i=1. (4.5)

As stated below, (4.5) can be recast as a Euclidean projection of Z/γ on ∆n,

where γ is a function of λ. Using this property, we derive conditions on β∗ and

λ such that β̂`2λ achieves support recovery.

Proposition 4. Consider (4.5) and suppose that z(1) > · · · > z(n), where {z(i)}ni=1

denotes the ordered realizations of {Zi}ni=1. For all λ ≥ 1/n, we have β̂`2λ =(
I(Zi = z(1))

)n
i=1

. For all 0 ≤ λ < 1/n, we have β̂`2λ = argminβ∈∆n‖Z/γ − β‖22,

where γ = 1 − nλ. Moreover, if 2smax1≤i≤n |εi|/n < λ < 1/n and b∗min >

(nλ)/s+ 2 max1≤i≤n |εi|, we have S(β̂`2λ ) = S(β∗).

In particular, for λ = (1 + δ)2smax1≤i≤n |εi|/n, for any δ > 0, the required

lower bound on b∗min becomes 4(1 + δ) max1≤i≤n |εi|. For the sake of reference,

note that in the Gaussian sequence model with εi ∼ N(0, σ2/n) (cf., Johnstone

(2013)), we have max1≤i≤n |εi| �
√

log(n)/n.

The denoising problem (4.5) can be viewed as a least squares regression

problem in which the design matrix is the identity matrix. For general design

matrices, the analysis becomes more difficult, particularly because the optimiza-

tion problem may be neither convex nor concave. In the latter case, the minimum

is attained at one of the vertices of ∆p.

4.3. Optimization

Both (4.3) and (4.4) are nonconvex in general. Furthermore, maximizing the

Euclidean norm over a convex set is NP-hard in general (Pardalos and Vavasis

(1991)). To solve these two problems, we exploit the fact that both objectives

are in DC form, that is, they can be represented as f(β) = g(β) − h(β), with

g and h both being convex. Linearizing −h at a given point yields a convex

majorant of f that is tight at that point. Repeatedly minimizing the majorant

yields an iterative procedure known as the concave-convex procedure (CCCP,

Yuille and Rangarajan (2003)), which falls into the more general framework of
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majorization-minimization (MM) algorithms (Lange, Hunter and Yang (2000)).

When applied to (4.3) and (4.4), this approach yields Algorithm 1.

Algorithm 1

(4.3): minβ∈∆p Rn(β)− λ‖β‖22
Initialization: β0 ∈ ∆p

repeat βk+1 ∈ argminβ∈∆p Rn(β)− 2
〈
βk, β − βk

〉

until Rn(βk+1)− 2
〈
βk, βk+1

〉
= Rn(βk)

(4.4): minβ∈D(λ)−‖β‖22
Initialization: β0 ∈ D(λ)
repeat βk+1 ∈ argminβ∈D(λ)−2

〈
βk, β − βk

〉

until
〈
βk, βk+1 − βk

〉
= 0

For the second part of Algorithm 1 to be practical, we assume that D(λ) is

convex. The above algorithms can be shown to yield strict descent until conver-

gence to a limit point satisfying the first-order optimality condition of problems

(4.3)/(4.4). This is the content of the next proposition.

Proposition 5. Let f denote the objective in (4.3) or (4.4). The elements of

the sequence {βk}k≥0 produced by Algorithm 1 satisfy f(βk+1) < f(βk) until

convergence. Moreover, the limit satisfies the first-order optimality condition of

the respective problem.

An appealing feature of Algorithm 1 is that solving each subproblem in the

repeat step involves only minor modifications to the computational approaches

used for ERM (resp. finding a feasible point in D(λ)). With Rn assumed to be

convex, ERM is a convex optimization problem. If Rn is also smooth, off-the-

shelf algorithms such as interior point methods, projected gradient descent, and

conditional gradient descent (Bertsekas (1999)) can be employed. For common

nonsmooth losses, such as an absolute loss or hinge loss, ERM can be converted

into a linear program. For the squared loss and absolute loss, specialized algo-

rithms are proposed in Vila and Schniter (2014).

When selecting the parameter λ using a grid search, we suggest solving the

associated instances of (4.3)/(4.4) from the smallest to the largest value of λ,

using the solution from the current instance as the initial iterate for the next

one. For the smallest value of λ, we recommend using β̂ and any point from D(λ)

as the initial iterate for (4.3) and (4.4), respectively. Running Algorithm 1 for

formulation (4.4) has the advantage that all iterates are contained in D(λ), and

thus enjoy at least the statistical guarantees of β̃λ derived in §2. According to our
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numerical results, formulation (4.3) achieves better performance (cf., supplement

Li, Rangapuram and Slawski (2018)).

5. Extension to the Matrix Case

As pointed out in the introduction, there is a matrix counterpart to the

aforementioned problem in which the object of interest is a low-rank Hermi-

tian positive semidefinite matrix of unit trace. This set of matrices includes the

density matrices of quantum systems (Nielsen and Chuang (2000)). The task

of reconstructing such density matrices from so-called observables (e.g., noisy

linear measurements) is termed quantum state tomography (Paris and Rehacek

(2004)). In the past few years, quantum state tomography based on Pauli mea-

surements has attracted considerable interest in the field of mathematical signal

processing and statistics (Gross et al. (2010); Gross (2011); Koltchinskii (2011);

Wang (2013); Cai et al. (2016)).

Specifically, the setup we employ throughout this section is as follows. Let

Hm = {B ∈ Cm×m : B = BH} be the Hilbert space of complex Hermitian

matrices with inner product 〈F,G〉 = tr(FG), (F,G) ∈ H×H, and, henceforth,

let ‖·‖q, for 0 ≤ q ≤ ∞, denote the Schatten q-“norm” of a Hermitian matrix,

defined as the `q-norm of its eigenvalues. Here, ‖·‖0 denotes the number of

nonzero eigenvalues, or equivalently, the rank. We suppose that the target B∗ is

contained in ∆m
0 (r) := Bm

0 (r) ∩∆m, where

Bm
0 (r) := {B ∈ Hm : ‖B‖0 ≤ r}, ∆m := {B ∈ Hm : B � 0, tr(B) = 1}.

That is, B∗ is also positive semidefinite, of unit trace, and has rank at most

r. In low-rank matrix recovery, the Schatten 1-norm (typically referred to as

the nuclear norm) is commonly used as a convex surrogate for the rank (Recht,

Fazel and Parillo (2010)). Because the nuclear norm is constant over ∆m, a

different strategy is needed to promote low-rankedness under that constraint. In

the sequel, we carry over our treatment of the vector case to the matrix case.

The analogies are mostly direct; at certain points, however, the matrix case yields

additional complications, as detailed below. For simplicity, we restrict ourselves

to the setup in which Zi = (Xi, Yi) are such that

Yi = 〈Xi, B
∗〉+ εi, εi ∼ N(0, σ2), i = 1, . . . , n, (5.1)

with {Xi}ni=1 ⊂ Hm. Equivalently,

Y = X (B∗) + ε, Y = (Yi)
n
i=1, ε = (εi)

n
i=1,

where X : Hm → Rn is a linear operator defined by (X (B))i = 〈Xi, B〉, B ∈ Hm,
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for i = 1, . . . , n. We consider squared loss; that is, for B ∈ ∆m, the empirical

risk is given by

Rn(B) =
‖Y −X (B)‖22

n
.

Basic estimators. As basic estimators, we consider the empirical risk minimiza-

tion given by B̂ ∈ argminB∈∆m Rn(B), as well as B̃λ, where B̃λ is any point in

the set

D(λ) = {B ∈∆m : ‖∇Rn(B)‖∞ ≤ λ}

=

{
B ∈∆m :

2

n
‖X ?(X (B)− y)‖∞ ≤ λ

}
,

(5.2)

where X ? : Rn → Hm is the adjoint of X . Both B̂ and B̃λ adapt to the rank

of B∗ under a restricted strong convexity condition. For B ∈ Bm
0 (r), let T(B)

be the tangent space of Bm
0 (r) ⊂ Hm at B (see Definition 1 in Supplementary

Material, Li, Rangapuram and Slawski (2018)), and let ΠV denote the projection

on a subspace V of Hm.

Condition 2. We say that the ∆-RSC condition is satisfied for rank r and

constant κ > 0 if ∀Φ ∈ K∆(r), it holds that ‖X (Φ)‖22/n ≥ κ‖Φ‖22, where

K∆(r) = {Φ ∈ Hm : ∃B ∈ Bm
0 (r) s.t.

tr(ΠT(B)⊥(Φ)) = − tr(ΠT(B)Φ) and ΠT(B)⊥(Φ) � 0}.
The ∆-RSC condition is weaker than the corresponding condition employed

in Negahban and Wainwright (2011), which, in turn, is weaker than the matrix

RIP condition (Recht, Fazel and Parillo (2010)). The next statement parallels

Proposition 2, asserting that the constraint B ∈ ∆m alone is strong enough to

take advantage of low-rankedness.

Proposition 6. Suppose that the ∆-RSC condition is satisfied for rank r and

κ > 0. Set λ∗ = 2‖X ?(ε)‖∞/n, where X ? : Rn → Hm is the adjoint of X . We

then have

‖B̂ −B∗‖22 ≤
4sλ2
∗

κ2
, ‖B̃λ −B∗‖22 ≤

4s(λ+ λ∗)
2

κ2
,

‖B̂ −B∗‖1 ≤
4sλ∗
κ

, ‖B̃λ −B∗‖1 ≤
4s(λ+ λ∗)

κ
.

Obtaining solutions of low rank. Although B̂ may have a low estimation error,

its rank can far exceed that of B∗, even though the extra nonzero eigenvalues of B̂

tend to be small. The simplest approach to obtaining solutions of low rank is to
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threshold the spectrum of B̂ = Û Φ̂Û> (the r.h.s. representing the usual spectral

decomposition); that is, B̂τ = Û Φ̂τ Û
>, where Φ̂τ = diag({I(φ̂j ≥ τ) φ̂j}mj=1)

for a threshold τ > 0. Similarly, we may use the following analog to weighted

`1-regularization:

B̂w = Ûdiag({φ̂w,j}mj=1)Û>

with φ̂w ∈ argmin
φ∈∆p

1

n
‖Y −X (Ûdiag({φj}mj=1)Û>)‖22 + λ 〈w, φ〉 , (5.3)

for non-negative weights {wj}mj=1, as in the vector case. Note that the matrix

of eigenvectors Û is kept fixed at the second stage; the optimization is only

over the eigenvalues. Alternatively, we can consider optimization over ∆m, with

regularizer B 7→ ‖B‖w =
∑m

j=1wjφj(B), for eigenvalues φ1(B) ≥ · · · ≥ φm(B) ≥
0 of B, in decreasing order. However, from the point of view of optimization ‖·‖w
poses difficulties, including possible nonconvexity (depending on w).

Regularization with the negative `2-norm. An additional positive aspect about

the regularization scheme proposed in §4 is that it allows a straightforward exten-

sion to the matrix case, including the algorithm used for optimization (Algorithm

1). In contrast, for regularization with the inverse `∞-norm, which can be re-

duced to p convex optimization problems in the vector case, no such reduction

seems to be possible in the matrix case. The analogs of (4.3) and (4.4) are given

by

B̂`2
λ ∈ argmin

B∈∆m

Rn(β)− λ‖B‖22, (5.4)

B̃`2
λ ∈ argmin

B∈D(λ)
−‖B‖22. (5.5)

Algorithm 1 can be employed for optimization mutatis mutandis. In the

vector case and for squared loss, formulations (4.3) and (4.4) are comparable

in terms of their computational requirements: each minimization problem inside

the repeat-loop becomes a quadratic (resp., a linear) program, with a comparable

number of variables/constraints. In the matrix case, however, (5.4) appears to

be preferable because the subproblems are better suited to the proximal gradient

method. In contrast, the constraint set in (5.5) requires a more sophisticated

approach.

Denoising. Negative `2-regularization, together with the constraint set ∆m en-

forces a solution of low rank, as exemplified here in the special case of denoising
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of a real-valued matrix (i.e., B∗ ∈ Hm∩Rm×m) contaminated by Gaussian noise.

Specifically, the sampling operator X (·) = (〈Xi, ·〉)ni=1, for n = m(m + 1)/2, is

equal to the symmetric vectorization operator; that is

X1 = e1e
>
1 , X2 =

e1e
>
2 + e2e

>
1√

2
, . . . , Xm =

e1e
>
m + eme

>
1√

2
, Xm+1 = e2e

>
2 , . . . ,

X2m−1 =
e2e
>
m + eme

>
2√

2
, . . . , Xm(m+1)/2 =

em−1e
>
m + eme

>
m−1√

2
. (5.6)

The following proposition uses a result in random matrix theory of Peng (2012).

Proposition 7. Let B∗ ∈ ∆m
0 (r) ∩ Rm×m with eigenvalues φ∗1 ≥ · · · ≥ φ∗r > 0

and φ∗r+1 = · · · = φ∗m = 0, let X be defined according to (5.6), and let ε ∼
N(0, σ2Im/m), Y = X (B∗) + ε. Consider the optimization problem

min
B∈∆m

1

n
‖Y −X (B)‖22 − λ‖B‖22,

with minimizer B̂`2
λ , and define Υ = B∗ + X ?(ε). Then, for all λ ≥ 1/n, we

have B̂`2
λ = u1u

>
1 , where u1 is the eigenvector of Υ corresponding to its largest

eigenvalue. For all 0 ≤ λ < 1/n, we have B̂`2
λ = argminB∈∆m‖Υ/γ−B‖22, where

γ = 1 − nλ. Moreover, there exist constants c0, c, C > 0 so that if r < c0m,

λ ≥ 6σr/n, and φ∗r ≥ 5σ + nλ/r, we have ‖B̂`2
λ ‖0 = r, with probability at least

1− C exp(−cm).

In particular, for λ = (1 + δ)6σr/n for some δ > 0, the required lower bound

on φ∗r becomes 11(1+δ)σ, which is proportional to the noise level of the problem,

as follows from the proof of the proposition.

6. Conclusion

Simplex constraints are beneficial in high-dimensional estimations, empiri-

cally achieving lower estimation errors than when using `1-norm regularization

in place of the constraint. In order to enhance the sparsity of the solution,

simple two-stage methods (i.e., thresholding and weighted `1-regularization) are

effective. A more principled way to incorporate sparsity is to use a suitable regu-

larizer. We have pointed out that under simplex constraints, sparsity cannot be

promoted by convex regularizers. We have therefore considered nonconvex alter-

natives, among which regularization using the negative `2-norm turns out to be a

natural approach, lending itself to a straightforward computational strategy. As

an attractive feature, there is a direct and practical generalization to the matrix

counterpart, in contrast to the two-stage methods.
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Supplementary Material

The Supplementary Material (Li, Rangapuram and Slawski (2018)) contains

proofs of all statements, as well as extensive numerical results and simulations

illustrating the central aspects of this work.
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Supplementary Material

This supplementary file has two main constituents. Section S1 an contains extensive set of

numerical results; we follow a division into the vector and matrix case, respectively. The

remaining sections contain proofs of Propositions 1 to 7.

S1 Empirical results

We have conducted a series of simulations to compare the different meth-

ods considered herein and to provide additional support for several key

aspects of the present work. Specifically, we study compressed sensing,

least squares regression, mixture density estimation, and quantum state to-

mography based on Pauli measurements in the matrix case. The first two

of these only differ by the presence respectively absence of noise. We also

present a real data analysis example concerning portfolio optimization for
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NASDAQ stocks based on weekly price data from 03/2003 to 04/2008.

S1.1 Compressed sensing

We consider the problem of recovering β∗ ∈ ∆p
0(s) from few random lin-

ear measurements Yi = 〈Xi, β
∗〉, where Xi has standard Gaussian entries,

i = 1, . . . , n. In short, Y = Xβ∗ with Y = (Yi)
n
i=1 and X having the

{Xi}ni=1 as its rows. Identifying β∗ with a probability distribution π on

{1, . . . , p}, we may think of the problem as recovering π from expectations

Yi =
∑p

j=1(Xi)jπ({j}). We here show the results for p = 500, s = 50 and

n = cs log(p/s) with c ∈ [0.8, 2] (cf. Figure 1). The target β∗ is generated

by selecting its support uniformly at random, drawing the non-zero entries

randomly from [0, 1] and normalizing subsequently. This is replicated 50

times for each value of n.

Several approaches are compared for the given task, assuming squared

loss Rn(β) = ‖Y −Xβ‖22/n:

’Feasible set’: Note that ERM here amounts to finding a point in D(0). The

output is used as initial iterate for ’L2’, ’weighted L1’, and ’IHT’ below.

’L2’: ℓ2-norm maximization (4.4) with λ = 0, i.e., over

D(0) = {β ∈ ∆p : X
⊤(Xβ −Y) = 0}

= {β ∈ ∆p : Xβ = Y} with probability 1.

(S1.1)
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’Pilanci’: The method of Pilanci, Ghaoui, and Chandrasekaran (2012) that

maximizes the ℓ∞-norm over (S1.1).

’weighted L1’: Weighted ℓ1-norm minimization (cf. §3) over (S1.1).

’IHT’: Iterative hard threshold under simplex constraints (Kyrillidis et al.,

2013). Regarding the step size used for gradient projection, we use the

method in Kyrillidis and Cevher (2011) which empirically turned out to be

superior compared to a constant step size. ’IHT’ is run with the correct

value of s and is hence given an advantage.

Results. Figure 1 visualizes the fractions of recovery out of 50 repli-

cations. A general observation is that the constraint β ∈ ∆p is power-

ful enough to reduce the required number of measurements considerably

compared to 2s log(p/s) when using standard ℓ1-minimization without con-

straints. At this point, we refer to Donoho and Tanner (2005) who gave

a precise asymptotic characterization of this phenomenon in the regime

n/p → c ∈ (0, 1) and s/n → c′ ∈ (0, 1). When solving the feasibility prob-

lem, one does not explicitly exploit sparsity of the solution (even though

the constraint implicitly does). Enforcing sparsity via ’Pilanci’, ’IHT’, ’L2’
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Figure 1: Contour plots of the empirical relative frequencies of exact recovery in depen-

dency of the number of measurements (horizontal axis) and s (vertical axis). The left

and right plot show the contour levels .75 and .99, respectively. Note that the smaller

the area “left” to and “above” the curve, the better the performance.

further improves performance. The improvements achieved by ’L2’ are most

substantial and persist throughout all sparsity levels. ’weighted L1’ does not

consistently improve over the solution of the feasibility problem.

S1.2 Least squares regression

We next consider the Gaussian linear regression model

Yi = X⊤
i β

∗ + εi, εi ∼ N(0, σ2), i = 1, . . . , n. (S1.2)

with the {Xi}ni=1 as in the previous subsection. Put differently, the previ-

ous data-generating model is changed by an additive noise component. The

target β∗ is generated as before, with the change that the subvector β∗
S(β∗)

corresponding to S(β∗) is projected on [b∗min, 1]
s ∩∆s to ensure sufficiently



S1. EMPIRICAL RESULTS

strong signal, where b∗min = ̺σ
√

2 log(p)/n with σ = s−1 and ̺ = 1.7 con-

trolling the signal strength relative to the noise level λ0 = σ
√
2 log(p)/n.

The following approaches are compared.

’ERM’: Empirical risk minimization.

’Thres’: ’ERM’ followed by hard thresholding (cf. §3).

’L2-ERM’: Regularized ERM with negative ℓ2-regularization (4.3). For the

parameter λ, we consider a grid Λ of 100 logarithmically spaced points from

0.01 to φmax(X
⊤
X/n), the maximum eigenvalue of X⊤

X/n. Note that for

λ ≥ φmax(X
⊤
X/n), the optimization problem (4.3) becomes concave and

the minimizer must consequently be a vertex of ∆p, i.e., the solution is

maximally sparse at this point, and it hence does not make sense to con-

sider even larger values of λ. When computing the solutions {β̂ℓ2λ , λ ∈ Λ},

we use a homotopy-type scheme in which for each λ ∈ Λ, Algorithm 1 is

initialized with the solution for the previous λ, using the output β̂ of ’ERM’

as initialization for the smallest value of λ.

’L2-D’: ℓ2-norm maximization (4.4) over D(Cλ0) with λ0 being the noise

level defined above and C ∈ {0.5, 0.55, . . . , 2}. Algorithm 1 is initialized

with β̂ provided it is feasible. Otherwise, a feasible point is computed by
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linear programming.

’weighted L1’: The approach in (3.2). Regarding the regularization param-

eter, we follow van de Geer, Bühlmann, and Zhou (2013) who let λ = Cλ2
0.

We try 100 logarithmically spaced values between 0.1 and 10 for C.

’IHT’: As above, again with the correct value of s. We perform a second

sets of experiments though in which s is over-specified by different factors

(1.2, 1.5, 2) in order to investigate the sensitivity of the method w.r.t. the

choice of the sparsity level.

’L1’: The approach (3.3), i.e., dropping the unit sum constraint and nor-

malizing the output of the non-negative ℓ1-regularized estimator β̂ℓ1λ . We

use λ = λ0 as recommended in the literature, cf. e.g. Negahban et al. (2012).

’oracle’: ERM given knowledge of the support S(β∗).

For ’Thres’,’L2-ERM’ and other methods for which multiple values of a

hyperparameter are considered, hyperparameter selection is done by mini-

mizing the RIC as defined in §3 after evaluating each support set returned

for a specific value of the hyperparameter.

Results. The results are summarized in Figures 2 and 3. Turning to the

upper panel of Figure 2, the first observation is that ’L1’ yields noticeably
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Figure 2: Upper panel: Average estimation errors ‖θ̂−β∗‖2 (log10 scale) in dependence of

n over 50 trials for selected values of s. Here, θ̂ is a placeholder for any of the estimators

under consideration. Middle and Lower panel: contour plots of the average Matthew’s

correlation in dependence of n (horizontal axis) and s (vertical axis) for the contour

levels 0.7, 0.8, 0.9, 0.95. Note that the smaller the area between the lower left corner of

the plot and a contour line of a given level, the better the performance.
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Figure 3: Sensitivity of ’IHT’ w.r.t. the choice of s. The plots display error curves of IHT

run with the correct value of s as appearing in Figure 2 as well with overspecification of s

by the factors 1.2, 1.5, 2. The drop in performance is substantial: for 2s, the improvement

over ERM (here used as a reference) is only minor.

higher ℓ2 estimation errors than ’ERM’, which yields reductions roughly be-

tween a factor of 10−.1 ≈ 0.79 and 10−.2 ≈ 0.63. A further reduction in

error of about the same order is achieved by several of the above meth-

ods. Remarkably, the basic two-stage methods, thresholding and weighted

ℓ1-regularization for the most part outperform the more sophisticated meth-

ods. Among the two methods based on negative ℓ2-regularization, ’L2-ERM’

achieves better performance than ’L2-D’. We also investigate success in sup-

port recovery by comparing S(θ̂) and S(β∗), where θ̂ represents any of the

considered estimators, by means of Matthew’s correlation coefficient (MCC)

defined by

MCC = (TP·TN−FP·FN)/ {(TP + FP)(TP + FN)(TN + FP)(TN + FN)}1/2 ,

with TP,FN etc. denoting true positives, false negatives etc. The larger the
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criterion, which takes values in [0, 1], the better the performance. The two

lower panels of Figure 2 depict the MCCs in the form of contour plots,

split by method. The results are consistent with those of the ℓ2-errors. The

performance of ’weighted L1’ and ’thres’ improves respectively is on par with

that of ’IHT’ which is provided the sparsity level. Figure 3 reveals that this

is a key advantage since the performance drops sharply as the sparsity level

is over-specified by an increasing extent.

S1.3 Density estimation

Let us recall the setup from the corresponding bullet in §1. For simplicity,

we here suppose that the {Zi}ni=1 are i.i.d. random variables with den-

sity φβ∗ , where for β ∈ ∆p, φβ =
∑p

j=1 φjβj and F = {φj}pj=1 is a given

collection of densities. Specifically, we consider univariate Gaussian densi-

ties φj = φθj , where θj = (µj, σj) contains mean and standard deviation,

j = 1, . . . , p. As an example, one might consider p0 locations andK different

standard deviations per location so that p = p0K, i.e., θ(k−1)p0+l = (µl, σk),

k = 1, . . . , K, and l = 1, . . . , p0. This construction provides more flexibility

compared to usual kernel density estimation where the locations equal the

data points, a single bandwidth is used, and the coefficients β are all 1/n.

For large F , sparsity in terms of the coefficients is common as a specific
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target density can typically be well approximated by using an appropriate

subset of F of small cardinality.

As in Bunea et al. (2010), we work with the empirical risk

Rn(β) = β⊤Qβ − 2c⊤β, c = (
∑n

i=1 φj(Zi)/n)
p

j=1 ,

andQ = (〈φj , φk〉)pj,k=1, where 〈f, g〉 =
∫
R
fg for f ,g such that ‖f‖, ‖g‖ < ∞

with ‖f‖ = 〈f, f〉1/2.

In our simulations, we let p0 = 100, K = 2, σk = k, k = 1, 2. The locations

{µl}p0l=1 are generated sequentially by selecting µ1 randomly from [0, δ], µ2

from [µ1 + δ, µ1 + 2δ] etc. where δ is chosen such that the ’correlations’

〈φj , φk〉 /‖φj‖‖φk‖ ≤ 0.5 for all (j, k) corresponding to different locations.

An upper bound away from 1 is needed to ensure identifiability of S(β∗)

from finite samples. Data generation, the methods compared, and the way

they are run is almost identical to the previous subsections. Slight changes

are made for S(β∗) (still selected uniformly at random, but it is ruled that

any location is selected twice), b∗min (̺ is set to 2) and hyperparameter se-

lection. For the latter, a separate validation data set (also of size n) is

generated, and hyperparameters are selected as to minimize the empirical

risk from the validation data.

Results. Figure 4 confirms once again that making use of simplex con-
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straints yields markedly lower error than ℓ1-regularization followed by nor-

malization (Bunea et al., 2010). ’L2-ERM’ and ’weighted L1’ perform best,

improving over ’IHT’ (which is run with knowledge of s).
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Figure 4: Average estimation errors ‖θ̂−β∗‖2 for density estimation over 50 trials. Since

the performance of ’L1’ falls short of the rest of the competitors, whose differences we

would like to focus on, ’L1’ is compared to ’ERM’ and ’oracle’ in separate plots in the

right column. Standard errors are smaller than 0.025 for all methods.

S1.4 Portfolio Optimization

We use a data set available from http://host.uniroma3.it/docenti/

cesarone/datasetsw3_tardella.html containing the weekly returns of

p = 2196 stocks in the NASDAQ index collected during 03/2003 and

04/2008 (264 weeks altogether). For each stock, the expected returns is
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estimated as the mean return µ̂ from the first four years (208 weeks). Like-

wise, the covariance of the returns is estimated as the sample covariance

Σ̂ of the returns of the first four years. Given µ̂ and Σ̂, portfolio selection

(without short positions) is based on the optimization problem

min
β∈∆p

β⊤Σ̂β − τµ̂⊤β (S1.3)

where τ ∈ [0, τmax] is a parameter controlling the trade-off between return

and variance of the portfolio. Assuming that µ̂ has a unique maximum

entry, τmax is defined as the smallest number such that the solution of (S1.3)

has exactly one non-zero entry equal to one at the position of the maximum

of µ̂. As observed in Brodie et al. (2009), the solution of (S1.3) tends to be

sparse already because of the simplex constraint. Sparsity can be further

enhanced with the help of the strategies discussed in this paper, treating

(S1.3) as the empirical risk. We here consider ’L2-ERM’, ’weighted L1’,

’Thres’ and ’IHT’ for a grid of values for the regularization parameter (’L2-

ERM’ and ’weighted L1’) respectively sparsity level (’L2-ERM’ and ’Thres’).

The solutions are evaluated by computing the Sharpe ratios (mean return

divided by the standard deviation) of the selected portfolios on the return

data of the last 56 weeks left out when computing µ̂ and Σ̂.

Results. Figure 5 displays the Sharpe ratios of the portfolios returned by

these approaches in dependency of the ℓ2-norms of the solutions correspond-
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Figure 5: Sharpe ratios of the portfolios selected by ’L2-ERM’, ’weighted L1’, ’Thres’ and

’IHT’ on the hold-out portion of the NASDAQ data set in dependency of different choices

for the regularization parameter/sparsity level (to allow for joint display, we use the ℓ2-

norm as measure of sparsity on the horizontal axis). Left panel: τ = 10−4, Right panel:

τ = 5 · 10−3, cf. (S1.3). The results of ’Thres’ and ’IHT’ are essentially indistinguishable

and are hence not plotted separately for better readability. Note that points that are

too far away from each other with respect to the horizontal axis are not connected by

lines.

ing to different choices of the regularization parameter respectively sparsity

level and two values of τ in (S1.3). One observes that promoting sparsity

is beneficial in general. The regularization-based methods ’L2-ERM’ and

’weighted L1’ differ from ’IHT’ and ’Thres’ (whose results are essentially not

distinguishable) in that the former two yield comparatively smooth curves.

’L2-ERM’ achieves the best Sharpe ratios for a wide range of ℓ2-norms for

both values of τ .
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S1.5 Quantum State Tomography

We now turn to the matrix case of §5. The setup of this subsection is based

on model (5.17), where the measurements {Xi}ni=1 are chosen uniformly at

random from the (orthogonal) Pauli basis of Hm (here, m = 2q for some

integer q ≥ 1). For q = 1, the Pauli basis of H2 is given by the following

four matrices:

P1,1 =









1 0

0 1









, P1,2 =









0 −
√
−1

√
−1 0









, P1,3 =









1 0

0 −1









, P1,4 =









0 1

1 0









.

For q > 1, the Pauli basis {Pq,1, . . . , Pq,m2} is constructed as the q-fold

tensor product of {P1,1, P1,2, P1,3, P1,4}. The set of measurements is then

given by {Pq,i, i ∈ I}, where I ⊆ {1, . . . , m2}, |I| = n, is chosen uniformly

at random. Pauli measurements are commonly used in quantum state to-

mography in order to recover the density matrix of a quantum state (see

§5). In Gross et al. (2010), it is shown that if B∗ is of low rank, it can

be estimated accurately from few such random measurements by using nu-

clear norm regularization; the constraint B∗ ∈ ∆m is not taken advantage

of. Proposition 6 asserts that this constraint alone is well-suited for recov-

ering matrices of low rank as long as the measurements satisfy a restricted

strong convexity condition (Condition 2). It is shown in Liu (2011) that

Pauli measurements satisfy the matrix RIP condition of Recht, Fazel, and

Parillo (2010) as long as n & mr log6(m). Since the matrix RIP condition

is stronger than Condition 2, Proposition 6 applies here. The requirement
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on n is near-optimal: up to a polylogarithmic factor, it equals the “degrees

of freedom” of the problem given by d = mr − r(r − 1)/2 & mr, which is

the dimension of the space T(B∗) ⊂ Hm (cf. Definition 1 in §S7 below).

Noiseless measurements

In the first numerical study, we work with noiseless measurements. We fix

m = 27 and let r ∈ {1, 2, 5, 10} vary. The target is generated randomly as

B∗ = AA⊤, where A is an m× r matrix, whose entries are drawn i.i.d. from

N(0, 1). The number of random Pauli measurements n are varied from 2d

to 5d in steps of 0.5d, where d equals the ’degrees of freedom’ as defined

above. For each possible combination of n and r, 50 trials are performed.

The following three approaches for recovering B∗ are compared.

’Feasible set’: counterpart to ERM in the noiseless case: finding a point in

D(0) = {B ∈ ∆m : X ⋆(X (B)−y) = 0} = {B ∈ ∆m : X (B) = y}, (S1.4)

where the second identity follows from the fact that the Pauli matrices are

unitary.

’L2’: counterpart to (4.3)/(4.4) in the noiseless case, which amounts to

maximizing the Schatten ℓ2-norm (i.e., Frobenius norm) over (S1.4). As

initial iterate for Algorithm 1, the output from ’feasible set’ is used.
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’IHT’: The matrix version of iterative hard thresholding under simplex con-

straints as proposed by Kyrillidis et al. (2013). Under the assumption

that the rank of the target is known, one tries to solve directly the rank-

constrained optimization problem minB∈∆m
0
(r) Rn(B) using projected gra-

dient descent. Projections onto ∆m
0 (r) can be efficiently computed using

partial eigenvalue decompositions. We use a constant step size as in Kyril-

lidis et al. (2013). The output of ’feasible set’ is used as initial iterate.

Results. Figure 6 shows a clear benefit of using ℓ2-norm maximization on

top of solving the feasibility problem. For ’L2’, 2.5d measurements suffice

to obtain highly accurate solutions, while ’feasible set’ requires 3.5d up to

5d measurements. The performance of IHT falls in between the two other

approaches even though the knowledge of r provides an extra advantage.

Noisy measurements

We maintain the setup of the previous paragraph, but the measurements

are now subject to additive Gaussian noise with standard deviation σ = 0.1.

In order to adjust for the increased difficulty of the problem, the range for

the number of measurements n is multiplied by the factor log(m/r). Our

comparison covers the following methods.

’ERM’: Empirical risk minimization, the counterpart to ’Feasible set’ above.
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Figure 6: Boxplots of the errors ‖Θ̂− B∗‖2 (50 trials) in recovering B∗ with respect to

the Frobenius norm (log10 scale) in dependence of the number of Pauli measurements

(d = ’degrees of freedom’). Here, Θ̂ is representative for any of the three estimators

under consideration.

’Thres’: ’ERM’ and eigenvalue thresholding, outlined below Proposition 6.

’L2-ERM’: Regularized ERM with negative ℓ2-regularization (5.4). A grid

search over 20 different values of the regularization parameter λ is per-

formed analogously to the vector case.

’weighted L1’: The approach in (5.3). The grid search for λ follows the

vector case.

’IHT’: As in the noiseless case.
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Figure 7: Bottom: Average estimation errors ‖Θ̂ − B∗‖2 over 50 trials (log10-scale) in

dependence of the number of measurements (d = ’degrees of freedom’). Top: Relative

frequency of rank detection, i.e., of the event {‖Θ̂‖0 = ‖B∗‖0}; for ’IHT’ this relative

frequency is always one, which is not shown in the plots. Here, Θ̂ is representative for

any of the estimators under consideration.

’L1’: In analogy to the counterpart (3.3) in the vector case, the unit

trace constraint is dropped, and a nuclear-norm regularized empirical risk

is minimized over the positive semidefinite cone. The result is then di-
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vided by its trace. The regularization parameter is fixed to a single value

λ0 = 2σ
√

log(m)/n according to the literature (Negahban and Wainwright,

2011; Koltchinskii, 2011).

For ’Thres’, ’L2-ERM’ and other methods for which multiple values of a

hyperparameter are considered, hyperparameter selection is done by mini-

mizing a RIC-type criterion. Specifically, for some estimate Θ̂λ of B∗, we

use

sel(λ) = Rn(Θ̂λ) +
Cσ2 log(m2)‖Θ̂λ‖0

n

The use of this criterion is justified in light of results in Klopp (2011) on

trace regression with rank penalization. We have experimented with differ-

ent choices of the constant C. Satisfactory results are achieved for C = 26,

which is the choice underlying the results displayed in Figure 7. Once λ has

been determined, the matrix of eigenvectors is fixed and the eigenvalues are

re-fitted via least squares similar to (5.3).

Results. For the sake of brevity, we only display the results for r = 2, 10

in Figures 7 and 8. ’IHT’ achieves best performance even though the error

curve of ’L2’ is essentially identical for r = 2. Figure 8 indicates that

’IHT’ is sensitive to the choice of r: over-specification by a factor of two



Ping Li, Syama Sundar Rangapuram, and Martin Slawski

can lead to a performance that is significantly worse than ’Thres’ and only

slightly better than ’ERM’. Both ’L2’ and ’Thres’ are adaptive to the rank

which is correctly recovered in almost all cases. In the matrix case, ’L2’

improves over ’Thres’ (as opposed to the vector case), possibly because for

’Thres’ the eigenvectors remain unchanged compared to ’ERM’, only the

eigenvalues are modified. The performance of ’L1’ clearly falls short of

all other competitors, which underpins the importance of the unit trace

constraint.
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Figure 8: Sensitivity of ’IHT’ w.r.t. the choice of r. The dashed-dotted and dashed lines

show the average estimation errors when ’IHT’ is run with 1.5r and 2r, respectively. The

results of ’Thres’ and ’ERM’ serve as reference.

S2 Proof of Proposition 1

By definition of β̂, we have

Rn(β̂) ≤ Rn(β
∗) =⇒ {Rn(β̂)−R(β̂)}+R(β̂) ≤ {Rn(β

∗)−R(β∗)}+R(β∗).
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The right hand side in turn implies that

R(β̂) ≤ R(β∗) + sup
β∈Bp

1
(‖β̂−β∗‖1;β∗)

| {Rn(β)− {Rn(β
∗)} − {R(β)− R(β∗)}︸ ︷︷ ︸
ψn(β)

|

= R(β∗) + Ψn(‖β̂ − β∗‖1)

≤ R(β∗) + Ψn(2),

where the last inequality follows from β̂ ∈ ∆p, β∗ ∈ ∆p and the triangle

inequality.

We now turn to β̃λ. Consider the curve (segment) γ(t) = β∗ + t(β̃λ − β∗)

for t ∈ [0, 1] and the function g(t) = Rn(β
∗ + t(β̃λ − β∗)). Then g =

Rn ◦γ is convex, as it is the composition of an affine and a convex function.

Consequently, the derivative

g′(t) = ∇Rn(β
∗ + t(β̃λ − β∗))⊤(β̃λ − β∗)

is non-decreasing. As a result, we have

Rn(β̃λ)−Rn(β
∗) =

∫ 1

0

∇Rn(β
∗ + t(β̃λ − β∗))⊤(β̃λ − β∗) dt

≤ ∇Rn(β̃λ)
⊤(β̃λ − β∗)

≤ ‖∇Rn(β̃λ)‖∞‖β̃λ − β∗‖1

≤ λ‖β̃λ − β∗‖1,

where the first inequality follows from the definition and monotonicity

property of g′, the second inequality is Hölder’s inequality and the last
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inequality follows from the definition of β̃λ. Given the above bound on

Rn(β̃λ)−Rn(β
∗), the proof can be completed by following the scheme used

for β̂.

S3 Proof of Proposition 2

Invoking the ∆-RSC condition, we have

Rn(β̂)−Rn(β
∗)−∇Rn(β

∗)⊤(β̂ − β∗) ≥ κ‖β̂ − β∗‖22,

On the other hand, by the definition of β̂

Rn(β̂)−Rn(β
∗)−∇Rn(β

∗)⊤(β̂ − β∗) ≤ −∇Rn(β
∗)⊤(β̂ − β∗)

≤ ‖∇Rn(β
∗)‖∞‖β̂ − β∗‖1.

Combining these two bounds, we obtain that

κ‖β̂ − β∗‖22 ≤ ‖∇Rn(β
∗)‖∞‖β̂ − β∗‖1.

This implies that

‖β̂ − β∗‖22 ≤
‖∇Rn(β

∗)‖2∞
κ2

(
‖β̂ − β∗‖1
‖β̂ − β∗‖2

)2

≤ 4sλ2
∗

κ2
,

‖β̂ − β∗‖1 ≤
‖∇Rn(β

∗)‖∞
κ

(
‖β̂ − β∗‖1
‖β̂ − β∗‖2

)2

≤ 4sλ∗

κ
,
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where λ∗ = ‖∇Rn(β
∗)‖∞. The rightmost inequalities follow from the fact

that β̂ − β∗ ∈ C∆(s) and hence ‖β̂S(β∗)c‖1 ≤ ‖β̂S(β∗) − β∗
S(β∗)‖1 so that

‖β̂ − β∗‖1 = ‖β̂S(β∗) − β∗
S(β∗)‖1 + ‖β̂S(β∗)c‖1

≤ 2‖β̂S(β∗) − β∗
S(β∗)‖1 ≤ 2

√
s‖β̂S(β∗) − β∗

S(β∗)‖2.

We now turn to β̃λ. Starting from

Rn(β̃λ)− Rn(β
∗)−∇Rn(β

∗)⊤(β̃λ − β∗) ≥ κ‖β̃λ − β∗‖22,

and using the upper bound on Rn(β̃λ)− Rn(β
∗) as derived in the proof of

Proposition 1, we obtain

κ‖β̃λ − β∗‖22 ≤ ‖∇Rn(β̃λ)‖∞‖β̃λ − β∗‖1 + ‖∇Rn(β
∗)‖∞‖β̃λ − β∗‖1

≤ (λ+ λ∗)‖β̃λ − β∗‖1,

Arguing similarly as for β̂, it follows that

‖β̃λ − β∗‖22 ≤
4s(λ+ λ∗)

2

κ2
, ‖β̃λ − β∗‖1 ≤

4s(λ+ λ∗)

κ
.

S4 Proof of Proposition 3

We fix notation first. We let S = S(β∗), Y = (Yi)
n
i=1 and ε = (εi)

n
i=1.

The matrix X ∈ Rn×p has the {Xi}ni=1 as it rows, and XS, XSc denote the

column submatrices corresponding to S respectively Sc. Accordingly, we let

ΣSS = 1
n
X

⊤
S XS, ΣScSc = 1

n
X

⊤
ScXSc and ΣScS = 1

n
X

⊤
ScXS . We recall that
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w = (wj)
p
j=1 with wj = 1/β̂j, j = 1, . . . , p, so that ‖wS‖∞ = 1/minj∈S β̂j .

Moreover, we define

φS = min
‖v‖2=1

v⊤ΣSSv, ιS = ‖ΣScSΣ
−1
SS‖∞, ̺S,w =

1⊤Σ−1
SS

wS

‖wS‖∞

1⊤Σ−1
SS1

, (S4.1)

where for a matrix M , ‖M‖∞ = max‖v‖∞≤1‖Mv‖∞. Consider the optimiza-

tion problems

(◦) min
β∈∆p

‖Y −Xβ‖22/(2n) + λ 〈w, β〉 ,

(•) min
β:1⊤βS=1, βSc=0

‖Y −Xβ‖22/(2n) + λ 〈w, β〉 .
(S4.2)

Let β̄ denote the minimizer of (•). In the sequel, it will be verified that

under the stated conditions β̄ also minimizes (◦). It follows from the KKT

conditions of (◦) that it suffices to show that

I) β̄S ≻ 0,

II)
1

n
X

⊤
Sc(XSβ̄S −Y) ≻ µ̄1− λwSc, µ̄ := −1⊤Σ−1

SSX
⊤
S ε/n

1⊤Σ−1
SS1︸ ︷︷ ︸

=:µ̄0

+λ‖wS‖∞̺S,w,

(S4.3)

where ≻,� etc. denote component-wise inequality and µ̄ is the optimal

value of the Lagrangian multiplier associated with the constraint 1⊤βS = 1

in (•). Direct calculations show that I) holds if

b∗min > Tε + λ‖wS‖∞‖Σ−1
SS‖∞(1 + ̺S,w),

Tε := ‖Σ−1
SSX

⊤
S ε/n‖∞ + ‖µ̄0Σ

−1
SS1‖∞.

(S4.4)
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Let P denote the projection onto the column space of XS. Re-arranging

II) in (S4.3) then yields

λwSc ≻ λΣScSΣ
−1

SSwS + λ‖wS‖∞̺S,w(1− ΣScSΣ
−1

SS1) + µ̄0(1−ΣScSΣ
−1

SS1) +X
⊤

Sc(I −P)ε/n.

By upper bounding the right hand side component-wise, we obtain that

II) in (S4.3) is implied by

λmin
j∈Sc

wj > 2λmax(̺S,w, 1)(1 + ιS)‖wS‖∞ + T ′
ε,

T ′
ε := ‖µ̄0(1− ΣScSΣ

−1
SS1) +X

⊤
Sc(I − P)ε/n‖∞,

(S4.5)

with ιS as in (S4.1). Consider now the event

E = {T ′
ε ≤ λmax(̺S,w, 1)(1 + ιS)‖wS‖∞}.

Note that

E ⊇ {T ′′
ε ≤ λ‖wS‖∞}, T ′′

ε := |µ̄0|+ ‖X⊤
Sc(I −P)ε/n‖∞. (S4.6)

Inserting λ = λ0‖wS‖∞ into (S4.4) and (S4.6) with λ0 still to be determined,

we obtain the events

{b∗min > Tε + λ0‖Σ−1
SS‖∞(1 + ̺S,w)}, {T ′′

ε ≤ λ0}. (S4.7)

(A) Regarding T ′′
ε , observe that from the definition of µ̄0 in (S4.3), we get

µ̄0 ∼ N(0, σ
2

n
{1⊤Σ−1

SS1}−1). Indeed, using that 1
n

∑n
i=1X

2
ij = 1 ∀j by as-

sumption, which implies that tr(ΣSS) = s, one shows that {1⊤Σ−1
SS1}−1 ≤

1
s
max‖v‖2≤1 v

⊤ΣSSv ≤ 1
s
tr(ΣSS) = 1. Likewise, we note that each com-

ponent of X⊤
Sc(I − P)ε/n is a Gaussian random variable with variance at
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most σ2/n. Applying a standard maximal inequality for finite collections

of Gaussian random variables (cf., e.g., Appendix A in Slawski and Hein

(2013)), choosing λ0 ≥ (1 + η)
√
2 log(p)/n for η ≥ 0 yields that the event

{T ′′
ε ≤ λ0} in (S4.7) holds with probability at least 1− 2p−η

2

.

(B) We now turn to the first event in (S4.7) which entails closer exam-

ination of Tε in (S4.4). First, each component of Σ−1
SSX

⊤
S ε/n is a Gaussian

random variable with variance at most φ−1
S σ2/n, where φS is given in (S4.1).

Second, using that ‖Σ−1
SS1‖∞ ≤ ‖Σ−1

SS1‖2 = (1⊤Σ−2
SS1)

1/2 and further that

(1⊤Σ−2
SS1/1

⊤Σ−1
SS1)

1/2 ≤ φ
−1/2
S , we obtain that the second term in Tε is

distributed as the absolute value of a Gaussian random variable with vari-

ance at most φ−1
S σ2/n. Invoking the maximal inequality as used in the

above paragraph (A), we conclude that the event {Tε ≤ φ
−1/2
S λ0} holds

with probability at least 1− 2p−η
2

. Combining this with (S4.7) and (S4.4),

we obtain that the event {β̄S ≻ 0} in (S4.3) holds with probability at least

1− 4p−η
2

if b∗min ≥ λ0(φ
−1/2
S + ‖Σ−1

SS‖∞(1 + ̺S,w)).

(C) Lastly, we inspect the condition in (S4.5) conditional on the event

E specified below (S4.5). Substituting ‖wS‖∞ = 1/minj∈S β̂j , minj∈Sc wj =

1/maxj∈Sc β̂j and re-arranging yields the condition

min
j∈S

β̂j > 3max(̺S,w, 1)(1 + ιS)max
j∈Sc

β̂j .

Combining paragraphs (A), (B) and (C), we conclude that under the stated
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conditions, I) and II) in (S4.3) hold so that S(β̂wλ ) = S(β̄) = S(β∗). This

completes the proof.

S5 Proof of Proposition 4

The optimization problem under consideration is equivalent to the following

one:

min
β∈∆n

(
1

n
− λ

)
‖β‖22 −

2

n
Z⊤β. (S5.1)

For λ ≥ 1/n, the objective becomes concave. If λ > 1/n, the objective is

strictly concave and the unique minimum is attained at one of the vertices

{ei}ni=1 of ∆
n. Specifically, the minimum is attained for any ei s.t. 〈Z, ei〉 =

zi = max1≤k≤n zk. Since we have assumed that z(1) > . . . > z(n), such vector

is unique. If λ = 1/n, we have

β̂ℓ2λ ∈ conv

{
ei : zi = max

1≤k≤n
zk

}
.

By the same argument as above, that convex hull equals the unique vector

ei s.t. zi = max1≤k≤n zk.

For 0 ≤ λ < 1/n, the problem becomes strictly convex. With γ = 1 − nλ,

(S5.1) is equivalent to

min
β∈∆n

γ‖β‖22 − 2Z⊤β.
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Re-arranging terms, this can be seen to be equivalent to

min
β∈∆n

‖β − Z/γ‖22,

i.e., β̂ℓ2λ = Π∆n(Z/γ), with Π∆n denoting the Euclidean projection onto ∆n.

Suppose that the realizations z = (zi)
n
i=1 are arranged such that

z1 = β∗
1+ε1 > z2 = β∗

2+ε2 > . . . > zs = β∗
s+εs > zs+1 = εs+1 > . . . > zp = εp.

Under the event {b∗min = mini∈S(β∗) |β∗
i | ≥ 2max1≤i≤n |εi|}, this can be

assumed without loss of generality. The projection of Z/γ onto ∆n can

then can be expressed as (cf. Kyrillidis et al. (2013))

(Π∆n(Z/γ))i = max{zi/γ − τ, 0}, where τ =
1

q

(
q∑

i=1

(zi/γ)− 1

)
,

and

q = max

{
k : (zk/γ) >

1

k

(
k∑

i=1

(zi/γ)− 1

)}
.

In order to establish that S(β̂ℓ2λ ) = S(β∗), it remains to be shown that under

the given conditions on b∗min and λ respectively γ, the following properties
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(a) and (b) hold true:

(a)
β∗
s + εs
γ

>
1

γ

β∗
1 + . . .+ β∗

s − γ

s
+

1

γ

ε1 + . . .+ εs
s

⇐⇒ β∗
s + εs
γ

>
1

s

1− γ

γ
+

1

γ

ε1 + . . .+ εs
s

⇐⇒ β∗
s >

1

s
({1− γ} − {ε1 + . . .+ εs − sεs}).

(b)
εs+1

γ
<

1

γ

1− γ

s+ 1
+

1

γ

ε1 + . . .+ εs + εs+1

s+ 1
.

Re-arranging (b), we find that

nλ = (1− γ) > sεs+1 − (ε1 + . . .+ εs),

which is implied by

nλ > 2s max
1≤i≤n

|εi|.

Likewise, the inequality in (a) holds as long as

β∗
s >

nλ

s
+ 2max

i
|εi|.

This concludes the proof.

S6 Proof of Proposition 5

We provide a proof for problem (4.3) restated in (S6.1) below; the proof for

problem (4.4) follows similarly. Consider the optimization problem

min
β∈∆p

Rn(β)− λ ‖β‖22 . (S6.1)
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The subproblem solved in each iteration in the case of (S6.1) is given by

min
β∈∆p

Rn(β)− 2λ〈βk, β − βk〉 (S6.2)

First note that the constraint sets of (S6.1) and (S6.2) are compact

and the objectives are continuous. Thus, by Weierstrass’ theorem, these

problems have a minimizer, and the minima are finite.

The current iterate βk is always feasible for (S6.2). Hence the optimal

value of (S6.2) is either Rn(β
k) (in which case the algorithm terminates) or

strictly smaller than Rn(β
k),

Rn(β
k+1)− 2λ〈βk, βk+1 − βk〉 < Rn(β

k). (S6.3)

On the other hand, by convexity of λ ‖β‖22, we have

f(βk+1) = Rn(β
k+1)− λ‖βk+1‖22 ≤ Rn(β

k+1)− λ‖βk‖22 − 2λ〈βk, βk+1 − βk〉
(S6.3)
< Rn(β

k)− λ‖βk‖22

= f(βk).

This establishes the strict monotonicity of the iterates in terms of the ob-

jective f of the original problem (S6.1) until convergence. It is clear that

all the elements of the sequence {βk} are feasible for (S6.1) and satisfy

f ∗ ≤ f(βk), k ≥ 0, where f ∗ is the global minimum of (S6.1). Since

{f(βk)} is a strictly decreasing sequence bounded below by a finite f ∗, the
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sequence converges to a limit

f̄ = lim
k→∞

f(βk).

Since all the elements of the sequence {βk} are contained in ∆p, a

compact set, there exists a subsequence {βki} converging to an element

β̄ ∈ ∆p. The sequence {f(βki)} is a subsequence of {f(βk)} that is shown

to converge to the limit f̄ ; hence the subsequence {f(βki)} also converges

to the same limit

lim
k→∞

f(βki) = f̄ .

Let us define φβ̄(β) = Rn(β) − 2λ
〈
β̄, β − β̄

〉
. We now argue that β̄ ∈

argminβ∈∆p φβ̄(β). To see this note that β̄ is feasible for this problem and

hence minβ∈∆p φβ̄(β) ≤ f(β̄) = f̄ . Assume for the sake of contradiction

that a minimizer β̌ of this problem has a strictly smaller objective,

φβ̄(β̌) = Rn(β̌)− 2λ
〈
β̄, β̌ − β̄

〉
< f̄.

Similar to the argument above regarding strict descent, we can show that

f(β̌) < f̄,

which contradicts the fact that the sequence {f(βk)} converges to the limit

f̄ . Thus, we must have,

β̄ ∈ argmin
β∈∆p

Rn(β)− 2λ
〈
β̄, β − β̄

〉
.
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The first-order optimality condition for β̄ then implies

−∇Rn(β̄) + 2λβ̄ ∈ N∆p(β̄),

where N∆p(β̄) is the normal cone of ∆p at β̄ (see, e.g., Rockafellar and Wets

(2004) for a definition). Note that this is exactly the first-order optimality

condition for the original problem (S6.1). Finally note that the argument

is true for any subsequence {βki} and hence each of such subsequences and

consequently the original sequence {βk} converge to the same limit β̄, which

has been shown to satisfy the required optimality condition.

S7 Proof of Proposition 6

Before providing a proof of Proposition 5, we first provide a precise defini-

tion of the linear spaces T(B), B ∈ B
m
0 (r) ⊂ Hm.

Definition 1. Let B ∈ B
m
0 (r) have the spectral decomposition B =

UΛUH , where

U =




U‖ U⊥

m× r m× (m − r)







Λr 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)




for Λr real and diagonal. We then define

T(B) = {M ∈ H
m : M = U‖Γ + ΓHUH

‖ , Γ ∈ C
r×m}.
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It is immediate from the definition of T(B) that its orthogonal comple-

ment is given by

T(B)⊥ = {M ∈ H
m : M = U⊥AU

H
⊥ , A ∈ H

m−r}.

We first show that Φ̂ = B̂ − B∗ ∈ K∆(r), where we recall that

K∆(r) = {Φ ∈ H
m : ∃B ∈ B

m
0 (r) s.t.

tr(ΠT(B)⊥(Φ)) = − tr(ΠT(B)Φ) and ΠT(B)⊥(Φ) � 0}.

Define the shortcuts Φ̂T = ΠT(B∗)Φ̂ and Φ̂T⊥ = ΠT(B∗)⊥Φ̂. Since B̂ is feasi-

ble, it must hold that tr(Φ̂) = 0 and thus tr(Φ̂T⊥) = − tr(Φ̂T). Since B̂ must

also be positive definite, it must hold that tr(B̂W ) ≥ 0 for all W ∈ T(B∗)⊥,

W � 0. We have

tr(B̂W ) = tr((B∗ + Φ̂)W ) = tr(Φ̂T⊥W ) ∀W ∈ T(B∗)⊥,

since B∗ ∈ T(B∗). We conclude that tr(Φ̂T⊥W ) ≥ 0 for all W ∈ T(B∗)⊥,

W � 0, and thus Φ̂T⊥ � 0. Altogether, we have shown that Φ̂ ∈ K∆(r).

Since B̂ is a minimizer, we have

1

n
‖Y − X (B̂)‖22 ≤

1

n
‖Y − X (B∗)‖22
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After re-arranging terms, we obtain

1

n
‖X (B∗ − B̂)‖22 ≤

2

n

〈
ε,X (B̂ − B∗)

〉

=
2

n

〈
X ⋆(ε), B̂ − B∗

〉

≤ 2‖X ⋆(ε)/n‖∞‖B̂ − B∗‖1

= λ∗‖B̂ − B∗‖1.

where X ⋆ is the adjoint of X . By ∆-RSC, we now have

1

n
‖X (B∗ − B̂)‖22 ≥ κ‖B∗ − B̂‖22.

Combining this with the preceding upper bound, we hence obtain

‖B̂ − B∗‖22 ≤
λ2
∗

κ2

(
‖B̂ − B∗‖1
‖B̂ − B∗‖2

)2

≤ 8rλ2
∗

κ2
,

‖B̂ − B∗‖1 ≤
λ∗

κ

(
‖B̂ − B∗‖1
‖B̂ − B∗‖2

)2

≤ 8rλ∗

κ
,

The rightmost inequalities follow from the fact that B̂ − B∗ = Φ̂ ∈ K∆(r)

and hence ‖Φ̂T⊥‖1 ≤ ‖Φ̂T‖1 so that

‖B̂ − B∗‖1 = ‖Φ̂‖1 = ‖Φ̂T‖1 + ‖Φ̂T⊥‖1

≤ 2‖Φ̂T‖1

≤ 2
√
2r‖Φ̂T‖2 ≤ 2

√
2r‖B̂ −B∗‖2,

where for the third inequality, we have used that ‖M‖0 ≤ 2r for all M ∈

T(B∗).
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The bound for B̃λ can be established by combining the proof scheme used

for β̃λ with the scheme used for B̂ and is thus omitted.

S8 Proof of Proposition 7

We start by expanding the objective function of the optimization problem

under consideration. Define Sm := Hm ∩ Rm×m which is a subspace of Hm

that is isometrically isomorphic (w.r.t. the standard inner product) to R
δm ,

δm = m(m+ 1)/2 under the isometry X (5.22). Therefore,

1

n
‖Y − X (B)‖22 =

1

n
‖X ⋆(Y)− B‖22

=
1

n
‖B∗ + E −B‖22, E := X ⋆(ε),

=
1

n
‖Υ−B‖22, Υ := B∗ + E. (S8.1)

It follows directly from the definition of X ⋆ that the symmetric random

matrix E = (εjk)1≤j,k≤m is distributed according to the Gaussian orthogonal

ensemble (GOE, see e.g. Tao (2012)), i.e., E ∼ GOE(m), where

GOE(m) = {X = (xjk)1≤j,k≤m, {xjj}mj=1
i.i.d.∼ N(0, 1/m),

{xjk = xkj}1≤j<k≤m i.i.d.∼ N(0, 1/2m)}.

In virtue of (S8.1), we have

min
B∈∆m

1

n
‖Y −X (B)‖22 = min

B∈∆m

{
(1/n− λ)‖B‖22 −

2

n
〈Υ, B〉

}
+

1

n
‖Υ‖22.
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At this point, the proof parallels the proof of Proposition 4. We see that

for λ ≥ 1/n, B̂ℓ2
λ = u1u

⊤
1 , where u1 is the eigenvector of Υ corresponding to

its largest eigenvalue. This follows from the duality of the Schatten ℓ1/ℓ∞

norms and the fact that for all feasible B, it holds that ‖B‖22 ≤ ‖B‖21 = 1

with equality if and only if B has rank one. Conversely, if 0 ≤ λ < 1/n,

we define γ := 1 − nλ > 0 and deduce that the optimization problem in

the previous display is equivalent to minB∈∆m‖Υ/γ − B‖22 with minimizer

B̂ℓ2
λ = Udiag({φ̂j}mj=1)U

⊤, where φ̂ = Π∆m(υ/γ) with υ = (υj)
m
j=1 denoting

the eigenvalues of Υ (in decreasing order) corresponding to the eigenvectors

in U . We now prove the last claim of the proposition, combining the proof

of Proposition 4 for the vector case with concentration results by Peng

(2012) for the spectrum of the random matrix Υ = B∗ +E, which are here

rephrased as follows. Define

φ̃∗
j =





φ∗
j +

σ2

φ∗j
if σ < φ∗

j ≤ 1

2σ if 0 ≤ φ∗
j ≤ σ, j = 1, . . . , m,

where we recall that the {φ∗
j}mj=1 denote the ordered eigenvalues of B∗ and

σ2 is the variance of the noise (up to a scaling factor of 1/m). We then

have

P(υj ≥ φ̃∗
j + t) ≤ C1 exp(−c1mt2/σ2), j = 1, . . . , m.
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Furthermore, let r0 denote the number of eigenvalues of B∗ that are larger

than σ. Then, there is a constant c0 > 0 so that if r ≤ c0m, it holds that

P(υj ≤ φ̃∗
j − t− 2σ) ≤ exp(−c2m/σ2) + C ′

2 exp(−c′2mt2/σ2), j = 1, . . . , r0,

where c1, c2, C1, C2, C
′
2 are positive constants.

It needs to be shown that for a suitable choice of λ and for φ∗
r large enough,

it holds that ‖B̂ℓ2
λ ‖0 = ‖B∗‖0 = r with high probability as specified in the

proposition. This is the case if and only if φ̂ = Π∆m(υ/γ) has precisely r

non-zero entries.

a) ‖φ̂‖0 ≥ r:

It follows from the proof in the vector case that a) is satisfied if

υr
γ

>
υ1 + . . .+ υr − γ

rγ

Write ξj = υj − φ̃∗
j , bj = φ̃∗

j − φ∗
j , j = 1, . . . , m, and ξ = max1≤j≤m ξj ,

ξ = min1≤j≤r0 ξj. Then the above condition can equivalently be expressed

as

υr >
1

r

{
r∑

j=1

(φ̃∗
j + ξj)− γ

}

=
1

r

{
r∑

j=1

(bj + ξj) + (1− γ)

}
, since

r∑

j=1

φ∗
j = 1

=
1

r

r∑

j=1

(bj + ξj) +
nλ

r
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As φ∗
j ≥ 5σ for j = 1, . . . , r by assumption, we have r = r0 and

1

r

r∑

j=1

(bj + ξj) ≤ σ + ξ.

Since υr ≥ φ∗
r + ξ, we obtain the sufficient condition

(A) φ∗
r > −ξ + σ + ξ +

nλ

r
.

b) ‖φ̂‖0 ≤ r

In analogy to a), we start with the condition

υr+1

γ
<

υ1 + . . .+ υr + υr+1 − γ

(r + 1)γ

After canceling γ on both sides, we lower bound the right hand side as

follows:

υ1 + . . .+ υr + υr+1 − γ

r + 1
≥

(1− γ) + υr+1 + rξ

r + 1
.

Back-subtituting this lower bound, we obtain the following sufficient con-

dition

(B) λ >
r

n
(υr+1 − ξ).

Consider the following two events:

E1 : {ξ > σ}, E2 : {ξ < −3σ}

The concentration results stated above yield that P(E1∪E2) ≤ C exp(−cm)

for constants c, C > 0. Note that conditional on the complement of E1∪E2,
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υr+1 ≤ 3σ so that condition (B) is fulfilled as long as λ > 6σr/n. Likewise,

condition (A) is fulfilled as long as φ∗
r > 5σ + nλ/r.
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