
Filter Pruning via Geometric Median

for Deep Convolutional Neural Networks Acceleration

Yang He1 Ping Liu1,2 Ziwei Wang3 Zhilan Hu4 Yi Yang1,5∗

1CAI, University of Technology Sydney 2JD.com
3Information Science Academy, CETC 4Huawei 5Baidu Research

{yang.he-1}@student.uts.edu.au {pino.pingliu,wangziwei26,yee.i.yang}@gmail.com

Abstract

Previous works utilized “smaller-norm-less-important”

criterion to prune filters with smaller norm values in a con-

volutional neural network. In this paper, we analyze this

norm-based criterion and point out that its effectiveness de-

pends on two requirements that are not always met: (1)

the norm deviation of the filters should be large; (2) the

minimum norm of the filters should be small. To solve

this problem, we propose a novel filter pruning method,

namely Filter Pruning via Geometric Median (FPGM), to

compress the model regardless of those two requirements.

Unlike previous methods, FPGM compresses CNN models

by pruning filters with redundancy, rather than those with

“relatively less” importance. When applied to two image

classification benchmarks, our method validates its useful-

ness and strengths. Notably, on CIFAR-10, FPGM reduces

more than 52% FLOPs on ResNet-110 with even 2.69%

relative accuracy improvement. Moreover, on ILSVRC-

2012, FPGM reduces more than 42% FLOPs on ResNet-

101 without top-5 accuracy drop, which has advanced the

state-of-the-art. Code is publicly available on GitHub:

https://github.com/he-y/filter-pruning-geometric-median

1. Introduction

The deeper and wider architectures of deep CNNs bring

about the superior performance of computer vision tasks [6,

26, 45]. However, they also cause the prohibitively ex-

pensive computational cost and make the model deploy-

ment on mobile devices hard if not impossible. Even the

latest architecture with high efficiencies, such as residual

connection [12] or inception module [34], has millions

of parameters requiring billions of float point operations

(FLOPs) [15]. Therefore, it is necessary to attain the deep

CNN models which have relatively low computational cost

⇤Corrsponding Author. Part of this work was done when Yi Yang was

visiting Baidu Research during his Professional Experience Program.

Previous 

method

(a) Criterion for filter pruning

Filters before pruning

Number 

of filters

Value of norm
0

Filters to be 

pruned

𝓥
1

𝓥
2𝒯

(b) Requirements for norm-based criterion

Ideal distribution: 𝕍
Requirement 1: σ (𝕍) >> 0

Requirement 2: 𝒗
1
→ 0

𝕍

Large norm

Medium norm

Small norm

Filter Space

Pruning

Our 

method

Figure 1. An illustration of (a) the pruning criterion for norm-

based approach and the proposed method; (b) requirements for

norm-based filter pruning criterion. In (a), the green boxes denote

the filters of the network, where deeper color denotes larger norm

of the filter. For the norm-based criterion, only the filters with

the largest norm are kept based on the assumption that smaller-

norm filters are less important. In contrast, the proposed method

prunes the filters with redundant information in the network. In

this way, filters with different norms indicated by different inten-

sities of green may be retained. In (b), the blue curve represents

the ideal norm distribution of the network, and the v1 and v2 is the

minimal and maximum value of norm distribution, respectively.

To choose the appropriate threshold T (the red shadow), two re-

quirements should be achieved, that is, the norm deviation should

be large, and the minimum of the norm should be arbitrarily small.

but high accuracy.

Recent developments on pruning can be divided into

two categories, i.e., weight pruning [11, 1] and filter prun-

ing [21, 39]. Weight pruning directly deletes weight values

14340



in a filter which may cause unstructured sparsities. This

irregular structure makes it difficult to leverage the high-

efficiency Basic Linear Algebra Subprograms (BLAS) li-

braries [25]. In contrast, filter pruning directly discards the

whole selected filters and leaves a model with regular struc-

tures. Therefore, filter pruning is more preferred for accel-

erating the networks and decreasing the model size.

Current practice [21, 38, 15] performs filter pruning

by following the “smaller-norm-less-important” criterion,

which believes that filters with smaller norms can be pruned

safely due to their less importance. As shown in the top

right of Figure 1(a), after calculating norms of filters in a

model, a pre-specified threshold T is utilized to select fil-

ters whose norms are smaller than it.

However, as illustrated in Figure 1(b), there are two pre-

requisites to utilize this “smaller-norm-less-important” cri-

terion. First, the deviation of filter norms should be sig-

nificant. This requirement makes the searching space for

threshold T wide enough so that separating those filters

needed to be pruned would be an easy task. Second, the

norms of those filters which can be pruned should be arbi-

trarily small, i.e., close to zero; in other words, the filters

with smaller norms are expected to make absolutely small

contributions, rather than relatively less but positively large

contributions, to the network. An ideal norm distribution

when satisfactorily meeting those two requirements is illus-

trated as the blue curve in Figure 1. Unfortunately, based

on our analysis and experimental observations, this is not

always true.

To address the problems mentioned above, we propose

a novel filter pruning approach, named Filter Pruning via

Geometric Median (FPGM). Different from the previous

methods which prune filters with relatively less contribu-

tion, FPGM chooses the filters with the most replaceable

contribution. Specifically, we calculate the Geometric Me-

dian (GM) [8] of the filters within the same layer. Accord-

ing to the characteristics of GM, the filter(s) F near it can

be represented by the remaining ones. Therefore, pruning

those filters will not have substantial negative influences on

model performance. Note that FPGM does not utilize norm

based criterion to select filters to prune, which means its

performance will not deteriorate even when failing to meet

requirements for norm-based criterion.

Contributions. We have three contributions:

(1) We analyze the norm-based criterion utilized in pre-

vious works, which prunes the relatively less important

filters. We elaborate on its two underlying requirements

which lead to its limitations;

(2) We propose FPGM to prune the most replace-

able filters containing redundant information, which can

still achieve good performances when norm-based criterion

fails;

(3) The extensive experiment on two benchmarks

demonstrates the effectiveness and efficiency of FPGM.

2. Related Works

Most previous works on accelerating CNNs can be

roughly divided into four categories, namely, matrix de-

composition [42, 35], low-precision weights [44, 43, 32],

knowledge distilling [17, 19] and pruning. Pruning-based

approaches aim to remove the unnecessary connections of

the neural network [11, 21, 24]. Essentially, weight prun-

ing always results in unstructured models, which makes it

hard to deploy the efficient BLAS library, while filter prun-

ing not only reduces the storage usage on devices but also

decreases computation cost to accelerate the inference. We

could roughly divide the filter pruning methods into two cat-

egories by whether the training data is utilized to determine

the pruned filters, that is, data dependent and data indepen-

dent filter pruning. Data independent method is more effi-

cient than data dependent method as the utilizing of training

data is computation consuming.

Weight Pruning. Many recent works [11, 10, 9, 36, 1,

15, 41, 4] focus on pruning fine-grained weight of filters.

For example, [11] proposes an iterative method to discard

the small weights whose values are below the predefined

threshold. [1] formulates pruning as an optimization prob-

lem of finding the weights that minimize the loss while sat-

isfying a pruning cost condition.

Data Dependent Filter Pruning. Some filter pruning

approaches [23, 25, 16, 27, 7, 33, 39, 37, 46, 14, 18, 22]

need to utilize training data to determine the pruned filters.

[25] adopts the statistics information from the next layer to

guide the filter selections. [7] aims to obtain a decomposi-

tion by minimizing the reconstruction error of training set

sample activation. [33] proposes an inherently data-driven

method which use Principal Component Analysis (PCA)

to specify the proportion of the energy that should be pre-

served. [37] applies subspace clustering to feature maps to

eliminate the redundancy in convolutional filters.

Data Independent Filter Pruning. Concurrently with

our work, some data independent filter pruning strate-

gies [21, 15, 38, 47] have been explored. [21] utilizes an `1-

norm criterion to prune unimportant filters. [15] proposes

to select filters with a `2-norm criterion and prune those se-

lected filters in a soft manner. [38] proposes to prune mod-

els by enforcing sparsity on the scaling parameter of batch

normalization layers. [47] uses spectral clustering on filters

to select unimportant ones.

Discussion. To the best of our knowledge, only one

previous work reconsiders the smaller-norm-less-important

criterion [38]. We would like to highlight our advantages

compared to this approach as below: (1) [38] pays more

attention to enforcing sparsity on the scaling parameter in

the batch normalization operator, which is not friendly to

the structure without batch normalization. On the contrary,

4341



our approach is not limited by this constraint. (2) After

pruning channels selected, [38] need fine-tuning to reduce

performance degradation. However, our method combines

the pruning operation with normal training procedure. Thus

extra fine-tuning is not necessary. (3) Calculation of the

gradient of scaling factor is needed for [38]; therefore lots

of computation cost are inevitable, whereas our approach

could accelerate the neural network without calculating the

gradient of scaling factor.

3. Methodology

3.1. Preliminaries

We formally introduce symbols and notations in this sub-

section. We assume that a neural network has L layers. We

use Ni and Ni+1, to represent the number of input chan-

nels and the output channels for the ith convolution layer,

respectively. Fi,j represents the jth filter of the ith layer,

then the dimension of filter Fi,j is RNi⇥K⇥K , where K is

the kernel size of the network1. The ith layer of the net-

work W
(i) could be represented by {Fi,j , 1 ≤ j ≤ Ni+1}.

The tensor of connection of the deep CNN network could be

parameterized by {W(i) ∈ R
Ni+1⇥Ni⇥K⇥K , 1 ≤ i ≤ L}.

3.2. Analysis of Norm-based Criterion

Figure 1 gives an illustration for the two requirements

for successful utilization of the norm-based criterion. How-

ever, these requirements may not always hold, and it might

lead to unexpected results. The details are illustrated in Fig-

ure 2, in which the blue dashed curve and the green solid

curve indicates the norm distribution in ideal and real cases,

respectively.

Number of filters

Value of

norm

Number of filters

Value of 

norm

0
0𝓥𝓥2 𝓥𝓥1 𝓥𝓥2𝑣𝑣2′ 𝑣𝑣1′′𝑣𝑣1′ 𝑣𝑣2′′𝓥𝓥1

Problem 1: σ (𝕍𝕍′) << σ (𝕍𝕍)
(a) Small Norm Deviation

Problem 2: 𝑣𝑣1′′ ≫ 𝑣𝑣1 → 0

(b) Large Minimum Norm

𝕍𝕍𝕍𝕍′ 𝕍𝕍 𝕍𝕍′′

Figure 2. Ideal and Reality of the norm-based criterion: (a) Small

Norm Deviation and (b) Large Minimum Norm. The blue dashed

curve indicates the ideal norm distribution, and the green solid

curve denotes the norm distribution might occur in real cases.

(1) Small Norm Deviation. The deviation of filter norm

distributions might be too small, which means the norm val-

ues are concentrated to a small interval, as shown in Fig-

ure 2(a). A small norm deviation leads to a small search

space, which makes it difficult to find an appropriate thresh-

old to select filters to prune.

(2) Large Minimum Norm. The filters with the mini-

mum norm may not be arbitrarily small, as shown in the

1Fully-connected layers equal to convolutional layers with k = 1

Figure 2(b), v001 >> v1 → 0. Under this condition, those

filters considered as the least important still contribute sig-

nificantly to the network, which means every filter is highly

informative. Therefore, pruning those filters with minimum

norm values will cast a negative effect on the network.

3.3. Norm Statistics in Real Scenarios

In Figure 3, statistical information collected from pre-

trained ResNet-110 on CIFAR-10 and pre-trained ResNet-

18 on ILSVRC-2012 demonstrates previous analysis. The

small green vertical lines show each observation in this

norm distribution, and the blue curves denote the Ker-

nel Distribution Estimate (KDE) [30], which is a non-

parametric way to estimate the probability density function

of a random variable. The norm distribution of first layer

and last layer in both structures are drawn. In addition, to

clearly illustrate the relation between norm points, two dif-

ferent x-scale, i.e., linear x-scale and log x-scale, are pre-

sented.

(1) Small Norm Deviation in Network. For the first con-

volutional layer of ResNet-110, as shown in Figure 3(b),

there is a large quantity of filters whose norms are concen-

trated around the magnitude of 10�6. For the last convo-

lutional layer of ResNet-110, as shown in Figure 3(c), the

interval span of the value of norm is roughly 0.3, which is

much smaller than the interval span of the norm of the first

layer (1.7). For the last convolutional layer of ResNet-18, as

shown in Figure 3(g), most filter norms are between the in-

terval [0.8, 1.0]. In all these cases, filters are distributed too

densely, which makes it difficult to select a proper threshold

to distinguish the important filters from the others.

(2) Large Minimum Norm in Network. For the last con-

volutional layer of ResNet-18, as shown in Figure 3(g), the

minimum norm of these filters is around 0.8, which is large

comparing to filters in the first convolutional layer (Fig-

ure 3(e)). For the last convolutional layer of ResNet-110,

as shown in Figure 3(c), only one filter is arbitrarily small,

while the others are not. Under those circumstances, the fil-

ters with minimum norms, although they are relatively less

important according to the norm-based criterion, still make

significant contributions in the network.

3.4. Filter Pruning via Geometric Median

To get rid of the constraints in the norm-based criterion,

we propose a new filter pruning method inspired from geo-

metric median. The central idea of geometric median [8] is

as follows: given a set of n points a(1), . . . , a(n) with each

a(i) ∈ R
d, find a point x⇤ ∈ R

d that minimizes the sum of

Euclidean distances to them:

x
⇤ 2 argmin

x2Rd

f(x) where f(x)
def
=

X

i2[1,n]

kx� a
(i)k2 (1)

4342



(a) ResNet-110 (linear x-scale) (b) ResNet-110 (log x-scale) (c) ResNet-110 (linear x-scale) (d) ResNet-110 (log x-scale)

(e) ResNet-18 (linear x-scale) (f) ResNet-18 (log x-scale) (g) ResNet-18 (linear x-scale) (h) ResNet-18 (log x-scale)

Figure 3. Norm distribution of filters from different layers of ResNet-110 on CIFAR-10 and ResNet-18 on ILSVRC-2012. The small

green vertical lines and blue curves denote each norm and Kernel Distribution Estimate (KDE) of the norm distribution, respectively.

As the geometric median is a classic robust estimator of
centrality for data in Euclidean spaces [8], we use the geo-
metric median FGM

i to get the common information of all
the filters within the single ith layer:

FGM
i 2 argmin

x2R
Ni⇥K⇥K

g(x), (2)

where

g(x)
def
=

X

j
0
2[1,Ni+1]

kx� F
i,j

0 k2. (3)

In the ith layer, if some filters have the same, or similar
values as the geometric median in that layer, which is:

Fi,j⇤ 2 argmin
j
0
2[1,Ni+1]

kF
i,j

0 � FGM
i k2, (4)

then those filters, Fi,j⇤ , can be represented by the other fil-

ters in the same layer, and therefore, pruning them has little

negative impacts on the network performance.

As geometric median is a non-trivial problem in com-

putational geometry, the previous fastest running times for

computing a (1 + ✏)-approximate geometric median were
eO(dn4/3 · ✏�8/3) by [2], O(nd log3(n/✏)) by [3]. In our

case, as the final result Fi,j⇤ are a list of know points, that

is, the candidate filters in the layer, we could relax the above

problem.
We assume that

kFi,j⇤ � FGM
i k2 = 0, (5)

so the Equation.4 is achieved. Then the above Equation.2

becomes to

Fi,j⇤ 2 argmin
j⇤2[1,Ni+1]

X

j
0
2[1,Ni+1]

kx� F
i,j

0 k2

= argmin
j⇤2[1,Ni+1]

g(x)
(6)

Note that even if the filter need to be pruned, Fi,j⇤ , is

not included in the calculation of the geometric median in

Equation.62, we could also achieve the same result. In this

setting, we want to find the filter

Fi,j⇤0 2 argmin
j⇤2[1,Ni+1]

g
0(x), (7)

where

g
0(x) =

X

j
0
2[1,Ni+1],j

0
6=j⇤

kx� F
i,j

0 k2. (8)

With the above Equation.6 and Equation.8, we could get
that:

g
0(x) = g(x)�

X

j
0
=j⇤

kx� F
i,j

0 k2

= g(x)� kx� Fi,j⇤k2.

(9)

2To select multiple filters, we choose several j that makes g(x) to the

smallest extent.

4343



Algorithm 1 Algorithm Description of FPGM

Input: training data: X.

1: Given: pruning rate Pi

2: Initialize: model parameter W = {W(i), 0 ≤ i ≤ L}
3: for epoch = 1; epoch ≤ epochmax; epoch++ do

4: Update the model parameter W based on X

5: for i = 1; i ≤ L; i++ do

6: Find Ni+1Pi filters that satisfy Equation 6

7: Zeroize selected filters

8: end for

9: end for

10: Obtain the compact model W⇤ from W

Output: The compact model and its parameters W⇤

then we could get

min g0(x) = min{g(x)� kx� Fi,j⇤k2}

= min g(x)�min kx� Fi,j⇤k2

= g(Fi,j⇤)�min kx� Fi,j⇤k2.

(10)

For the second component of the right side for Equa-
tion.10, when x = Fi,j⇤ , we can get:

Fi,j⇤0 = Fi,j⇤ (11)

since kx� F
i,j

0 k2 = 0

Since the geometric median is a classic robust estimator

of centrality for data in Euclidean spaces [8], the selected

filter(s), Fi,j⇤ , and left ones share the most common infor-

mation. This indicates the information of the filter(s) Fi,j⇤

could be replaced by others. After fine-tuning, the network

could easily recover its original performance since the infor-

mation of pruned filters can be represented by the remain-

ing ones. Therefore, the filter(s) Fi,j⇤ could be pruned with

negligible effect on the final result of the neural network.

The FPGM is summarized in Algorithm 1.

3.5. Theoretical and Realistic Acceleration

3.5.1 Theoretical Acceleration

Suppose the shapes of input tensor I ∈ Ni ×Hi ×Wi and

output tensor O ∈ Ni+1 × Hi+1 × Wi+1. Set the filter

pruning rate of the ith layer to Pi, then Ni+1 × Pi filters

should be pruned. After filter pruning, the dimension of

input and output feature map of the ith layer change to I
0 ∈

[Ni × (1− Pi)]×Hi ×Wi and O
0 ∈ [Ni+1 × (1− Pi)]×

Hi+1 ×Wi+1, respectively.

If setting pruning rate for the (i + 1)th layer to Pi+1,

then only (1 − Pi+1) × (1 − Pi) of the original com-

putation is needed. Finally, a compact model {W⇤(i) ∈

R
Ni+1(1�Pi)⇥Ni(1�Pi�1)⇥K⇥K} is obtained.

3.5.2 Realistic Acceleration

In the above analysis, only the FLOPs of convolution op-

erations for computation complexity comparison is consid-

ered, which is common in previous works [21, 15]. This is

because other operations such as batch normalization (BN)

and pooling are insignificant comparing to convolution op-

erations.

However, non-tensor layers (e.g., BN and pooling layers)

also need the inference time on GPU [25], and influence the

realistic acceleration. Besides, the wide gap between the

theoretical and realistic acceleration could also be restricted

by the IO delay, buffer switch, and efficiency of BLAS li-

braries. We compare the theoretical and practical accelera-

tion in Table 5.

4. Experiments

We evaluate FPGM for single-branch network (VGGNet

[31]), and multiple-branch network (ResNet) on two bench-

marks: CIFAR-10 [20] and ILSVRC-2012 [29]3. The

CIFAR-10 [20] dataset contains 60, 000 32 × 32 color im-

ages in 10 different classes, in which 50, 000 training im-

ages and 10, 000 testing images are included. ILSVRC-

2012 [29] is a large-scale dataset containing 1.28 million

training images and 50k validation images of 1,000 classes.

4.1. Experimental Settings

Training setting. On CIFAR-10, the parameter setting

is the same as [13] and the training schedule is the same

as [40]. In the ILSVRC-2012 experiments, we use the de-

fault parameter settings which is same as [12, 13]. Data ar-

gumentation strategies for ILSVRC-2012 is the same as Py-

Torch [28] official examples. We analyze the difference be-

tween starting from scratch and the pre-trained model. For

pruning the model from scratch, We use the normal training

schedule without additional fine-tuning process. For prun-

ing the pre-trained model, we reduce the learning rate to

one-tenth of the original learning rate. To conduct a fair

comparison of pruning scratch and pre-trained models, we

use the same training epochs to train/fine-tune the network.

The previous work [21] might use fewer epochs to finetune

the pruned model, but it converges too early, and its accu-

racy can not improve even with more epochs, which can be

shown in section 4.2.

Pruning setting. In the filter pruning step, we simply

prune all the weighted layers with the same pruning rate at

the same time, which is the same as [15]. Therefore, only

one hyper-parameter Pi = P is needed to balance the accel-

eration and accuracy. The pruning operation is conducted at

3As stated in [21], “comparing with AlexNet or VGG (on ILSVRC-

2012), both VGG (on CIFAR-10) and Residual networks have fewer pa-

rameters in the fully connected layers”, which makes pruning filters in

those networks challenging.

4344



Depth Method Fine-tune? Baseline acc. (%) Accelerated acc. (%) Acc. # (%) FLOPs FLOPs #(%)

20

SFP [15] 7 92.20 (±0.18) 90.83 (±0.31) 1.37 2.43E7 42.2

Ours (FPGM-only 30%) 7 92.20 (±0.18) 91.09 (±0.10) 1.11 2.43E7 42.2

Ours (FPGM-only 40%) 7 92.20 (±0.18) 90.44 (±0.20) 1.76 1.87E7 54.0

Ours (FPGM-mix 40%) 7 92.20 (±0.18) 91.99 (±0.15) 0.21 1.87E7 54.0

32

MIL [5] 7 92.33 90.74 1.59 4.70E7 31.2

SFP [15] 7 92.63 (±0.70) 92.08 (±0.08) 0.55 4.03E7 41.5

Ours (FPGM-only 30%) 7 92.63 (±0.70) 92.31 (±0.30) 0.32 4.03E7 41.5

Ours (FPGM-only 40%) 7 92.63 (±0.70) 91.93 (±0.03) 0.70 3.23E7 53.2

Ours (FPGM-mix 40%) 7 92.63 (±0.70) 92.82 (±0.03) -0.19 3.23E7 53.2

56

PFEC [21] 7 93.04 91.31 1.75 9.09E7 27.6

CP [16] 7 92.80 90.90 1.90 – 50.0

SFP [15] 7 93.59 (±0.58) 92.26 (±0.31) 1.33 5.94E7 52.6

Ours (FPGM-only 40%) 7 93.59 (±0.58) 92.93 (±0.49) 0.66 5.94E7 52.6

Ours (FPGM-mix 40%) 7 93.59 (±0.58) 92.89 (±0.32) 0.70 5.94E7 52.6

PFEC [21] 3 93.04 93.06 -0.02 9.09E7 27.6

CP [16] 3 92.80 91.80 1.00 – 50.0

Ours (FPGM-only 40%) 3 93.59 (±0.58) 93.49 (±0.13) 0.10 5.94E7 52.6

Ours (FPGM-mix 40%) 3 93.59 (±0.58) 93.26 (±0.03) 0.33 5.94E7 52.6

110

MIL [5] 7 93.63 93.44 0.19 - 34.2

PFEC [21] 7 93.53 92.94 0.61 1.55E8 38.6

SFP [15] 7 93.68 (±0.32) 93.38 (±0.30) 0.30 1.50E8 40.8

Ours (FPGM-only 40%) 7 93.68 (±0.32) 93.73 (±0.23) -0.05 1.21E8 52.3

Ours (FPGM-mix 40%) 7 93.68 (±0.32) 93.85 (±0.11) -0.17 1.21E8 52.3

PFEC [21] 3 93.53 93.30 0.20 1.55E8 38.6

NISP [39] 3 – – 0.18 – 43.8

Ours (FPGM-only 40%) 3 93.68 (±0.32) 93.74 (±0.10) -0.16 1.21E8 52.3

Table 1. Comparison of pruned ResNet on CIFAR-10. In “Fine-tune?” column, “3” and “7” indicates whether to use the pre-trained model

as initialization or not, respectively. The “Acc. #” is the accuracy drop between pruned model and the baseline model, the smaller, the

better.

the end of every training epoch. Unlike previous work [21],

sensitivity analysis is not essential in FPGM to achieve good

performances, which will be demonstrated in later sections.

Apart from FPGM only criterion, we also use a mix-

ture of FPGM and previous norm-based method [15] to

show that FPGM could serve as a supplement to previ-

ous methods. FPGM only criterion is denoted as “FPGM-

only”, the criterion combining the FPGM and norm-based

criterion is indicated as “FPGM-mix”. “FPGM-only 40%”

means 40% filters of the layer are selected with FPGM only,

while “FPGM-mix 40%” means 30% filters of the layer

are selected with FPGM, and the remaining 10% filters

are selected with norm-based criterion [15]. We compare

FPGM with previous acceleration algorithms, e.g., MIL [5],

PFEC [21], CP [16], ThiNet [25], SFP [15], NISP [39], Re-

thinking [38]. Not surprisingly, our FPGM method achieves

the state-of-the-art result.

4.2. Single-Branch Network Pruning

VGGNet on CIFAR-10. As the training setup is not

publicly available for [21], we re-implement the pruning

procedure and achieve similar results to the original pa-

per. The result of pruning pre-trained and scratch model

is shown in Table 3 and Table 4, respectively. Not surpris-

ingly, FPGM achieves better performance than [21] in both

settings.

4.3. Multiple-Branch Network Pruning

ResNet on CIFAR-10. For the CIFAR-10 dataset, we

test our FPGM on ResNet-20, 32, 56 and 110 with two dif-

ferent pruning rates: 30% and 40%.

As shown in Table 1, our FPGM achieves the state-

of-the-art performance. For example, MIL [5] without

fine-tuning accelerates ResNet-32 by 31.2% speedup ratio

with 1.59% accuracy drop, but our FPGM without fine-

tuning achieves 53.2% speedup ratio with even 0.19% accu-

racy improvement. Comparing to SFP [15], when pruning

52.6% FLOPs of ResNet-56, our FPGM has only 0.66% ac-

curacy drop, which is much less than SFP [15] (1.33%). For

pruning the pre-trained ResNet-110, our method achieves

a much higher (52.3% v.s. 38.6%) acceleration ratio with

0.16% performance increase, while PFEC [21] harms the

performance with lower acceleration ratio. These results

demonstrate that FPGM can produce a more compressed

model with comparable or even better performances.

ResNet on ILSVRC-2012. For the ILSVRC-2012

4345



Depth Method
Fine-
tune?

Baseline
top-1

acc.(%)

Accelerated
top-1

acc.(%)

Baseline
top-5

acc.(%)

Accelerated
top-5

acc.(%)

Top-1

acc. #(%)

Top-5

acc. #(%)
FLOPs#(%)

18

MIL [5] 7 69.98 66.33 89.24 86.94 3.65 2.30 34.6

SFP [15] 7 70.28 67.10 89.63 87.78 3.18 1.85 41.8

Ours (FPGM-only 30%) 7 70.28 67.78 89.63 88.01 2.50 1.62 41.8

Ours (FPGM-mix 30%) 7 70.28 67.81 89.63 88.11 2.47 1.52 41.8

Ours (FPGM-only 30%) 3 70.28 68.34 89.63 88.53 1.94 1.10 41.8

Ours (FPGM-mix 30%) 3 70.28 68.41 89.63 88.48 1.87 1.15 41.8

34

SFP [15] 7 73.92 71.83 91.62 90.33 2.09 1.29 41.1

Ours (FPGM-only 30%) 7 73.92 71.79 91.62 90.70 2.13 0.92 41.1

Ours (FPGM-mix 30%) 7 73.92 72.11 91.62 90.69 1.81 0.93 41.1

PFEC [21] 3 73.23 72.17 – – 1.06 – 24.2

Ours (FPGM-only 30%) 3 73.92 72.54 91.62 91.13 1.38 0.49 41.1

Ours (FPGM-mix 30%) 3 73.92 72.63 91.62 91.08 1.29 0.54 41.1

50

SFP [15] 7 76.15 74.61 92.87 92.06 1.54 0.81 41.8

Ours (FPGM-only 30%) 7 76.15 75.03 92.87 92.40 1.12 0.47 42.2

Ours (FPGM-mix 30%) 7 76.15 74.94 92.87 92.39 1.21 0.48 42.2

Ours (FPGM-only 40%) 7 76.15 74.13 92.87 91.94 2.02 0.93 53.5

ThiNet [25] 3 72.88 72.04 91.14 90.67 0.84 0.47 36.7

SFP [15] 3 76.15 62.14 92.87 84.60 14.01 8.27 41.8

NISP [39] 3 – – – – 0.89 – 44.0

CP [16] 3 – – 92.20 90.80 – 1.40 50.0

Ours (FPGM-only 30%) 3 76.15 75.59 92.87 92.63 0.56 0.24 42.2

Ours (FPGM-mix 30%) 3 76.15 75.50 92.87 92.63 0.65 0.21 42.2

Ours (FPGM-only 40%) 3 76.15 74.83 92.87 92.32 1.32 0.55 53.5

101
Rethinking [38] 3 77.37 75.27 – – 2.10 – 47.0

Ours (FPGM-only 30%) 3 77.37 77.32 93.56 93.56 0.05 0.00 42.2

Table 2. Comparison of pruned ResNet on ILSVRC-2012. “Fine-tune?” and ”acc. #” have the same meaning with Table 1.

Model \ Acc (%) Baseline
Pruned
w.o. FT

FT
40 epochs

FT
160 epochs

PFEC [21]
93.58

(±0.03)
77.45

(±0.03)
93.22

(±0.03 )
93.28

(±0.07)

Ours
93.58

(±0.03)
80.38

(±0.03)
93.24

(±0.01)
94.00

(±0.13)

Table 3. Pruning pre-trained VGGNet on CIFAR-10. “w.o.” means

“without” and “FT” means “fine-tuning” the pruned model.

Model SA Baseline Pruned From Scratch FLOPs#(%)

PFEC [21] Y 93.58 (±0.03) 93.31 (±0.02) 34.2

Ours Y 93.58 (±0.03) 93.54 (±0.08) 34.2

Ours N 93.58 (±0.03) 93.23 (±0.13) 35.9

Table 4. Pruning scratch VGGNet on CIFAR-10. “SA” means

“sensitivity analysis”. Without sensitivity analysis, FPGM can still

achieve comparable performances comparing to [21]; after intro-

ducing sensitivity analysis, FPGM can surpass [21].

dataset, we test our FPGM on ResNet-18, 34, 50 and 101

with pruning rates 30% and 40%. Same with [15], we do

not prune the projection shortcuts for simplification.

Table 2 shows that FPGM outperforms previous meth-

ods on ILSVRC-2012 dataset, again. For ResNet-18, pure

Model
Baseline
time (ms)

Pruned
time (ms)

Realistic
Acc.(%)

Theoretical
Acc.(%)

ResNet-18 37.05 26.77 27.7 41.8

ResNet-34 63.89 45.24 29.2 41.1

ResNet-50 134.57 83.22 38.2 53.5

ResNet-101 219.70 147.45 32.9 42.2

Table 5. Comparison on the theoretical and realistic acceleration.

Only the time consumption of the forward procedure is considered.

FPGM without fine-tuning achieves the same inference

speedup with [15], but its accuracy exceeds by 0.68%.

FPGM-only with fine-tuning could even gain 0.60% im-

provement over FPGM-only without fine-tuning, thus ex-

ceeds [15] by 1.28%. For ResNet-50, FPGM with fine-

tuning achieves more inference speedup than CP [16], but

our pruned model exceeds their model by 0.85% on the ac-

curacy. Moreover, for pruning a pre-trained ResNet-101,

FPGM reduces more than 40% FLOPs of the model without

top-5 accuracy loss and only negligible (0.05%) top-1 accu-

racy loss. In contrast, the performance degradation is 2.10%

for Rethinking [38]. Compared to the norm-based criterion,

Geometric Median (GM) explicitly utilizes the relationship

between filters, which is the main cause of its superior per-

4346



(a) Different pruning intervals (b) Different pruned FLOPs

Figure 4. Accuracy of ResNet-110 on CIFAR-10 regarding dif-

ferent hyper-parameters. Solid line and shadow denotes the mean

values and standard deviation of three experiments, respectively.

formance.

To compare the theoretical and realistic acceleration, we

measure the forward time of the pruned models on one

GTX1080 GPU with a batch size of 64. The results 4 are

shown in Table 5. As discussed in the above section, the

gap between the theoretical and realistic model may come

from the limitation of IO delay, buffer switch, and efficiency

of BLAS libraries.

4.4. Ablation Study

Influence of Pruning Interval In our experiment set-

ting, the interval of pruning equals to one, i.e., we conduct

our pruning operation at the end of every training epoch.

To explore the influence of pruning interval, we change the

pruning interval from one epoch to ten epochs. We use

the ResNet-110 under pruning rate 40% as the baseline, as

shown in Fig. 4(a). The accuracy fluctuation along with the

different pruning intervals is less than 0.3%, which means

the performance of pruning is not sensitive to this parame-

ter. Note that fine-tuning this parameter could even achieve

better performance.

Varying Pruned FLOPs We change the ratio of Pruned

FLOPs for ResNet-110 to comprehensively understand

FPGM, as shown in Fig. 4(b). When the pruned FLOPs

is 18% and 40%, the performance of the pruned model even

exceeds the baseline model without pruning, which shows

FPGM may have a regularization effect on the neural net-

work.

Influence of Distance Type We use `1-norm and cosine

distance to replace the distance function in Equation 3. We

use the ResNet-110 under pruning rate 40% as the baseline,

the accuracy of the pruned model is 93.73 ± 0.23 %. The

accuracy based on `1-norm and cosine distance is 93.87 ±
0.22 % and 93.56 ± 0.13, respectively. Using `1-norm as

the distance of filter would bring a slightly better result, but

cosine distance as distance would slightly harm the perfor-

mance of the network.

4Optimization of the addition of ResNet shortcuts and convolutional

outputs would also affect the results.

Combining FPGM with Norm-based Criterion We

analyze the effect of combining FPGM and previous norm-

based criterion. For ResNet-110 on CIFAR-10, FPGM-

mix is slightly better than FPGM-only. For ResNet-18

on ILSVRC-2012, the performances of FPGM-only and

FPGM-mix are almost the same. It seems that the norm-

based criterion and FPGM together can boost the perfor-

mance on CIFAR-10, but not on ILSVRC-2012. We believe

that this is because the two requirements for the norm-based

criterion are met on some layers of CIFAR-10 pre-trained

network, but not on that of ILSVRC-2012 pre-trained net-

work, which is shown in Figure 3.

4.5. Feature Map Visualization

We visualize the feature maps of the first layer of the

first block of ResNet-50. The feature maps with red titles

(7,23,27,46,56,58) correspond to the selected filter activa-

tion when setting the pruning rate to 10%. These selected

feature maps contain outlines of the bamboo and the panda’s

head and body, which can be replaced by remaining fea-

ture maps: (5,12,16,18,22, et al.) containing outlines of the

bamboo, and (0,4,33,34,47, et al.) containing the outline of

panda.

0 1 2 3 4 5 6 7

8 9 1 0 1 1 1 2 1 3 1 4 1 5

1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9

4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7

4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5

5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3

Figure 5. Input image (left) and visualization of feature maps

(right) of ResNet-50-conv1. Feature maps with red bounding

boxes are the channels to be pruned.

5. Conclusion and Future Work

In this paper, we elaborate on the underlying require-

ments for norm-based filter pruning criterion and point out

their limitations. To solve this, we propose a new filter prun-

ing strategy based on the geometric median, named FPGM,

to accelerate the deep CNNs. Unlike the previous norm-

based criterion, FPGM explicitly considers the mutual re-

lations between filters. Thanks to this, FPGM achieves the

state-of-the-art performance in several benchmarks. In the

future, we plan to work on how to combine FPGM with

other acceleration algorithms, e.g., matrix decomposition

and low-precision weights, to push the performance to a

higher stage.

4347



References

[1] M. A. Carreira-Perpinán and Y. Idelbayev. learning-

compression algorithms for neural net pruning. In CVPR,

2018. 1, 2

[2] H. H. Chin, A. Madry, G. L. Miller, and R. Peng. Runtime

guarantees for regression problems. In Proceedings of the

4th conference on Innovations in Theoretical Computer Sci-

ence, pages 269–282. ACM, 2013. 4

[3] M. B. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sid-

ford. Geometric median in nearly linear time. In Proceed-

ings of the forty-eighth annual ACM symposium on Theory

of Computing, pages 9–21. ACM, 2016. 4

[4] X. Dong, S. Chen, and S. Pan. Learning to prune deep

neural networks via layer-wise optimal brain surgeon. In

Advances in Neural Information Processing Systems, pages

4857–4867, 2017. 2

[5] X. Dong, J. Huang, Y. Yang, and S. Yan. More is less: A

more complicated network with less inference complexity.

In CVPR, 2017. 6, 7

[6] X. Dong and Y. Yang. Searching for a robust neural architec-

ture in four gpu hours. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2019. 1

[7] A. Dubey, M. Chatterjee, and N. Ahuja. Coreset-based neu-

ral network compression. In ECCV, 2018. 2

[8] P. T. Fletcher, S. Venkatasubramanian, and S. Joshi. Robust

statistics on riemannian manifolds via the geometric median.

In CVPR, 2008. 2, 3, 4, 5

[9] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient DNNs. In NIPS, 2016. 2

[10] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and huffman coding. In ICLR, 2015. 2

[11] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In NIPS, 2015.

1, 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 5

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, 2016. 5

[14] Y. He and S. Han. ADC: Automated deep compression

and acceleration with reinforcement learning. arXiv preprint

arXiv:1802.03494, 2018. 2

[15] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter

pruning for accelerating deep convolutional neural networks.

In IJCAI, 2018. 1, 2, 5, 6, 7

[16] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-

ing very deep neural networks. In ICCV, 2017. 2, 6, 7

[17] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. In NIPS, 2015. 2

[18] Q. Huang, K. Zhou, S. You, and U. Neumann. Learning

to prune filters in convolutional neural networks. In WACV,

2018. 2

[19] J. Kim, S. Park, and N. Kwak. Paraphrasing complex net-

work: Network compression via factor transfer. In NIPS,

2018. 2

[20] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009. 5

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient ConvNets. In ICLR, 2017. 1, 2,

5, 6, 7

[22] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and

D. Doermann. Towards optimal structured cnn pruning via

generative adversarial learning. In CVPR, 2019. 2

[23] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through network

slimming. In ICCV, 2017. 2

[24] Z. Liu, J. Xu, X. Peng, and R. Xiong. Frequency-domain dy-

namic pruning for convolutional neural networks. In NIPS,

2018. 2

[25] J.-H. Luo, J. Wu, and W. Lin. ThiNet: A filter level prun-

ing method for deep neural network compression. In ICCV,

2017. 2, 5, 6, 7

[26] Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang. Taking a

closer look at domain shift: Category-level adversaries for

semantics consistent domain adaptation. In CVPR, 2019. 1

[27] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

transfer learning. In ICLR, 2017. 2

[28] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017. 5

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. ImageNet large scale visual recognition challenge.

IJCV, 2015. 5

[30] B. W. Silverman. Density estimation for statistics and data

analysis. Routledge, 2018. 3

[31] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

5

[32] S. Son, S. Nah, and K. Mu Lee. Clustering convolutional

kernels to compress deep neural networks. In The European

Conference on Computer Vision (ECCV), 2018. 2

[33] X. Suau, L. Zappella, V. Palakkode, and N. Apostoloff. Prin-

cipal filter analysis for guided network compression. arXiv

preprint arXiv:1807.10585, 2018. 2

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1

[35] C. Tai, T. Xiao, Y. Zhang, X. Wang, et al. Convolutional neu-

ral networks with low-rank regularization. In ICLR, 2016. 2

[36] F. Tung and G. Mori. Clip-q: Deep network compression

learning by in-parallel pruning-quantization. In CVPR, 2018.

2

[37] D. Wang, L. Zhou, X. Zhang, X. Bai, and J. Zhou. Explor-

ing linear relationship in feature map subspace for convnets

compression. arXiv preprint arXiv:1803.05729, 2018. 2

[38] J. Ye, X. Lu, Z. Lin, and J. Z. Wang. Rethinking the

smaller-norm-less-informative assumption in channel prun-

ing of convolution layers. In ICLR, 2018. 2, 3, 6, 7

[39] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. NISP: Pruning networks

4348



using neuron importance score propagation. In CVPR, 2018.

1, 2, 6, 7

[40] S. Zagoruyko and N. Komodakis. Wide residual networks.

In BMVC, 2016. 5

[41] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and

Y. Wang. A systematic dnn weight pruning framework using

alternating direction method of multipliers. arXiv preprint

arXiv:1804.03294, 2018. 2

[42] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very

deep convolutional networks for classification and detection.

IEEE T-PAMI, 2016. 2

[43] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremen-

tal network quantization: Towards lossless cnns with low-

precision weights. In ICLR, 2017. 2

[44] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary

quantization. In ICLR, 2017. 2

[45] F. Zhu, L. Zhu, and Y. Yang. Sim-real joint reinforcement

transfer for 3d indoor navigation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2019. 1

[46] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu,

J. Huang, and J. Zhu. Discrimination-aware channel prun-

ing for deep neural networks. In NIPS, 2018. 2

[47] H. Zhuo, X. Qian, Y. Fu, H. Yang, and X. Xue. Scsp: Spec-

tral clustering filter pruning with soft self-adaption manners.

arXiv preprint arXiv:1806.05320, 2018. 2

4349


