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Abstract

Despite promising performance achieved by deep con-

volutional neural networks for non-occluded pedestrian de-

tection, it remains a great challenge to detect partially oc-

cluded pedestrians. Compared with non-occluded pedes-

trian examples, it is generally more difficult to distinguish

occluded pedestrian examples from backgrounds in featue

space due to the missing of occluded parts. In this paper, we

propose a discriminative feature transformation which en-

forces feature separability of pedestrian and non-pedestrian

examples to handle occlusions for pedestrian detection.

Specifically, in feature space it makes pedestrian exam-

ples approach the centroid of easily classified non-occluded

pedestrian examples and pushes non-pedestrian examples

close to the centroid of easily classified non-pedestrian ex-

amples. Such a feature transformation partially compen-

sates the missing contribution of occluded parts in feature

space, therefore improving the performance for occluded

pedestrian detection. We implement our approach in the

Fast R-CNN framework by adding one transformation net-

work branch. We validate the proposed approach on two

widely used pedestrian detection datasets: Caltech and

CityPersons. Experimental results show that our approach

achieves promising performance for both non-occluded and

occluded pedestrian detection.

1. Introduction

Pedestrian is a core module for a wide range of applica-

tions such as video surveillance, robotics and autonomous

driving. With the development of deep convolutional neu-

ral networks (CNNs), the performance of pedestrian de-

tection has been significantly improved in recent years

[4, 38, 3, 14, 39, 31, 34, 12, 40, 27]. As pointed out in

[41, 44], although reasonably good performance has been

achieved for detecting non-occluded pedestrians, existing

approaches still have difficulty in detecting partially oc-

cluded pedestrians. It is generally more challenging to de-
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Figure 1. Motivation. (a-b) Occluded and non-occluded pedes-

trian examples. Green and red boxes represent non-occluded and

occluded pedestrian examples respectively. (c) Discriminative

feature transformation. (Left) Before transformation, occluded

pedestrian examples are difficult to be distinguished from back-

grounds. The black line represents the classification boundary.

Inside the green ellipse are easy non-occluded pedestrian exam-

ples and inside the yellow ellipse are easy background examples.

(Right) After transformation, occluded pedestrian examples are

moved close to the positive reference and background examples

are pushed towards the negative reference.

tect a pedestrian when some of its parts are occluded, as

illustrated in Fig. 1(a-b). Occlusions occur frequently in

practical applications. For example, on a street pedestrians

are often occluded by other objects like poles or cars and

may also be occluded by each other when walking closely.

Therefore, it is essential for a pedestrian detector to handle
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occlusions robustly.

For full-body pedestrian detectors [11, 4, 37, 38, 3,

39, 2, 34], clutters introduced by occlusions within full-

body region proposals could degrade detection performance

on occluded pedestrians, especially heavily occluded ones.

To handle this issue, most occlusion handling approaches

[17, 15, 20, 18, 29, 42, 43, 16, 40] adopt a strategy of learn-

ing and integrating a set of part detectors. They assume that

when a pedestrian is occluded, some part detectors corre-

sponding to visible regions of the pedestrian can still work

well. This strategy exploits part correlations and/or com-

plementarity to improve detection performance on occluded

pedestrians. Alternatively, a channel-wise attention model

[41] is exploited to enhance feature channels activated by

visible parts and suppress the other feature channels. In

[12], pixel-wise attention is learned to suppress features

from background regions. These two approaches adaptively

suppress background noise without using part detectors. A

bi-box regression framework [44] handles occlusions by es-

timating the full body and visible part of a pedestrian simul-

taneously to exploit the complementarity of the two estima-

tion tasks. The above occlusion handling methods improve

the robustness to occlusions by exploiting visible parts of

pedestrians, but do not make up for the occluded parts. In

contrast, we argue that besides the visible parts, enhancing

pedestrian representations to compensate missing parts in

feature space is a feasible way to further improve occluded

pedestrian detection.

In this paper, we propose a discriminative feature trans-

formation to handle occlusions for pedestrian detection.

Compared with non-occluded pedestrians, it is usually more

difficult to distinguish occluded pedestrians from back-

grounds in feature space, since the representations of oc-

cluded pedestrians lack the information from their occluded

parts, as illustrated in the left part of Fig. 1(c). The pro-

posed feature transformation operates on the representa-

tions of pedestrian and non-pedestrian examples to better

separate them. Specifically, in feature space it makes pedes-

trian examples move close to the centroid of easy non-

occluded pedestrian examples (i.e. ones with high classifi-

cation scores) and pushes non-pedestrian examples towards

the centroid of easy non-pedestrian examples (i.e. ones ly-

ing far from the classification boundary). We refer to these

two centroids as positive and negative reference points in

our approach. Figure 1(c) illustrates the idea of the pro-

posed discriminative feature transformation.

Specifically, we adopt the Fast R-CNN framework [9]

to implement our approach. First, we learn a Fast R-CNN

detector which consists of a feature extractor and a detec-

tion branch (See Fig. 3(a) for the structure of the Fast R-

CNN detector). As in [12], we incorporate an attention

module in the feature extractor to suppress background re-

gions. The detection branch is placed on top of the feature

(a) (b) (c) (d) (e) (f)

Figure 2. Feature visualization. (a) Pedestrian proposal. (b) Atten-

tion map. (c) Features of the pedestrian proposal before applying

the attention map. (d) Features of the pedestrian proposal after

applying the attention map. The attention map suppresses fea-

tures corresponding to the background in the pedestrian proposal.

(e) Transformed features of the pedestrian proposal. (f) Centroid

of easy non-occluded pedestrian examples in feature space. The

transformed features are similar to the centroid. In our implemen-

tation, the features of a pedestrian proposal from the RoI pooling

layer have 7×7×512 dimensions. Here, we only show one typical

feature channel from the 512 feature channels.

extractor for proposal classification and bounding-box re-

gression. Then, we add a transformation branch on top of

the RoI pooling layer in the detection branch. The trans-

formation branch transforms the proposal features from the

RoI pooling layer and classifies the pedestrian proposals us-

ing the transformed features. The proposed discriminative

feature transformation implicitly compensates the missing

contribution of occluded parts by pushing occluded pedes-

trian examples close to the centroid of non-occluded pedes-

trian examples in feature space, as illustrated in Fig. 2. To

our best knowledge, this is the first work that handles occlu-

sions by compensating occluded parts in feature space using

a deep CNN. To demonstrate the effectiveness of the pro-

posed approach, we conduct experiments on the Caltech [5]

and CityPersons [39] datasets. Experimental results show

that our approach achieves promising performance for de-

tecting both non-occluded and occluded pedestrians.

2. Related work

2.1. Pedestrian detection with CNNs

In recent years, deep CNNs have been widely adopted

for pedestrian detection and achieved state-of-the-art per-

formance [34, 13, 27, 40, 12]. In [37, 38, 43], boosting is

applied to learn and combine a set of decision trees to form

a pedestrian detector using features from a deep CNN. To

achieve a trade-off between detection accuracy and speed,

a boosting algorithm [4] is proposed to learn complexity-

aware cascades by taking into the computational cost and

discriminative power of different types of features. In [1], a

cascade of deep CNNs of different model sizes is proposed

to achieve real-time pedestrian detection by first filtering a

large number of negative proposals using tiny CNNs and
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then passing the remaining proposals to large CNNs for

accurate classification. For fast and accurate detection of

multi-scale pedestrians, multi-scale CNNs [3, 13] are de-

signed by adapting the single-stage detector YOLO [22].

In [30], a task-assistant CNN is proposed to exploit both

pedestrian attributes and scene attributes to improve pedes-

trian detection performance. To cope with small pedestri-

ans, a fully convolutional neural newtork is proposed to lo-

calize topological lines (lines connecting the head and the

middle point between two feet of a pedestrian) instead of

bounding-boxes [27]. In [14, 36, 39, 32, 2], Fast R-CNN

[9] or Faster R-CNN [23] is adapted for pedestrian detec-

tion. In this paper, we adopt the Fast R-CNN framework for

occlusion handling.

2.2. Pedestrian detection aided by segmentation

In some works [14, 6, 2, 12], semantic segmentation is

exploited to improve performance for pedestrian detection.

It is demonstrated in [14] that integrating CNN features with

segmentation maps can improve pedestrian detection accu-

racy. In [6], a segmentation mask is exploited in a post-

processing manner to calibrate classification scores output

by a deep CNN so as to achieve robust pedestrian detec-

tion. A segmentation infusion network [2] is proposed to

exploit a segmentation loss to implicitly enhance CNN fea-

tures from foreground regions and suppress CNN features

from background regions. In [12], multi-scale attention

maps via supervised segmentation to suppress background

regions in the feature maps. Both [2] and [12] use box-level

annotations to generate weak ground-truth masks for train-

ing. In our approach, we also use box-level annotations to

learn an attention map to suppress backgrounds as in [12].

The attention map can better separate the positive and neg-

ative reference points used in our approach.

2.3. Occlusion handling for pedestrian detection

Occlusion handling for pedestrian detection has drawn

a great deal of attention from researchers due to its im-

portance in practical applications. Learning and integrat-

ing a set of part detectors [35, 25, 8, 7, 17, 15, 20, 18,

42, 29, 43, 16, 40] is a widely adopted solution to han-

dle a variety of occlusions. The parts used in these ap-

proaches are usually manually designed, which may not be

optimal. For approaches [15, 29, 42] which use a large

number of independently learned part detectors, the com-

putational cost of applying the learned part detectors could

be a bottleneck for real-time pedestrian detection. A multi-

label learning approach is proposed in [43] to learn part de-

tectors jointly so as to exploit part correlations as well as

reduce the computational cost. In [18, 16, 40], part detec-

tors are learned and integrated in a single deep CNN with

the back-end shared by all the part detectors, which can

greatly reduce the detection time. Several part detector in-

tegration approaches are explored and compared in [42]. In

[33], a pedestrian is modeled as a rectangular template of

blocks and occlusion reasoning is performed by estimating

the visibility statuses of these blocks. Several approaches

[19, 28, 21, 34] are specially designed to handle occlusion

situations in which multiple pedestrians occlude each other.

Particularly, the recent work [34] adopts a repulsion loss

to train a deep CNN to improve pedestrian localization ac-

curacy in crowds and achieves promising performance. A

bi-box regression framework [44] handles occlusions by es-

timating the full body and visible part of a pedestrian simul-

taneously to exploit the complementarity of the two estima-

tion tasks. In [41, 12], attention mechanisms are adopted to

suppress background regions and/or enhance foreground re-

gions in feature space for occlusion handling. Deformable

part models [10, 45] can also be applied to handle occlu-

sions for pedestrian detection. Considering the importance

of occlusion handling, a large-scale dataset, CrowdHuman

[24], is proposed for human detection in crowds.

3. Proposed approach

3.1. Overview

Deep CNNs have achieved promising performance for

non-occluded pedestrian detection [34, 12, 13, 40, 27].

However, their performance for occluded pedestrian detec-

tion is still far from being satisfactory. To improve the per-

formance of a deep CNN for occluded pedestrian detec-

tion, we propose to learn a discriminative transformation

in the deep CNN which transforms the features of occluded

pedestrians and background regions properly such that they

can be better distinguished. We adopt the Fast R-CNN [9]

framework to implement our approach. The overview of

our approach is shown in Fig. 3. The network used in our

approach consists of three components: feature extractor,

detection branch and transformation branch. The feature

extractor and detection branch form a conventional Fast R-

CNN detector. The Fast R-CNN detector takes an image

and a set of pedestrian proposals as input and performs clas-

sification and bounding-box regression for the pedestrian

proposals. This branch transforms the features of pedes-

trian proposals from the ROI pooling layer to improve clas-

sification. At inference stage, we use the detection branch

for localization and the transformation branch for classifi-

cation.

3.2. Fast R-CNN detector

We learn a Fast R-CNN detector for pedestrian detection

as well as feature extraction. We use the convolution lay-

ers from the VGG-16 network [26] and an attention module

[12] to form the feature extractor in our Fast R-CNN de-

tector. The detection branch is placed on top of the feature

extractor for classifying pedestrian proposals and refining
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(a) Network structure

(b) Attention module (c) Transform module

Figure 3. Overview of our approach.

their locations.

The attention module takes the feature maps from the

last convolution layer as input and outputs an attention map

which has the same size as the feature maps. The value at

a location of the attention map represents the probability of

the image region corresponding to the location belonging

to a pedestrian. The attention map is multiplied element-

wisely to the feature maps so as to suppress features from

background regions as illustrated in Fig. 2(a-d). The struc-

ture of the attention module is shown in Fig. 3(b). It consists

of three 5x5 convolution layers each with 128 channels,

one 1x1 convolution layer with 1 channel and one sigmoid

layer. As pixel-level annotations are usually not available in

pedestrian detection datasets, we use bounding-box anno-

tations to generate coarse ground-truth segmentation maps

for learning the attention module. For each training im-

age, pixels inside ground-truth pedestrian bounding-boxes

are labeled as 1 and the others are labeled as 0. The ground-

truth segmentation map is scaled to have the same size as

the feature maps from the layer Conv5. Let S̄i and Si be the

ground-truth segmentation map and the predicted attention

map (the output from the Sigmoid layer) for the i-th training

image, respectively. We use the following Euclidean loss to

learn the attention module

Lattn =
1

N

N
∑

i=1

||S̄i − Si||
2
2, (1)

where N is the number of training images.

As in [9], we use cross-entropy and smooth L1 losses

to learn the pedestrian proposal classifier and bounding-

box regressor in the detection branch, respectively. Let

Pi = (P x
i , P

y
i , P

w
i , P

h
i ) be a pedestrian proposal, where P x

i

and P y
i specify the coordinates of the center of Pi in the

image, and Pw
i and P h

i are the width and height of Pi, re-

spectively. The pedestrian proposal Pi is associated with a

label ci ∈ {0, 1}. Pi is considered as a positive proposal

(ci = 1) if there exists at least one ground-truth pedestrian

example whose intersection over union (IOU) with Pi is not

less than 0.5. Otherwise, it is considered as a negative pro-

posal (ci = 0). Let pi = (p0i , p
1
i ) be the output of the pedes-

trian proposal classifier, where p1i and p0i = 1−p1i represent

the probabilities of the pedestrian proposal Pi containing

and not containing a pedestrian respectively. We learn the

pedestrian proposal classifier with the following loss

Lcls1 =
1

M

M
∑

i=1

− log(p∗i ), (2)

where M is the number of pedestrian proposals, and p∗i =
p0
i if ci = 0 and p∗i = p1

i otherwise. The bounding-box

regressor outputs offsets fi = (f x
i , f

y
i , f

w
i , f

h
i ) to refine the

location of Pi by

F x = P x + Pwf x, F y = P y + P hf y,

Fw = Pw exp(fw), F h = P h exp(f h).
(3)

Let f̄i = (f̄ x
i , f̄

y
i , f̄

w
i , f̄

h
i ) be the ground-truth regression tar-

gets. We learn the bounding-box regressor with the follow-

ing loss

Lreg =
1

M

M
∑

i=1

ci
∑

∗∈{x,y,w,h}

SmoothL1(f̄
∗
i − f∗

i ), (4)

where for s ∈ R

SmoothL1(s) =

{

0.5s2 if |s| < 1;

|s| − 0.5 otherwise.
(5)

We learn the Fast R-CNN detector by minimizing the

following weighted loss

L1 = Lcls1 + Lreg + λ1Lattn, (6)
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where λ1 is set to 0.000005 empirically. We refer readers to

[9] for more details on Fast R-CNN.

3.3. Discriminative feature transformation

After learning the Fast R-CNN detector, we use fea-

tures from the RoI pooling layer to represent pedestrian

proposals. Generally, it is more difficult to distinguish

occluded pedestrians than non-occluded ones from back-

grounds in feature space since visual details of occluded

parts are missing. To better classify occluded pedestrians

and backgrounds, we add one transformation branch to the

Fast R-CNN detector as shown in Fig. 3(a). This branch is

comprised by a transform module whose structure is shown

in Fig. 3(c) and a classifier which classifies pedestrian pro-

posals using their transformed features.

Specifically, we want to learn a transformation which

makes occluded pedestrians approach easy non-occluded

pedestrians and hard negative proposals approach easy neg-

ative proposals in feature space. To achieve this, we first

generate two reference points R+ and R− in feature space,

one for positive proposals and the other for negative pro-

posals. Let Hi be the features of the pedestrian proposal Pi

from the RoI pooling layer. In our implementation, Hi is

a K = 7 × 7 × 512 dimensional feature vector. Let oi be

the maximum IOU of Pi with ground-truth pedestrian ex-

amples in the same image and vi be the visibility ratio of

the pedestrian example with which Pi has the highest IOU.

We collect a set of positive proposals which have high clas-

sification scores from the Fast R-CNN detector and overlap

largely with at least one non-occluded pedestrian example.

Let H+ be a set consisting of the features of these positive

proposals, H+ = {Hi|p
1
i ≥ s1, vi = 1.0 and oi ≥ τ1},

where the thresholds s1 and τ1 are set to 0.9 and 0.7, re-

spectively. We define R+ by

R+ =
1

|H+|

∑

H∈H+

H, (7)

which is the centroid of the feature points in H+. Similarly,

we collect a set of features from easy negative proposals

which do not have a large IOU with any ground-truth pedes-

trian example, H− = {Hi|p
1
i < s2 and oi < τ2}, where the

thresholds s2 and τ2 are set to 0.01 and 0.1, respectively.

The reference point R− is defined by

R− =
1

|H−|

∑

H∈H−

H, (8)

which is the centroid of the feature points in H−. Let HT
i

be the transformed features of Hi. We learn the transform

module with the following loss

Ltrans =
1

M

M
∑

i=1

cid
+

i + (1− ci)d
−
i , (9)

with

d+i =

K
∑

k=1

SmoothL1(H
T
i (k)−R+(k)) (10)

and

d−i =

K
∑

k=1

SmoothL1(H
T
i (k)−R−(k)), (11)

where HT
i (k) is the k-th feature in HT

i . The transformation

loss in Eq. (9) enables the features of occluded pedestrians

to approach the reference point R+ generated from non-

occluded pedestrians during training. It implicitly compen-

sates the missing information of occluded parts in feature

space as illustrated in Fig. 2. The reference point R− at-

tracts the negative proposals to move away from the positive

ones to better separate them.

We learn the classifier in the transformation branch via a

cross-entropy loss

Lcls2 =
1

M

M
∑

i=1

− log(q∗i ), (12)

where qi = (q0i , q
1
i ) is the probabilities output from the clas-

sifier, and q∗i = q0
i if ci = 0 and q∗i = q1

i otherwise. The

loss function for the transformation branch is defined by

L2 = Lcls2 + λ2Ltrans, (13)

where λ2 is set to 0.1 empirically.

3.4. Training

We train the network in two steps. In the first step, we

train the Fast R-CNN detector. The network weights of

the Fast R-CNN detector are initialized with the pre-trained

VGG-16 network [26] and then updated by minimizing the

loss function in Eq. (6). In the second step, we first use

the feature extractor in the Fast R-CNN detector to generate

postive and negative centroids and then learn the weights of

the transformation branch by minimizing the loss function

in Eq. (13). The weights of the Fast R-CNN detector are

fixed in this stage.

4. Experiments

To demonstrate the effectiveness of our approach, we

conduct experiments on two commonly used pedestrian de-

tection datasets: Caltech [5] and CityPersons [39]. Be-

sides the proposed discriminative transformation (DT), we

also implement two variants in which only positive exam-

ples and negative examples are respectively involved in the

transformation loss in Eq. (9) for training the transforma-

tion branch. We refer to these two variants as PT and NT in

the following sections.
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4.1. Experiments on Caltech

The Caltech dataset [5] contains 11 sets of videos col-

lected by a camera mounted on a vehicle driving on urban

streets. These videos are divided into two groups: video sets

S0-S5 are used for training and video sets S6-S10 are used

for testing. In this dataset, there are around 2,300 unique

pedestrians and over 70% unique pedestrians are occluded

in at least one frame. Some evaluation settings are used in

this dataset for evaluating different aspects of pedestrian de-

tection approaches. As our approach is for occlusion han-

dling, we evaluate it in three settings: Reasonable, Partial

and Heavy. In the Reasonable setting, only pedestrian ex-

amples which have a height of at least 50 pixels and are not

occluded more than 35% are used for evaluation. This set-

ting is most widely used for evaluating pedestrian detection

approaches. In the Partial and Heavy settings, pedestrians

used for evaluation also have a height of at least 50 pix-

els but are occluded with different ranges. The occlusion

range in the Partial setting is 1-35 percent, while the oc-

clusion range in the Heavy setting is 36-80 percent. The

Heavy setting is most difficult among the three settings. In

each evaluation setting, the detection performance is sum-

marized by a log-average miss rate which is calculated by

averaging miss rates at 9 false positives per image (FPPI)

points evenly spaced in [10−2, 100] in log space.

4.1.1 Implementation

We sample training images at an interval of 3 frames from

the training video sets S0-S5, resulting in a 10× training

set, as commonly done in [38, 39, 32, 43, 2, 41, 44, 12, 27].

Following [43, 44], we select ground-truth pedestrian ex-

amples which are at least 50 pixels tall and are occluded

less than 70% as positive examples. For pedestrian proposal

generation, we train a RPN [38] on the training set. ∼1000
pedestrian proposals per image are collected for training

and ∼400 pedestrian proposals per image are collected for

testing. We train our network with SGD for 90,000 iterates.

The learning rate is set to 0.0005 initially and decreases by

a factor of 10 after 45,000 iterations. We set the batch size

to be 160 with foreground-background ratio of 1 : 3.

4.1.2 Results

Table 1 shows the results of our approach and some base-

line methods. FRCN and FRCN+A are two Fast R-CNN

detectors without and with the attention module, respec-

tively. FRCN+A outperforms FRCN by 0.7%, 1.1% and

4.6% in the Reasonable, Partial and Heavy settings, re-

spectively. The improvement in the Heavy setting is sig-

nificant, which demonstrates the effectiveness of the at-

tention module for suppressing background clutters within

heavily occluded pedestrians. From the comparison be-

Method (%) Reasonable Partial Heavy

FRCN 9.5 16.2 44.3

FRCN+A 8.8 15.1 39.7

FRCN+A+NT 8.5 14.9 39.2

FRCN+A+PT 8.4 13.1 38.7

FRCN+A+TB 9.1 14.4 39.1

FRCN+A+DT 8.0 12.2 37.9

Table 1. Results of different approaches on Caltech. Numbers in

the table refer to log-average miss rates (lower is better).

τ1/τ2 0 0.1 0.2
0.7 8.3/11.7/38.4 7.9/12.2/37.9 7.9/12.3/38.1
0.85 8.4/12.8/38.3 8.4/12.7/38.4 8.2/11.8/38.1
1.0 8.2/12.6/38.4 8.2/12.0/38.0 8.3/12.0/38.0

Table 2. Results with different τ1 and τ2 on Caltech. s1 = 0.9 and

s2 = 0.01 are used in these experiments.

s1/s2 0.01 0.1 0.2
0.7 8.3/12.9/38.3 8.5/12.1/37.6 7.8/12.5/38.4
0.8 8.2/12.6/38.4 8.3/12.2/37.5 8.4/12.9/38.3
0.9 8.0/12.2/37.9 8.3/12.8/37.8 8.2/11.8/37.6

Table 3. Results with different s1 and s2 on Caltech. τ1 = 0.7 and

τ2 = 0.1 are used in these experiments.

tween FRCN+A and FRCN+A+NT, we can see that NT

contributes little to FRCN+A, indicating that learning the

transformation branch to only transform features of nega-

tive examples does not help much. FRCN+A+PT improves

the performance over FRCN+A by 0.4%, 2.0% and 1.0% in

the three settings, respectively. The improvements on Par-

tial and Heavy are more significant, showing that the miss-

ing information of occluded parts compensated by the trans-

formation branch is helpful for better distinguishing oc-

cluded pedestrians from background clutters. DT achieves

the most significant improvements among PT, NT and DT.

FRCN+A+DT outperforms FRCN+A by 0.8%, 2.9% and

1.8% in the three settings, respectively. DT compensates the

missing information of occluded parts for occluded pedes-

trian examples and forces negative examples to move away

from positive examples in feature space, therefore achieving

the best performance. We also implement a baseline detec-

tor, FRCN+A+TB, which adds the transform branch (TB)

to FRCN+A without using the feature transformation loss,

i.e. λ2 is set to 0 in Eq. (13). FRCN+A+TB has the same

network structure as FRCN+A+DT but only improves the

performance marginally over FRCN+A, indicating that the

proposed discriminative transformation is mainly responsi-

ble for the performance improvement rather than a classi-

fication head with more layers. The transformation loss

(Eq. 9) serves as regularization to reduce over-fitting and

guides the model training to converge to a better solution.
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Method (%) Occ Reason Partial Heavy

CompACT-Deep [4] 11.7 25.1 65.8

SA-FastRCNN [11] 9.7 24.8 64.4

MS-CNN [3] 10.0 19.2 59.9

RPN+BF [38] 9.6 24.2 74.4

F-DNN [6] 8.6 15.4 55.1

PCN [32] 8.4 16.1 55.8

F-DNN+SS [6] 8.2 15.1 53.8

TLL(MRF) [27] 8.0 − −
SDS-RCNN [2] 7.4 14.9 58.5

DeepParts [29] X 11.9 19.9 60.4

JL-TopS [43] X 10 16.6 49.2

FRCN+ATT-vbb [41] X 10.3 − 45.2

PDOE+RPN [44] X 7.6 13.3 44.4

GDFL [12] X 7.8 − 43.2

FRCN+A+DT (Ours) X 8.0 12.2 37.9

Table 4. Comparison with the state-of-the-art approaches on Cal-

tech. Numbers in the table refer to log-average miss rates (lower

is better). The Occ column indicates whether an approach is de-

signed for handling occlusions.

Next, we analyze the effect of different positive and neg-

ative centroids on the proposed approach, FRCN+A+DT.

We conduct experiments with different settings of the over-

lap thresholds τ1/τ2 and score thresholds s1/s2 respec-

tively for determining the positive and negative centroids.

Table 2 shows the results with different τ1/τ2. The miss

rates in the Reasonable/Partial/Heavy settings are in the

ranges 8.0 ± 0.4/12.2 ± 0.6/37.9 ± 0.5. Table 3 shows

the results with different s1/s2. The miss rates are 8.0 ±
0.5/12.2±0.7/37.9±0.5 in the three settings. Overall, the

performance of our approach does not fluctuate much with

different choices of τ1/τ2 and s1/s2 as shown in Tables 2

and 3. We also conduct an experiment in which the positive

centroid is determined by all positive examples (i.e. H+ =
{Hi|oi ≥ 0.5}) and the negative centroid is determined

by all negative examples (i.e. H− = {Hi|oi < 0.5}).

The performance drops by 0.5%/1.3%/0.9% in the Reason-

able/Partial/Heavy settings, indicating that the centroid of

easy non-occluded pedestrian examples and the centroid of

easy negative examples are a better choice.

We compare our approach with the state-of-the-art ap-

proaches using deep CNNs including DeepParts [29],

CompACT-Deep [4], SA-FastRCNN [11], MS-CNN [3],

RPN+BF [38], F-DNN+SS [6], PCN [32], JL-TopS [43],

SDS-RCNN [2], FRCN+ATT-vbb [41], PDOE+RPN [44],

TLL(MRF) [27], and GDFL [12]. The results are shown

in Table 4. In the Reasonable setting, our approach,

FRCN+A+DT, achieves a miss rate of 8.0% in the Rea-

sonable setting, which is comparable to the state-of-the-art

performance of 7.4%. In the Partial and Heavy settings,

Figure 4. Detection examples without and with feature transfor-

mation.

FRCN+A+DT achieves the best performance of 12.2% and

37.9% respectively. In the Partial setting, FRCN+A+DT

outperforms the most competitive approach, PDOE+RPN,

by 1.1%. In the Heavy setting, FRCN+A+DT outperforms

the most competitive approach, GDFL, by 5.3%. These re-

sults validate the effectiveness of our approach for occlusion

handling. Figure 4 shows two detection examples of the

baseline FRCN+A and our approach. The proposed feature

transform help improve the detection scores of the partially

occluded pedestrian examples.

4.2. Experiments on CityPersons

CityPersons [39] is a relatively new pedestrian detection

dataset. This dataset is more diverse and difficult than Cal-

tech since it covers more countries, cities and seasons and

has a higher pedestrian density. This dataset is split into

three sets, Train, Val and Test which contain 2975, 500

and 1575 images respectively. Persons in this dataset are

classified into six categories: ignored region, pedestrian,

rider, group of people, sitting person and other. Results

are reported for four setups: Reasonable, Small, Heavy and

All. We evaluate the proposed approach in the Reasonable

and Heavy setups which are defined according to occlusion

ranges. In the Reasonable setup, pedestrian examples which

are at least 50 pixels tall and are not occluded more than

35% are used for evaluation. In the Heavy setup, the height

and visibility ranges of pedestrian examples are [50,∞] and

[0.2, 0.65] respectively. As on the Caltech dataset, detection

performance is summarized by the log-average miss rate.

4.2.1 Implementation

We learn our network on the Train set and evaluate it on the

Val set as commonly done in [39, 27, 34, 13, 41, 40, 44].

As in [39], we only use pedestrian examples as positive

examples and ignore other person examples. Specifically,

ground-truth pedestrian examples which are at least 50 pix-

els tall and are occluded less than 70% are used for training,

as in [43, 44]. We enlarge input images by a factor of 1.3

for training and testing. We also train a RPN on the Train

set to generate ∼1, 500 pedestrian proposals per image for
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Method (%) Occlusion Scale Backbone Reasonable Heavy Partial Bare

Adapted FasterRCNN [39]
×1 VGG-16 15.4 − − −
×1.3 VGG-16 12.8 − − −

TLL(MRF) [27] ×1 ResNet-50 14.4 52.0 15.9 9.2

ALFNet [13] ×1 ResNet-50 12.0 51.9 11.4 8.4

FasterRCNN+ATT-part [41] X ×1 VGG-16 15.9 56.7 − −

RepLoss [34] X
×1 ResNet-50 13.2 56.9 16.8 7.6

×1.3 ResNet-50 11.6 55.3 14.8 7.0

OR-CNN [40] X
×1 VGG-16 12.8 55.7 15.3 6.7

×1.3 VGG-16 11.0 51.3 13.7 5.9

PDOE+RPN [44] X ×1.3 VGG-16 11.2 44.2 − −

FRCN+A+DT (Ours) X ×1.3 VGG-16 11.1 44.3 11.2 6.9

Table 5. Comparison with the state-of-the-art approaches on CityPersons. Numbers in the table refer to log-average miss rates (lower is

better). The Occlusion column indicates whether the approach is designed for occlusion handling. The Scale column shows the scale factor

the approach uses to enlarge input images. The Backbone column shows the network structure used in the approach.

Method (%) Reasonable Heavy

FRCN 12.8 49.2

FRCN+A 12.2 47.4

FRCN+A+NT 11.9 47.2

FRCN+A+PT 11.6 45.8

FRCN+A+TB 12.0 46.6

FRCN+A+DT 11.1 44.3

Table 6. Results of different approaches on CityPersons. Numbers

in the table refer to log-average miss rates (lower is better).

training and ∼750 pedestrian proposals per image for test-

ing. Stochastic gradient descent iterates 90,000 times. The

intial learning rate is set to 0.001 and decreases by a factor

of 0.1 after 45,000 iterations. We set the batch size to be

256 with foreground-background ratio of 1 : 3.

4.2.2 Results

Table 6 shows the results of our approach and some baseline

methods on the CityPersons dataset. FRCN+A outperforms

FRCN by 0.6% and 1.8% in the Reaonable and heavy se-

tups respectively, showing the effectiveness of the attention

model for background suppression. Similar to the results

on the Caltech dataset, the proposed discriminative trans-

formation, DT, achieves the best performance among the

three implementations (NT, PT and DT). FRCN+A+DT im-

proves over FRCN+A by 1.1% and 3.1% respectively in the

Reasonable and Heavy setups. FRCN+A+DT also outper-

forms FRCN+A+TB by 0.9% and 2.3% respectively in the

two setups. These results demonstrate the effectiveness of

the proposed approach for both non-occluded and occluded

pedestrian detection.

We compare our approach with the state-of-the-art ap-

proaches including Adapted FasterRCNN [39], TLL(MRF)

[27], ALFNet [13], FasterRCNN+ATT-part [41], RepLoss

[34], OR-CNN [40] and PDOE+RPN [44] in Table 5.

Among these approaches, FasterRCNN+ATT-part, Re-

pLoss, OR-CNN and PDOE+RPN are designed for occlu-

sion handling. As in [34], we also report the results in

Partial and Bare setups. In the Partial setup, the height

and visibility ranges of pedestrian examples are [50,∞]
and (0.65, 0.9] respectively. In the Partial setup, the height

and visibility ranges of pedestrian examples are [50,∞] and

(0.9, 1] respectively. In the Reasonable setup, our approach

achieves a miss rate of 11.1% which is comparable to the

state-of-the-art performance of 11.0%. In the Heavy setup,

our approach has comparable performance to the most com-

petitive occlusion handling approach, PDOE+RPN. Our ap-

proach and PDOE+RPN adopt different strategies for oc-

clusion handling. PDOE+RPN focus on how to exploit vis-

ible parts for occlusion handling, while our approach learns

a feature transformation to better separate pedestrian and

non-pedestrian proposals.

5. Conclusion

In this paper, we present a discriminative feature trans-

formation to handle occlusions for pedestrian detection.

It forces pedestrian examples to approach the centroid of

easy non-occluded pedestrian examples and non-occluded

pedestrian examples to approach the centroid of easy non-

pedestrian examples in feature space. For occluded pedes-

trian examples, this transformation compensates the miss-

ing information of occluded parts in feature space to some

extent, which is a novel way to cope with occluded pedes-

trian detection. We implement the proposed approach in a

Fast R-CNN framework and validate its effectiveness on the

Caltech and CityPersons datasets.
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