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Abstract
Video captioning aims at generating a proper sen-
tence to describe the video content. As a video of-
ten includes rich visual content and semantic de-
tails, different people may be interested in differ-
ent views. Thus the generated sentence always fails
to meet the ad hoc expectations. In this paper, we
make a new attempt that, we launch a round of in-
teraction between a human and a captioning agent.
After generating an initial caption, the agent asks
for a short prompt from the human as a clue of
his expectation. Then, based on the prompt, the
agent could generate a more accurate caption. We
name this process a new task of video interactive
captioning (ViCap). Taking a video and an initial
caption as input, we devise the ViCap agent which
consists of a video encoder, an initial caption en-
coder, and a refined caption generator. We show
that the ViCap can be trained via a full supervi-
sion (with ground-truth) way or a weak supervision
(with only prompts) way. For the evaluation of Vi-
Cap, we first extend the MSRVTT with interaction
ground-truth. Experimental results not only show
the prompts can help generate more accurate cap-
tions, but also demonstrate the good performance
of the proposed method.

1 Introduction
Video captioning aims at automatically generating a natural
language sentence to describe a video accurately. As a video
clip often includes rich visual content and semantic details,
different people may be interested in different views. Thus,
one sentence generated by a video captioning model usually
fails to meet the ad hoc expectations. Inspired by the rele-
vance feedback in information retrieval [Rocchio, 1971], we
propose to launch a round of interaction between a human
and a captioning agent, so as to refine the initial captions.

In this paper, we present a new task of Video interactive
Captioning (ViCap): When a caption generated by a pre-
∗Part of this work was done when Yi Yang was visiting Baidu

Research during his Professional Experience Program. Code is pub-
licly available on GitHub: https://github.com/ViCap01/ViCap.

Someone is showing cartoon clip from tv

This is not my expected description

Please give me a short prompt

A squidward

A squidward is talking to spongebob at the crusty crab

… …

Figure 1: A human and a ViCap agent are interacting. First, the
agent generates an initial description of a video clip (the blue words).
As the human may be interested in certain frames of the clip, the de-
scription fails to meet his expectation. Then he gives a short prompt,
i.e., the first two words of the expecting caption (the purple words).
Finally, based on the prompt, the agent generates a more accurate
caption (the red words).

trained video captioning model does not meet the expecta-
tion, the ViCap agent asks for a short prompt from the human
as a clue of his expectation. Then based on the prompt, the
agent could generate a more accurate caption. In Fig. 1, we
show an example. Firstly, given as input a video clip to a
pre-trained video captioning model, an initial caption is gen-
erated, i.e., ‘Someone is showing cartoon clip from tv’. As
the human may be interested in certain frames of the clip,
the description fails to meet his expectation. Then he gives
a short prompt, i.e., ‘A squidward’. Finally, based on the
prompt, the ViCap agent generates a more accurate caption
‘A squidward is talking to the spongebob at the crusty crab’.
From a practical view, a human could provide any prompts
in any form, e.g, in different length. And the prompts could
appear anywhere in the generated captions. In this paper, we
move forward a first step in that we set the prompts to be
the first two words of the generating caption. Thus ViCap
with human prompts is different from traditional captioning
tasks, which may support various applications, such as video
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retrieval [Kordopatis-Zilos et al., 2018], video chat robot, and
even human-robot interaction [Pasunuru and Bansal, 2018].

The challenges of this task are two-fold: First, given as in-
put the video clip, the initial caption, and the human prompts,
the ViCap model should be able to generate a sentence not
only starts with the prompts but also faithfully describes the
video content. Second, as there launches a round of inter-
action, the prompts and the expecting captions are certainly
semantically different from the initial ones, which therefore
lack the ability of guiding the generation of the refined sen-
tences. In this paper, we devise the ViCap to include a video
encoder, an initial caption encoder, and a refined caption gen-
erator. Moreover, we show that the ViCap can be trained via
a full supervision way, i.e., supervised with the ground-truth
captions, or a weak supervision way, i.e., weakly supervised
with only the prompts.

In particular, we first utilize a GRU network [Cho et al.,
2014] to encode the video and the initial caption, respectively.
For the caption generator, the commonly used methods are
based on LSTM [Li et al., 2017] or GRU network. However,
these generators are prone to dilute the long-term information
[Gehring et al., 2017]. Recent works [Gehring et al., 2017]
have demonstrated that employing convolution operation as
the decoder could alleviate the problem of long-term infor-
mation dilution. Thus, in this paper, we stack multiple di-
lated convolutional layers [Yu and Koltun, 2015] followed by
gated activation units [Oord et al., 2016] as the refined cap-
tion generator, the goal of which is to capture dependencies
among frame and word sequences. For the training of ViCap
with weak supervision of prompts, we devise a convolutional
reconstruction network to reconstruct the current input of de-
coders. During the training, the reconstruction loss and the
prompt-supervision loss are merged together.

For the evaluation of ViCap with human prompts, we first
extend the MSRVTT with interaction ground-truth. Then the
experimental results not only show the prompts can help gen-
erate more accurate captions, but also demonstrate the good
performance of the proposed method.

2 Related Work
Recent advances towards video captioning mainly follow the
encoding-decoding framework. Besides efforts made on de-
vising effective encoders and decoders [Baraldi et al., 2017;
Wu and Han, 2018], Wang et al. [Wang et al., 2016] pro-
posed a new multimodal memory encoder and the method
in [Pan et al., 2017] utilized the transferred semantic at-
tributes to help models generate better captions. Towards
efficiency and a more compact representation of videos,
Chen et al. [Chen et al., 2018] proposed a reinforcement
learning-based method to pick some keyframes to gener-
ate video caption. Besides, as the current most methods
about video captioning suffer from the problems of expo-
sure bias and inconsistency between train/test measurement
[Keneshloo et al., 2018], these works [Wang et al., 2018;
Phan et al., 2017] proposed to leverage reinforcement learn-
ing to solve these problems.

As a video often includes rich visual content and semantic
details, e.g., diverse objects and events, the existing caption-

Figure 2: Illustration of enlarging the semantic gap. Here we use
HN to indicate the representation (the purple vector) generated by
a decoder and use HF to indicate the final representation (the red
vector). hY indicates the initial caption representation. α is a scalar.
The blue vector represents H⊥. We can see that by adding H⊥ to
HN , the angle between HF and H⊥ becomes smaller, which indi-
cates the semantic gap between HF and hY is enlarged.

ing methods are hard to generate one sentence to fully de-
scribe these content and details. In this paper, we propose a
new task of ViCap, i.e., when the initial caption does not meet
human expectation, models could generate refined caption
based on human prompts. As the existing captioning meth-
ods often employ a GRU or an LSTM unit as the decoder and
only take a video clip as the input to generate a sentence, we
could not directly employ GRU or LSTM decoder to solve
the task. The reason is that the new task needs the decoder
could leverage the video content, the initial caption, and the
prompts to generate a more accurate caption. To solve this
task, we devise a convolutional decoder, which uses the initial
caption and the prompt to generate accurate caption. Finally,
the experimental results on our extended MSRVTT dataset
demonstrate the effectiveness of the convolutional decoder.

3 The Framework of ViCap
In this paper, we devise the ViCap model which includes a
video encoder, an initial caption encoder, and a refined cap-
tion generator. Moreover, we show that the ViCap can be
trained via a full supervision way or a prompt supervision
(weak supervision) way.

Concretely, we employ a GRU unit to encode the video
and the initial caption, respectively. For the video, we use
HX = {h1

X ∈ Rk, ..., hmX ∈ Rk} to denote the GRU output
set and useHmean

X to indicate the mean visual feature ofHX .
For the initial caption, we take the GRU output hY ∈ Ro at
the last time step as the representation of the initial caption.

3.1 The Convolutional Decoder of ViCap Model
As said in the Introduction, the new task aims at generating
an accurate sentence which is semantically different from the
initial caption. Thus, in order to enlarge the semantic gap,
we propose to use the vertical representationH⊥ of the initial
caption representation hY in the decoder (H⊥·hY = 0, where
· indicates the dot product), which indicates H⊥ and hY are
irrelevant. In Fig. 2, we show two examples of enlarging the
semantic gap. The left part is the case where the output HN

of a decoder is positively related to hY . And the right part is
the negatively correlated case. We can see that by adding H⊥
to HN (HF = HN +α�H⊥, where� indicates the element

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

962



CF

<BOS> a squidward is talking

a squidward is talking

CF CF CF CF

to

Hidden Layer

Dilation = 1

Hidden Layer

Dilation = 1

Hidden Layer

Dilation = 2

Hidden Layer

Dilation = 4

Output Layer

Dilation = 2…
…

GRU

GRU

GRU

…
…

G
R

U

GRUInitial Caption

…

Mean

Figure 3: Illustration of our convolutional sequential decoder. This
decoder consists of five dilated convolutional layers. The dilated rate
is respectively set to 1, 1, 2, 4, 2. ‘CF’ represents the concatenation
fusion. The green words are the ones generated by the decoder. By
the hierarchical convolutional architecture, the decoder could cap-
ture variant dependencies among the sequence.

product), the semantic gap between HF and hY is obviously
enlarged, i.e., compared with the angle betweenHN andH⊥,
the angle between HF and H⊥ becomes smaller. Based on
this idea, we devise a convolutional refined decoder.

Computation of H⊥
We define hY = [y1, y2, ..., yo], where y1, y2, and yo are
elements of the vector hY . When the dimension o is set to an
even number, the computation of H⊥ is shown as follows:

H⊥ = [−yo, ...,−y o
2
, y o

2−1, ..., y1] (1)

The goal of this operation is to keep H⊥ · hY = 0.

Convolutional Decoder
In this paper, we stack five dilated convolutional layers to
form convolutional sequential decoder (Fig. 3). In the fol-
lowing, we denote by Ŷ C = {Ŷ C

0 , ..., Ŷ C
L−1} the predicted

word sequence. We denote by Y C = {Y C
0 , ..., Y C

L−1} the tar-
get word sequence, where L denotes sequence length. [a, b]
represents the concatenation of a and b.

As shown in Fig. 3, at each step t, the operations of each
layer are shown as follows:

H l
t = [hl−1

t , hl−1
t−rl]

hlt = tanh(wl
f ∗H l

t + blf )� σ(wl
g ∗H l

t + blg)

+ (1.0− σ(wl
g ∗H l

t + blg))�H⊥

(2)

where rl represents dilated rate of the l-th layer. hl−1
t denotes

the output of the (l − 1)-th layer at time step t. wl
f and wl

g

denote convolutional filters on the l-th layer. blf and blg are
bias. Adding H⊥ is to enlarge the semantic gap.

Note that for video caption generation, there is no future
information available for the decoder. Besides, based on the
different size of both filter and dilated rate, we use different
number of zero vectors to pad the input of each layer.
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Figure 4: An example of convolutional reconstruction network.
Here, we take GRU decoder as an example. And we stack three
dilated convolutional layers as the reconstruction network. The di-
lated rate is respectively set to 1, 2, 2.

Finally, the t-th generated word Ŷ C
t is computed as:

α = ReLU(
h5
t · hY

‖h5
t‖‖hY ‖

)

ot = h5
t + α�H⊥

Ŷ C
t ∼ softmax(wpot + bp)

(3)

where h5
t indicates the output of the fifth layer. wp and bp are

learnable parameters. The goal of ReLU operation is to keep
hY and h5

t are positively related.

3.2 ViCap with Full Supervision

In order to reduce the risk of vanishing gradients, inspired
by the work [Zhang et al., 2016], we enforce intermediate
supervision for some hidden layers. In our network, since
the function of the first layer and the fifth layer is to process
the input and generate the output, respectively, we enforce
supervision for these two layers. For each layer j ∈ {1, 5},
we employ a cross-entropy loss.

Lj
CE = −

L−1∑
t=0

log(p(Ŷ C
t |Y C

0:t−1, HX , hY )) (4)

where p(Ŷ C
t |Y C

0:t−1, HX , hY ) is the output probability of the
predicted word Ŷ C

t given the previous word Y C
0:t−1, visual

feature HX , and the encoding hY of the initial caption. By
summing the loss of each layer, we obtain the overall loss:

LCE = λ1L
1
CE + λ5L

5
CE (5)

where λ1 and λ5 are hyper-parameters. And we set λ1+λ5 =
1. Meanwhile, as the fifth layer is the output layer, we should
keep λ5 is bigger than λ1.

As said in the Introduction, we should keep the generating
captions could faithfully describe their corresponding video
content. Thus, we define a new loss function to ensure the
consistency between the caption and video content, which is
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named consistency loss (Ls). The details are as:

Cs =
1

L

L−1∑
i=0

ot, Vs =
1

m

m∑
i=1

Xi

Ls = ‖wrCs − Vs‖

(6)

where ‖·‖ indicates `2-norm. wr is a learnable parameter.
Finally, the training loss Ltrain is computed as follows:

Ltrain = LCE + Ls (7)

3.3 ViCap with Prompt Supervision
For the case of prompt supervision, since we have no other
word as a supervision in addition to the prompt words, we
could not completely use the teacher forcing mechanism
[Lamb et al., 2016] to train the network. If we only use the
prompt-supervision loss to train the network, as there only
exist two prompt words, it is easy to make the network over-
fitting. And the performance is not good. In order to reduce
the risk of overfitting and improve the performance, we pro-
pose a recurrent reconstruction network (Recon-Net) which
uses the output of the decoder to reconstruct the current input
of the decoder (Fig. 4). Finally, the reconstruction loss will
be jointly trained with the prompt-supervision loss.

Convolutional Reconstruction Network
As shown in Fig. 4, we stack three dilated convolutional lay-
ers as the reconstruction network. At time step t, we take
the output oL−t of the decoder and the mean visual feature
Hmean

X as the input of the first layer. The details of this layer
are as:

Mr
t = wr

c [Hmean
X , oL−t] + brc , H1

t = [Mr
t−1,M

r
t ]

R1
t = tanh(w1

p ∗H1
t + b1p)� σ(w1

q ∗H1
t + b1q)

(8)

where wr
c and brc are learnable parameters. w1

p and w1
q are

convolutional filters. b1p and b1q are bias. Then the operations
of the next two layers are similar to those of the first layer. As
same as the convolutional decoder, we enforce intermediate
supervision for the first and output layer to reduce the risk
of vanishing gradients. Thus, the loss of the convolutional
reconstruction network is as:

Lt
C = β1‖R3

t −Gt‖+ β2‖R1
t −Gt‖ (9)

where Gt indicates the input of the decoder at time step t.
β1 and β2 are hyper-parameters. And we set β1 + β2 = 1.
Besides, asR3

t is the output of top layer, we should keep β1 is
bigger than β2. For the prompt-supervision loss, we still use
cross-entropy loss. Finally, the training loss is as:

LCNN = LP + λ
∑

Lt
C (10)

where λ is a hyper-parameter. LP indicates the prompt-
supervision loss.

Such a reconstruction network, which is similar to the reg-
ularized auto-encoder [Bengio et al., 2012], promotes our
caption decoders to learn effective word-level representation.

… …

Initial: a woman is showing a hair.

GT1: there is a woman in bikini is using a machine.

Initial: a man is walking on the street.

GT2: a caucasian lady trying to tan with a new equipment.

GT3: woman with head cover and with little dress demonstrates 

some procedure.

… …

GT1: horse jockey is racing on a grassy track with an announcer 

commentating.

GT2: there are some people riding horse in the competition.

GT3: a horse riding playground and now a competition is going on.

Figure 5: Examples of the extended MSRVTT-2016 dataset. The
two green words indicate the prompts. The red words indicate the
ground-truth of evaluation. ‘Initial’ indicates the initial caption.
‘GT1’, ‘GT2’, and ‘GT3’ indicate the three annotations.

Here, the caption decoder is equivalent to the encoder. And
the reconstruction network is equivalent to the decoder. The
reconstruction loss is helpful for regularizing the caption de-
coder during training, which reduces the risk of overfitting.

Besides, it is worth noting that the direction of the recon-
struction network is opposite to that of the caption decoder.
The goal of this processing is to promote the output represen-
tation generated by the caption decoder could embrace much
information of both video content and the generating caption,
which will be further demonstrated and discussed in the fol-
lowing experiment.

4 Experiments
In this section, we perform extensive experiments to evaluate
the proposed methods. All results are evaluated by metrics
of BLEU [Papineni et al., 2002], METEOR [Denkowski and
Lavie, 2014], and CIDEr [Vedantam et al., 2015].

4.1 Extended Dataset and Implementation Details
MSRVTT-2016 [Xu et al., 2016] is the recently released
largest dataset for video captioning. The dataset contains
10,000 web video clips and each clip is annotated with ap-
proximately 20 natural language sentences.

In order to demonstrate this attempt and evaluate the pro-
posed methods, we extend this dataset. And we take the 1st
to 4500th clip as the training set of the pre-trained model and
use the 4501st to 5000th clip as the validation set. For Vi-
Cap models, we take the 5001st to 8500th clip as the training
set. And we take the 8501st to 9000th clip as the validation
set and use 9001st to 10000th clip as the test set. Besides,
for the 20 annotations of the training set of ViCap models,
we remove duplicate annotations, semantically similar anno-
tations, and short annotations. For each clip of the validation
and test set of ViCap models, we give three different seman-
tic sentences as the annotations. Finally, when we evaluate
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Initial: a woman is talking about a woman is 

talking.
Prompts: a group.
Final: a group of people are singing on a stage.

GT: a group of singers are singing on a stage.

Initial: a man is walking.

Prompts: man playing.

Final: man playing a video game and talking 

about it.
GT: man playing a video game and talking 

about it.

Initial: a man is cooking.

Prompts: a youtuber.

Final: a youtuber woman is applying makeup 

to her face.
GT: a youtuber applies makeup and talks 

about the benefits.

Initial: a video of a video about the screen.

Prompts: a woman.

Final: a woman is talking to a woman in a 

room.
GT: a woman asking another woman if she 

worries about her drinking.

Initial: a woman is cooking.

Prompts: a person.

Final: a person is showing how to make a 

paper airplane.

GT: a person shows you how to make a paper 

airplane.

Prompts: a clip.

Initial: a man is talking about a woman.

Final: a clip of a basketball match is being 

played.
GT: a clip from a basketball match is shown 

here.

Figure 6: Examples of ViCap. ‘Initial’ indicates the initial caption generated by the S2VT model. ‘Final’ indicates the refined caption
generated by the convolutional decoder. ‘GT’ indicates the ground-truth. The red words indicate the final generated words.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
S2VT+IGRU-D 22.24 11.56 6.76 3.86 8.96 22.26 38.50
S2VT+CNN-D 23.23 11.98 7.10 4.42 9.24 24.47 46.04

HRNE+IGRU-D 22.10 11.45 6.52 3.80 8.95 22.10 38.18
HRNE+CNN-D 23.17 12.26 7.08 4.29 9.33 24.03 45.06

Table 1: Performance of full supervision. Here we use GoogLeNet feature. ‘S2VT+CNN-D’ represents we use the S2VT model as the
pre-trained model and use convolutional decoder as the final caption generator. All values are measured by percentage (%).

the performance of ViCap models, for each one of the anno-
tations in the test set, we remove the first two words and take
the remaining words as the ground-truth of evaluation. In Fig.
5, we show two examples which are from the test set. And the
red words are the ground-truth of evaluation.

In this paper, we choose S2VT [Venugopalan et al., 2015]
and HRNE [Pan et al., 2016] as examples of the pre-trained
models to generate initial captions. Of course, we can also
use other caption models as the pre-trained models. Finally,
we take the model with the best performance on the validation
set (4501st to 5000th video clips) as the initial caption gen-
erator. As two contributions of this paper are refined convo-
lutional decoder (CNN-D) and convolutional reconstruction
network (CNN-R), in order to compare fairly, we design an
improved GRU decoder (IGRU-D) and an GRU reconstruc-
tion network (GRU-R).

In the following experiments, we select 20 equally-spaced
frames from each video and feed them into GoogLeNet
[Szegedy et al., ] to extract a 1,024-dimensional frame-wise
representation. For the encoding network of both video and
initial caption, the number of output channel is all set to 512.
For CNN-D, the number of output channel of each layer is
respectively set to 512, 256, 256, 512, and 512. For CNN-
R, the number of output channel of each layer is set to 512,
256, and 512. For IGRU-D and GRU-R, the number of output
channel is set to 512. Finally, during training, we use Adam
optimizer with an initial learning rate of 1× 10−3. λ1 and λ5

are respectively set to 0.4 and 0.6. β1, β2, and λ are respec-
tively set to 0.6, 0.4, and 0.001. Note that we do not conduct

beam search in testing.
The details of IGRU-D are shown as follows:

rt = σ(UrY
t−1
G + Vrmt−1 +Arϕt(HX) + br)

zt = σ(UzY
t−1
G + Vzmt−1 +Azϕt(HX) + bz)

h̄t = φ(Uh̄Y
t−1
G + Vh̄(rt �mt−1 + (1− rt)�H⊥)

+Ah̄ϕt(HX) + bh̄)

mt = (1− zt)�mt−1 + zt � h̄t

α = ReLU(
mt · hY
‖mt‖‖hY ‖

), ot = mt + α�H⊥

(11)

where Y t−1
G represents the word embedding result of the

ground-truth word at time step t − 1. ϕt(HX) represents
the visual attention [Yao et al., 2015]. The goal of ReLU
operation is to keep hY and mt are positively related.

The details of GRU-R are shown as follows:

rt = σ(UrroL−t + VrrRt−1 +ArrH
mean
X )

zt = σ(UrzoL−t + VrzRt−1 +ArrH
mean
X )

h̄t = φ(Urh̄oL−t + Vrh̄(rt �Rt−1) +ArrH
mean
X )

Rt = (1− zt)�Rt−1 + zt � h̄t

(12)

where oL−t represents the output of the decoder at time step
L − t. L indicates the length of the generated caption. The
reconstruction loss is defined as:

Lt
R = ‖Rt −Gt‖ (13)
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
S2VT+IGRU-D+GRU-R 9.42 3.66 1.31 0.43 3.93 12.16 2.61
S2VT+IGRU-D+CNN-R 10.56 3.87 1.32 0.43 4.34 12.91 3.47
S2VT+CNN-D+GRU-R 12.45 4.37 1.36 0.46 4.73 13.23 4.43
S2VT+CNN-D+CNN-R 14.64 5.53 1.83 0.58 4.97 14.43 6.25

HRNE+IGRU-D+GRU-R 9.37 3.54 1.31 0.44 3.93 12.16 2.61
HRNE+IGRU-D+CNN-R 10.02 3.96 1.47 0.58 4.31 12.27 3.55
HRNE+CNN-D+GRU-R 12.14 4.66 1.33 0.46 4.72 14.57 5.15
HRNE+CNN-D+CNN-R 13.69 5.28 1.78 0.56 4.81 14.87 5.99

Table 2: Performance of prompt supervision. ‘S2VT+CNN-D+CNN-R’ indicates we use the S2VT model to generate initial captions and use
the convolutional decoder and convolutional reconstruction network. All values are measured by percentage (%).

where Gt indicates the input of the decoder at time step t.

Method BLEU-4 METEOR CIDEr
GRU+H⊥ 3.86 8.96 38.50

GRU 3.10 8.16 33.35
GRU+hY 2.97 7.80 31.86
CNN+H⊥ 4.42 9.24 46.04

CNN 3.91 8.83 39.54
CNN+hY 3.76 8.49 40.13

Table 3: Ablation analysis of H⊥. ‘CNN+H⊥’ indicates we use the
H⊥ in the convolutional decoder. ‘CNN’ indicates we do not use
H⊥ and hY in the convolutional decoder.

Loss Type BLEU-4 METEOR CIDEr
out-layer 0.00 2.11 0.95

out-layer+consist 0.00 2.80 1.62
multi-layer 3.95 8.96 39.41

multi-layer+consist 4.42 9.24 46.04

Table 4: The effect of different types of convolutional decoder loss.
‘out-layer’ indicates the loss which is from the output layer. ‘multi-
layer+consist’ indicates the loss LCE and Ls.

4.2 Performance of Full Supervision
Table 1 shows the performance of full supervision. We
can see that based on different pre-trained models, the per-
formance of convolutional decoder outperforms that of the
IGRU decoder. This shows that convolutional decoder is ef-
fective. In Fig. 6, we show some examples of ViCap. We
can see that when the initial caption does not meet our expec-
tation, based on the given prompts, our method indeed gen-
erate more accurate descriptions. These not only show the
proposed scene is meaningful but also demonstrate the effec-
tiveness of the proposed method.

Ablation Analysis of H⊥
We first analyze H⊥. In Table 3, we show the comparative
results. We can see that adding H⊥ in the decoder could im-
prove the performance obviously.

The Effect of Different Types of Convolutional Loss
In order to analyze the effect of different types of loss, we
make some comparative experiments. The results are shown
in Table 4. Firstly, we can see that the performance of using
the multi-layer loss outperforms that of only using the output
layer loss obviously. This shows that using multi-layer loss

really reduce the risk of vanishing gradients and improve the
performance. Besides, for the multi-layer loss and the out-
layer loss, we can see that adding the loss Ls improve the
performance. This shows the loss Ls is effective.

4.3 Performance of Prompt Supervision
For the case of prompt supervision, we propose a GRU and
convolution reconstruction network. Combined with the im-
proved GRU decoder and convolutional decoder, there are
four different architectures of prompt supervision. Table 2
shows their performance. We can see that the performance
of the convolutional reconstruction network outperforms the
GRU reconstruction network. This further demonstrates the
effectiveness of convolutional architecture. Finally, the per-
formance of the combination of the convolutional decoder
and convolutional reconstruction network is the best.

The Effect of Reconstruction Loss
Here, we analyze the effect of the reconstruction loss. The
results are shown in Table 5. We can see that for different
decoder, adding reconstruction network could improve the
performance obviously. For the generation of one natural lan-
guage sentence, only using two ground-truth words (prompts)
as the supervision information is not enough, which makes
the network is prone to overfitting. Obviously, for our net-
work, adding the reconstruction loss reduces the risk of over-
fitting and promotes the decoders to generate better word-
level representation.

Method BLEU-4 METEOR CIDEr
IGRU-D+NO-R 0.11 2.31 1.72

IGRU-D+CNN-R 0.43 4.34 3.47
CNN-D+NO-R 0.33 4.17 2.79

CNN-D+CNN-R 0.58 4.97 6.25

Table 5: The effect of reconstruction loss. ‘CNN-D+NO-R’ indi-
cates we only use the convolutional decoder.

5 Conclusion
In this paper, we propose a new task of ViCap. Meanwhile,
we devise ViCap models. Finally, the experimental results not
only demonstrate the effectiveness of our proposed methods
but also show the new task is meaningful.
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