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Abstract

Persons are often occluded by various obstacles in per-

son retrieval scenarios. Previous person re-identification

(re-id) methods, either overlook this issue or resolve it

based on an extreme assumption. To alleviate the occlusion

problem, we propose to detect the occluded regions, and

explicitly exclude those regions during feature generation

and matching. In this paper, we introduce a novel method

named Pose-Guided Feature Alignment (PGFA), exploit-

ing pose landmarks to disentangle the useful information

from the occlusion noise. During the feature constructing

stage, our method utilizes human landmarks to generate at-

tention maps. The generated attention maps indicate if a

specific body part is occluded and guide our model to attend

to the non-occluded regions. During matching, we explic-

itly partition the global feature into parts and use the pose

landmarks to indicate which partial features belonging to

the target person. Only the visible regions are utilized for

the retrieval. Besides, we construct a large-scale dataset

for the Occluded Person Re-ID problem, namely Occluded-

DukeMTMC, which is by far the largest dataset for the Oc-

clusion Person Re-ID. Extensive experiments are conducted

on our constructed occluded re-id dataset, two partial re-

id datasets, and two commonly used holistic re-id datasets.

Our method largely outperforms existing person re-id meth-

ods on three occlusion datasets, while remains top perfor-

mance on two holistic datasets.

1. Introduction

Person re-identification (re-id), who aims at retrieving

a probe person image from a collection of images, has

achieved a great progress in recent years [31, 13, 32, 38, 24,

42, 16, 4]. Generally, previous person re-id approaches ex-

tract features from whole images and utilize those features

as visual representations to match gallery candidates. To

construct an effective representation, previous methods ei-
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Figure 1: Some failure retrieval examples of previous re-id ap-

proaches [32] when the target person is occluded. Green and red

rectangles indicate correct and error retrieval results, respectively.

When an occlusion exists, previous methods fail to achieve a sat-

isfactory result since it does not suppress the noise introduced by

the occlusions.

ther directly utilize global person features [31, 13] or com-

bine local features of body parts [32, 38, 24, 42].

However, the methods proposed in those previous

works [31, 13, 32, 38, 24, 42] did not consider a situation

that the target person is occluded by various obstructions

like cars, trees, or other people. When a person is partially

occluded, the representation extracted from the whole im-

age might involve distractive information. It might lead to

wrong retrieval results if a model does not differentiate the

obstruction region and the person region. For instance, as il-

lustrated in Fig.1, given a query image of a person occluded

by a white car, previous methods may retrieve wrong person

images with a similar car by mistake.

Recently, some works [45, 11, 12] attempt to solve the

occlusion issue. As shown in the first row of Fig. 2, in

their Partial Re-ID problem setting, the probe images are

occluded by obstructions while the gallery images are still

holistic. To depress the unexpected information introduced

by the occlusion, they first manually crop the occluded tar-

get person in probe images and then use the non-occluded
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parts as the new query. However, there are two limitations in

the Partial Re-ID problem setting: (1) They require a strong

assumption that all gallery images are holistic, which does

not hold all the time. (2) They need a manually cropping

operation, which is inefficient considering the huge size of

gallery set if the gallery set contains occluded images too.

In addition, the manual process might introduce human bias

to the cropped results.

Different from the Partial Re-ID problem, we propose

the Occluded Re-ID problem, in which both probe and

gallery images contain occlusions. All probe images are

occluded in the Occluded Re-ID problem, making at least

one occluded image exist when retrieving. In addition to

the holistic images, gallery set also contains occluded im-

ages, which is consistent with the real world scenarios. Be-

sides, the Occluded Re-ID problem does not employ man-

ually cropping process considering efficiency and avoiding

human bias. The difference between the Partial Re-ID prob-

lem and our Occluded Re-ID problem is shown in Fig. 2.

To facilitate the research on the Occluded Re-ID prob-

lem, we introduce a large-scale dataset named Occluded-

DukeMTMC, derived from DukeMTMC-reID [46, 28]. In

the new dataset, all query images are occluded by large va-

riety of occlusion (e.g., trees, cars, other persons), while

gallery images contain both holistic and occluded images.

Details about Occluded-DukeMTMC will be introduced in

Section 3.

To tackle this more challenging Occluded Re-ID prob-

lem, we propose two strategies to disentangle the informa-

tion of visible regions from occluded regions: (1) In the

feature constructing stage, the model should pay more at-

tention to the non-occluded parts. (2) In the matching stage,

we explicitly partition the global features into parts and

only consider the shared visible region between probe and

gallery images.

Motivated by these two strategies, we propose to utilize

pose landmarks as guidance to align extracted features be-

tween gallery images and probe images, and name it “Pose-

Guided Feature Alignment (PGFA)”. Compared with pre-

vious works, our proposed PGFA has several advantages.

First, unlike [45, 11, 12], PGFA does not need any manu-

ally cropping operation and is more efficient. Second, the

meta information of the detected landmarks can explicitly

guide the model to focus on the non-occluded person re-

gions and filter out the information of occluded regions in

both feature constructing and matching stage.

Experiments on the Occluded-DukeMTMC dataset show

that our method outperforms previous works [32, 11, 12] by

a large margin. On two Partial Re-ID datasets and two com-

monly used holistic benchmarks, our approach still achieves

a competitive performance. The main contributions of this

paper are summarized as follows:

• We introduce a challenging large-scale occluded re-id

Probe

Probe

re-id 

system

Gallery

Gallery

Both occluded and holistic images

Only holistic images

The Occluded Re-ID Problem

The Partial Re-ID Problem

Manually Cropping

re-id 

system

Figure 2: Previous Partial Re-ID problem (1st row) and our Oc-

cluded Re-ID problem (2nd row). The Partial Re-ID problem as-

sumes that probe images are occluded and all gallery images are

holistic. In this setting, each probe image is manually cropped,

and its visible part is used to query. The Occluded Re-ID problem

assumes both the probe and gallery contain occlusions. Besides,

the new setting does not employ manually cropping process.

dataset, Occluded-DukeMTMC, which is by far the largest

dataset focusing on Occluded Person Re-ID.

• We propose PGFA, an effective method for the Oc-

cluded Re-ID problem. PGFA takes advantages of the infor-

mation from detected human landmarks, and deploy them as

guidance to attend to non-occluded region during represen-

tation construction stage and align partial representations

during matching stage.

2. Related Work

2.1. Deep Person Re­ID

Recent years, deep learning methods [39, 34, 13, 27, 3,

25, 7, 6, 36, 21] for person re-id show significant superi-

ority on retrieval accuracy. Recent works [15, 42, 24, 32]

utilize deeply part-based features learning method and fur-

ther improve the state-of-the-art performance on the holistic

person re-id problem. For example, Kalayeh et al. [15] ex-

tract several region parts with human parsing methods, learn

the feature for each piece, and assemble final discriminative

representations with part-level features. Sun et al. [32] uni-

formly partition the feature map and learn each part-level

feature by multiple classifiers. Zhao et al. [42] and Liu et

al. [24] extract part-level features by attention-based meth-

ods. All these approaches [15, 42, 24, 32] achieve better

performance by assembling part-level features.

However, as shown in Fig. 1, when facing the aforemen-

tioned Occluded Re-ID problem, those previous works mix

information of the target person and obstacles into the final

feature representation and usually fail in real scenarios. A

recent work [49] make attempts to solve occlusion problems

in person re-id. However, they ignore the situation that both

query and gallery contain occlusions.
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Dataset
Training Set Gallery Query

#ID #Image #ID #Image #ID #Image

Occ-DukeMTMC 702 15,618 1,110 17,661 519 2,210

Partial-REID [45] - - 60 300 60 300

Partial-iLIDS [44] - - 119 119 119 119

Table 1: The scale of three person re-id datasets focusing on oc-

clusion problems. Two (Partial-REID [45] and Partial-iLIDS [44]

) for Partial Re-ID, one (Occ-DukeMTMC) for Occluded Re-ID.

2.2. Partial Person Re­ID

Occlusion occurs in real-world scenarios where only par-

tial regions of the target person are available for person re-

id. Several partial re-id methods have been proposed to

tackle the Partial Re-ID problem. Zheng et al. [45] pro-

pose a local patch-level matching model called Ambiguity-

sensitive Matching Classifier (AMC) and introduce a global

part-based matching model called Sliding Window Match-

ing (SWM). He et al. [11] propose an alignment-free

method called Deep Spatial Feature Reconstruction (DSR).

DSR sparsely reconstructs the spatial probe maps from spa-

tial maps of gallery images which are faster than the SWM

method. He et al. [12] further utilize a dictionary learning-

based Spatial Feature Reconstruction (SFR) to match dif-

ferent sized feature maps for the Partial Re-ID problem.

In [45, 11, 12], each probe image is occluded while the

gallery images are holistic. To deal with the occlusion,

[45, 11, 12] manually crop probe images and utilize the

visible parts as new probe images. The manual cropping

is not efficient and might introduce human bias to jeopar-

dize the final performance. Different from these works, our

work considers a more general situation that both probe and

gallery images have occlusions on target person, and does

not need a manually cropping process in it.

2.3. Pose­guided Person Re­ID

Pose landmarks indicate the body position of persons

and are conductive to various vision problems. Recently,

some person re-id methods [9, 33, 29, 23, 30] employ pose

information to facilitate person re-id models. These meth-

ods utilize pose landmarks to generate person images [9, 23]

or align body parts [30, 29]. These pose-driven methods fo-

cus on tackling the large variations introduced by human

pose while our method uses pose information to tackle the

occlusion problems. Besides, we utilize pose landmarks

to encode the position information of body parts and use

shared-region part-to-part comparison between query and

gallery images. Based on the experimental results, all of

those specific design in our method are proved effective

and efficient to solve the Occluded Person Re-ID prob-

lem. Zhang et al. [41] also utilize the pose-guided atten-

tion mechanism to tackle the occlusion problems. However,

they focus on the detection task while ours focuses on the

retrieval problem (re-id).

3. The Occluded-DukeMTMC Dataset

To facilitate the research on the Occluded Person Re-

ID problem, we introduce Occluded-DukeMTMC, a large-

scale occluded person re-identification dataset, derived

from the DukeMTMC-reID dataset [46, 28].

3.1. Properties of Occluded­DukeMTMC

There are a few properties to make Occluded-

DukeMTMC appealing. First, it is the largest occluded per-

son re-id dataset to date. The training set of Occluded-

DukeMTMC contains 15, 618 images covering 702 identi-

ties in total. The testing set contains 1, 110 identities, in-

cluding 17, 661 gallery images and 2, 210 query images.

As shown in Table 1, the size of Occluded-DukeMTMC

is ten times larger than the size of the previous occlu-

sion dataset [45, 44]. Second, previous datasets, either do

not focus on solving the occlusion problems [43], or de-

pend on a strong assumption: only probe images are oc-

cluded [45, 44]. Compared to those datasets, Occluded-

DukeMTMC is more difficult and practical since both probe

and gallery images have occlusions. Third, there are rich

variations in Occluded-DukeMTMC, including different

viewpoints and a large variety of obstacles, including cars,

bicycles, trees, other persons et al.

3.2. Data Collection

In the original DukeMTMC-reID, the training, query,

and gallery set contain 14%/15%/10% occluded images, re-

spectively. Apparently, the original dataset is not applica-

ble to evaluate occluded person re-id approaches due to its

small occluded sample numbers.

We manually re-split DukeMTMC-reID so that our

Occluded-DukeMTMC contains 9%/100%/10% occluded

images. All probe images are occluded by manually se-

lecting from both the gallery1 and query set of the orig-

inal dataset. Therefore, there always exists at least one

occluded image when calculating the pairwise distance be-

tween query and gallery images. When we select query im-

ages, the image which contains more than one person or a

person occluded by obstacles such as trees or cars is anno-

tated as an occluded image.

When constructing the training set, we manually re-

moved 934 images from original DukeMTMC-reID train-

ing set, because these 934 images contain exactly the same

obstacles as in the testing set. Those images may lead the

model to “remember” these specific occlusion patterns in

the test set, which jeopardizes the generality of the trained

model.

1Re-id evaluation does not count the images in the same camera so

there is no worry to query the same image in the gallery.
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Figure 3: Pipeline of the Pose-Guided Feature Alignment method. The red points in the person image represent the visible landmarks, and

the green point represents the invisible landmark. The pipeline has two branches. In the partial feature branch, the global feature map is

horizontally partitioned as partial features. Then we use an average pooling layer and convolutional layer to reduce the dimensions of the

partial feature maps, followed by multiple fully connected layers to predict the ID of each input image. In the pose-guided global feature

branch, heatmaps are generated by pose landmarks and multiply the global feature map element-wisely. Then we concatenate the masked

feature and the average pooled global feature, and reduce the feature dimension to generate the pose-guided global feature.

4. Methodology

This section illustrates our proposed Pose-Guided Fea-

ture Alignment (PGFA) method, consisting of a representa-

tion construction stage and a matching stage.

4.1. Representation Construction

The architecture for representation construction is shown

in Fig.3. As illustrated in Fig.3, it is a two-branch architec-

ture. One is Partial Feature Branch, the other one is Pose-

Guided Global Feature Branch, which utilizes a pose esti-

mator to detect human landmarks and to guide robust rep-

resentation construction.

Following [32], PGFA uses ResNet50 [10] without the

average pooling layer and fully connected layer as the back-

bone to extract global feature maps from given images. Mo-

tivated by [32, 38], in PGFA, the stride of conv4 1 is set to 1.

As a result, after passing through our backbone network, an

input image with a size of H ×W will output feature maps

with a spatial dimension of H/16 ×W/16, which is larger

than that (H/32×W/32) in the original ResNet50 [10]. A

larger feature map is useful in our case because information

of the target person and occlusions is easier to disentangle

in a broader spatial dimension.

Formally, we denote the feature map extracted from

ResNet50 backbone as F ∈ R
h×w×c, in which h, w, c de-

notes the height, width and channel number, respectively.

Then the feature map F is input to two branches: the par-

tial feature branch and the pose-guided global feature

branch.

4.1.1 Partial Feature Branch

In the partial feature branch, F is horizontally partitioned

into p parts, denoted as Fi, i = 1, ..., p. Then each part of

feature map Fi is processed by average pooling and 1 × 1
convolutional layers to reduce dimension from 2, 048 to

256, obtaining the partial feature vector fi. Each partial fea-

ture fi is fed into a corresponding fully connected layer FCi

and a softmax layer is employed to predict the ID of each

input image. The output for each given image I in Partial

Feature Branch is a set of predictions ŷi, where i = 1, ..., p.

Denote the loss of the partial feature branch as Lpart,

Lpart =

p
∑

i=1

CE(ŷi, y) , (1)

where CE denotes the cross-entropy loss, p is the part num-

ber, ŷi is the probability of predictions, and y is the ground

truth ID. This branch is similar to [32], and readers are en-

couraged to refer it.
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4.1.2 Pose-Guided Global Feature Branch

Pose Estimation. PGFA employs a human pose estimator

to detect human landmarks from person images. The esti-

mator is pre-trained on the COCO dataset [20]. Given an

input image, PGFA utilizes the pose estimator to extract N
landmarks for the inside person, where N is 18 in this pa-

per. For each landmark, the pose estimator predicts its coor-

dinates and confidence score. We set a threshold γ to filter

out the landmarks with too small confidence scores, which

are smaller than γ.2 Formally, the landmarks is

LMj =

{

(cxj , cyj) if Sconf
j ≥ γ

0 else
(j = 1, ..., N) , (2)

where LMj denotes the jth landmark and cxj ,cyj denote

the coordinates of the jth landmark, Sconf
j is the confidence

score and γ is the threshold.

Similar to [26], landmarks are utilized to generate

heatmaps consisting of a 2D Gaussian centered on the

ground truth location. When LMj = 0, the value of the

corresponding heatmap is set to 0. The generated heatmap

is denoted as Mj , j = 1, ..., N . Each heatmap is downsam-

pled to the size of h× w by bilinear interpolation.

Pose-Guided Global Feature Construction. The pose-

guided global feature branch aims to integrate the global

feature maps information and the pose information from

the target person. As shown in Fig.3, firstly the feature

map F is average pooled as the global feature, fg . Then

the heatmap Mj , j = 1, ..., N , multiply the feature map

F element-wisely and output the pose-guided feature map

M′

j , j = 1, ..., N . Since each heatmap Mj has explicitly

encoded the information of different regions on the target

person, i.e., which region is occluded, the pose-guided fea-

ture maps M′

j can focus on non-occluded parts of the target

person and depress the information from occluded regions.

Each guided feature map M′

j will pass through an aver-

age pooling layer to produce a 2048-D feature vector, which

corresponds to the region containing the specific landmarks.

Finally, PGFA performs the max pooling operation over all

feature vectors and concatenate them with the global feature

fg . The concatenated feature is denoted as fcat, as shown in

Fig.3. The max pooling operation makes the feature vector

fuse information of visible body parts, ignore the occluded

parts and redundant partial information. fcat is fed into a

fully connected layer to reduce the dimension from 4,096 to

256, denoted as the pose-guided global feature fpose. A soft-

max layer is employed to predict the ID of each input im-

age, and the output of Pose-guided Global Feature Branch is

2In the situation that a person is occluded by another person, we com-

pare the number of landmarks of each person and assume that the person

with the largest number of landmarks is the target person while others are

obstacles.

the prediction ŷ of each input image I . We utilize the cross-

entropy loss, which is denoted as Lpose, for the pose-guided

global branch.

Lpose = CE(ŷ, y) , (3)

where CE denotes the cross-entropy loss, ŷ denotes the pre-

diction and y denotes the ground truth ID.

The final loss function is

Loss = λLpart + (1− λ)Lpose , (4)

where λ is a coefficient to balance the contributions from

the part feature branch and the pose-guided feature branch,

while Lpart is the softmax cross entropy loss for the partial

feature branch and Lpose is the softmax cross entropy loss

for the pose-guided global feature branch.

4.2. Representation Matching

The matching strategy is shown in Fig. 4. The final dis-

tance between query and gallery images consists of two

parts. One is the distance of partial features in the shared

visible region and the other is the distance of the pose-

guided global feature. Since the confidence score of de-

tected landmarks can indicate which part of the target per-

son is occluded and which part is not, they can guide us to

obtain part labels. Specifically, for each part i = 1, ..., p, its

part label li ∈ {0, 1} is illustrated as follows:

li =

{

1 if ∃cyj ∈ [ i−1

p
H, i

p
H)

0 else
(j = 1, ..., N) , (5)

where cyj denotes the jth longitudinal coordinate of land-

mark LMj , i denotes the ith part of an image and H denotes

the height of the image.

Now the distance measure function di of the ith part is

illustrated as follows:

di = D(fqi , f
g
i ) (i = 1, ..., p) , (6)

where di denotes the distance calculated by the ith partial

feature, D() denotes the distance metric, which is the cosine

distance in our paper. f
q
i , f

g
i denote the ith partial feature of

the query and gallery image, respectively.

Denote the distance calculated by the pose-guided global

feature as dpose,

dpose = D(fqpose, fgpose) , (7)

where D() denotes the cosine distance metric, fqpose, fgpose
denote the pose-guided global feature of the query and

gallery image, respectively. The final distance

dist =

∑p

i=1
(lqi · l

g
i )di + dpose

∑p

i=1
lqi · l

g
i + 1

, (8)

where di denotes the distance calculated by the ith partial

feature, dpose denotes the cosine distance calculated by the
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Figure 4: Matching strategy of PGFA. The distance between probe

and gallery images is measured by using the pose-guided global

feature and the partial features in the shared visible region.

pose-guided global feature, p denotes the part number and ·
denotes multiplication. lqi and lgi denote the ith part label of

the query and gallery image, respectively. If the ith partial

feature of both the query and gallery image contain visible

parts, lqi · lgi = 1. Else, lqi · lgi = 0. The larger the dist is,

the higher similarity between the probe and gallery images.

5. Experiments

5.1. Datasets and Evaluation Measures

To demonstrate the efficacy of our method on the Oc-

cluded Re-ID problem, we evaluate the proposed PGFA

model on our constructed Occluded-DukeMTMC and two

Partial Re-ID datasets: Partial-REID [45], Partial-iLIDS

[44]. We also evaluate our method on two holistic datasets:

Market-1501 [43], DukeMTMC-reID [46, 28].

Occluded-DukeMTMC contains 15,618 training im-

ages, 17,661 gallery images, and 2,210 occluded query im-

ages. The experiment results on Occluded-DukeMTMC

will demonstrate the superiority of our method in Occluded

Person Re-ID problems, let alone that our method does not

need any manually cropping procedure as pre-process.

Partial-REID [45] is a specially designed partial person

dataset that includes 600 images from 60 people, with five

full-body images and five partial images per person. These

images are collected at a university campus from differ-

ent viewpoints, backgrounds, and different types of severe

occlusion. All probe images are occluded person images,

while all gallery images are holistic images.

Partial-iLIDS [44] is a simulated partial re-id dataset

based on the iLIDS dataset [44]. The iLIDS dataset con-

tains a total of 476 images of 119 people captured by mul-

tiple non-overlapping cameras. We conduct experiments on

Partial-REID and Partial-iLIDS to demonstrate the effec-

tiveness of our proposed method when facing the Partial

Re-ID problem.3

3Unlike previous works [45, 11, 12], our method does not need manu-

ally cropping on Partial-REID and Partial-iLIDS.

Market-1501 [43] is used to verify our method on the

holistic re-id situation. Market-1501 contains few of oc-

cluded person images and can be treated as a holistic re-id

dataset. Market-1501 consists of 32, 668 images of 1, 501
subjects captured by six cameras.

DukeMTMC-reID [46, 28] contains 1,404 identities,

16,522 training images, 2,228 queries, and 17,661 gallery

images. Although there exist occluded person images, the

holistic images in DukeMTMC-reID are much more than

the occluded ones, so that this dataset can be treated as a

holistic re-id dataset in previous works [46, 17, 32].

Evaluation Metrics. We use Cumulative Matching

Characteristic (CMC) curves and mean average preci-

sion (mAP) to evaluate the quality of different person re-

identification models. All the experiments are performed in

a single query setting.

5.2. Implementation Details

We use ResNet50 [10] as our backbone and make a mi-

nor modification on it: removing the average pooling layer

and fully connected layer, setting the stride of conv4 1 to

1. We initialize our model by the ImageNet [5] pre-trained

model. In our experiment setting, the input image is re-

sized to 384×128 and augmented by random flipping and

random erasing [48]. We set the batch size to 32 and the

training epoch number to 60. On Occluded-DukeMTMC,

Market-1501 [43], and DukeMTMC-reID [46, 28], the base

learning rate is initialized at 0.1 and decayed to 0.01 after 40

epochs, the coefficient λ is set to 0.2. On Partial-REID and

Partial-iLIDS, the base learning rate is initialized at 0.02,

the coefficient λ is set to 0.9.

To detect landmarks from occluded images, we use Al-

phaPose [8, 37] pre-trained on the COCO dataset [20]. We

keep the landmarks whose confidence scores are larger than

0.2.

5.3. Results Comparison

Results on Occluded-DukeMTMC. Table.2 shows the

result of our method and previous works. The approaches

in the first group are designed for the holistic person re-id

problem. The methods in the second group employ pose

estimation methods. The methods in the third group are de-

signed for the Partial Re-ID problem. Our PGFA achieves

51.4% Rank-1 accuracy and 37.3% mAP, which outper-

forms all the previous methods. Compared to the strong

competing method PCB [32], PGFA surpasses it by +8.8%

Rank-1 accuracy and +3.6% mAP. This is because PGFA

explicitly utilizes pose information to depress the noisy in-

formation from the occluded regions.

In the fourth group, PGFAw/o partial denotes using

only the pose-guided global feature for matching, while

PGFAw/o global denotes utilizing only the partial features for

matching. From the table, we can find that combining two
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Method Rank-1 Rank-5 Rank-10 mAP

LOMO+XQDA [18] 8.1 17.0 22.0 5.0

DIM [40] 21.5 36.1 42.8 14.4

Part Aligned [42] 28.8 44.6 51.0 20.2

Random Erasing [48] 40.5 59.6 66.8 30.0

HACNN [17] 34.4 51.9 59.4 26.0

Adver Occluded [14] 44.5 - - 32.2

PCB [32] 42.6 57.1 62.9 33.7

Part Bilinear [30] 36.9 - - -

FD-GAN [9] 40.8 - - -

DSR [11] 40.8 58.2 65.2 30.4

SFR [12] 42.3 60.3 67.3 32.0

PGFAw/o partial(ours) 42.5 60.2 67.3 30.4

PGFAw/o global(ours) 46.0 65.4 72.0 34.4

PGFA(ours) 51.4 68.6 74.9 37.3

Table 2: Performance comparison on Occluded-DukeMTMC. The

methods in the 1st group are designed for the holistic re-id prob-

lem. The methods in the 2nd group utilize the pose information.

The methods in the 3rd group are designed for the Partial Re-ID

problem. The 4th group is our methods.

Method
Partial-REID Partial iLIDS

Rank-1 Rank-3 Rank-1 Rank-3

MTRC [19] 23.7 27.3 17.7 26.1

AMC+SWM [45] 37.3 46.0 21.0 32.8

DSR [11] 50.7 70.0 58.8 67.2

SFR [12] 56.9 78.5 63.9 74.8

PGFA(ours) 68.0 80.0 69.1 80.9

Table 3: Performance comparison on Partial-REID and Partial-

iLIDS.

branches achieves better performance than using either one

branch alone.

Results on Partial-REID and Partial-iLIDS. We com-

pare the results on Partial-REID and Partial-iLIDS with sev-

eral existing partial person re-id methods, including MTRC

[19], AMC+SWM [45], DSR [11], and SFR [12]. Note

that partial person re-id approaches above utilize the man-

ually cropped probe images, while our method needs no

additional manually cropping process. Same as previous

works [11, 12], we train our model using the Market-1501

training set. In practice, we set the part number p to 6 in

both training procedure and testing procedure and achieves

the best performance. As shown in Table.3, the Rank-

1/Rank-3 of our methods PGFA achieve 68.0%/80.0% and

69.1%/80.9% on Partial-REID and Partial-iLIDS, respec-

tively, which outperforms all the previous partial person re-

id approaches [19, 45, 11, 12]. Compared to the strongest

competing method SFR [12], PGFA surpasses it by +11.1%

Rank-1 accuracy on Partial-REID, while surpasses it by

+5.2% Rank-1 accuracy on Partial-iLIDS, which is a large

margin.

Results on Market-1501 and DukeMTMC-reID. We

Method
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

BoW+kissme [43] 44.4 20.8 25.1 12.2

SVDNet [31] 82.3 62.1 76.7 56.8

PAN [46] 82.8 63.4 71.7 51.5

PAR [42] 81.0 63.4 - -

Pedestrian[47] 82.0 63.0 - -

DSR [11] 83.5 64.2 - -

MultiLoss [35] 83.9 64.4 - -

TripletLoss [13] 84.9 69.1 - -

Adver Occluded [14] 86.5 78.3 79.1 62.1

APR [22] 87.0 66.9 73.9 55.6

MultiScale [4] 88.9 73.1 79.2 60.6

MLFN [2] 90.0 74.3 81.0 62.8

PCB [32] 92.4 77.3 81.9 65.3

PGFA(ours) 91.2 76.8 82.6 65.5

Table 4: Performance comparison on the holistic re-id datasets

Market-1501 and DukeMTMC-reID.
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Figure 5: Varying Trade-off Coefficients λ. The dash lines in the

figure denote the performance of PCB [32]. When λ is 0, we use

only the pose-guided global feature. When λ is 1, which means

only the partial features take effect, the difference between PCB

and ours is that we use the shared region matching strategy and

our PGFA outperforms PCB by +3.4% Rank-1 accuracy.

also apply our method on holistic person re-id datasets,

Market-1501 and DukeMTMC-reID. As shown in Table.4,

our method achieves comparable performances with state-

of-the-art on both datasets, which indicates the good gener-

ality of our method.

5.4. Ablation Study

We conduct extensive ablation studies on Occluded-

DukeMTMC to analyze each component of PGFA.

Varying Trade-off Coefficients. To evaluate the impact

of the two branches: Partial Feature Branch and Pose-

Guided Global Feature Branch, we conduct a test with dif-

ferent trade-off coefficients of λ, which is defined in Equa-

tion. 4, and report the Rank-1 accuracy and mAP in Fig. 5.

We increase λ from 0 to 1. When λ is 0, only the pose-

guided global feature branch takes effect, which achieves
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Figure 6: The impact of the part number p (a) and the threshold γ

of pose estimation results (b).

42.5% Rank-1 and 30.4% mAP. When λ is 1, only the par-

tial feature branch takes effect and the Rank-1 accuracy is

46.0%, which surpasses PCB by +3.4%. This is because

the shared-region matching strategy in PGFA helps to fil-

ter the noise from obstacles, while PCB fails to tell which

region is occluded but has to utilize all information, even

when some of them are extracted from obstacles. When λ
is between 0 and 1, both the partial feature branch and the

pose-guided global feature branch are taking effect, which

achieves much better performance than only using one of

the two branches. When λ is set between 0.2 and 0.8, the

performance does not change dramatically, which indicates

that PGFA is not sensitive to the λ in this value range.

The Sensitivity of the Part Number p. The number of

parts p determines the granularity of the part feature. When

p = 1, the learned feature is a global feature. As illustrated

in Fig.6(a), the performance when p = 1 is always poorer

than the performance when p > 1, which proves the neces-

sity of introducing partition strategy in extracted features.

As p increase to 3, PGFA achieves the best performance:

51.4% Rank-1 accuracy and 37.2% mAP. When p is larger

than 3, the performance starts to decrease slowly. This is

because that when the part number p is too large, some non-

occluded parts might not contain any landmarks, and will

be filtered out in matching since their corresponding li is 0
in Equation. 5.

The Impact of the Threshold γ. As defined in Equa-

tion. 2, γ is the threshold to filter the landmarks whose con-

fidence score is too small. As shown in Fig.6(b), when γ
is too small or too large, the performance is poor. This is

because when γ is too small (for example, 0), all detected

landmarks are chosen. Therefore, the information from the

occluded regions will be used for the representation con-

struction and matching. This will inevitably bring noisy in-

formation and deteriorate the final performance when there

are occlusions in probe and gallery images. When γ is too

large, many landmarks will be discarded. The correspond-

ing regions of those discarded landmarks, although they

might do not have any occlusions, are unnecessarily thrown

away.

The Impact of the Pose Estimation Algorithm. We

test two different pose estimation algorithms, Alpha-

Method Rank-1 Rank-5 mAP

AlphaPose [8]

PGFAw/o partial 42.5 60.2 30.4

PGFAw/o global 46.0 65.4 34.4

PGFA 51.4 68.6 37.2

OpenPose [1]

PGFAw/o partial 42.4 59.3 29.7

PGFAw/o global 46.2 65.4 33.3

PGFA 49.1 66.7 35.3

Table 5: Performance comparison of pose estimation algorithms.

PGFAw/o partial denotes our method without the partial feature

branch. PGFAw/o global denotes our method without the pose-guided

global feature branch.

PCB

Ours

Probe Retrieval Results

Figure 7: Comparison of the PCB method and our PGFA method.

Green and red rectangles indicate correct and error retrieval re-

sults, respectively.

Pose [8], and OpenPose [1] in PGFA. The results are shown

in Table.5. From the table, we can find that OpenPose

achieves similar performance with AlphaPose.

5.5. Visualization

Fig. 7 shows some retrieval examples of the PCB [32]

method and our PGFA method on Occluded-DukeMTMC.

The retrieval results show that PCB is prone to mix the in-

formation of the target person and obstacles, resulting in

retrieving a wrong person with a similar obstacle. On the

contrary, our PGFA can work successfully in the same situ-

ation.

6. Conclusion

In this paper, we make contributions to tackle the Oc-

cluded Person Re-ID Problem. First, we propose the PGFA

method, which outperforms existing approaches on the Oc-

cluded Re-ID problem. By taking advantage of informa-

tion from detected landmarks, our method can suppress the

noisy information from the occluded regions on the target

person. Besides, PGFA utilizes the partial features in the

shared region between the gallery and probe images for

matching. Second, to facilitate the research about the Oc-

cluded Re-ID problem, we introduce a large-scale dataset,

Occluded-DukeMTMC.
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